Skip to main content

Interpretable Latent Space to Enable Counterfactual Explanations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13601))

Abstract

Many dimensionality reduction methods have been introduced to map a data space into one with fewer features and enhance machine learning models’ capabilities. This reduced space, called latent space, holds properties that allow researchers to understand the data better and produce better models. This work proposes an interpretable latent space that preserves the similarity of data points and supports a new way of learning a classification model that allows prediction and explanation through counterfactual examples. We demonstrate with extensive experiments the effectiveness of the latent space with respect to different metrics in comparison with several competitors, as well as the quality of the achieved counterfactual explanations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the convergence problem, we used the early stopping technique.

  2. 2.

    ILS code; UCI and pytorch datasets; PCA, UMAP, and TMAP methods links.

  3. 3.

    TMAP crashed for \(k>10\) due to the exponential computational cost.

References

  1. Abati, D., et al.: Latent space autoregression for novelty detection. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 481–490. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  2. Abdal, R., et al.: Image2stylegan: how to embed images into the stylegan latent space. In: International Conference on Computer Vision (ICCV), pp. 4431–4440. IEEE (2019)

    Google Scholar 

  3. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  4. Akhtar, N., et al.: Threat of adversarial attacks on deep learning in computer vision: survey II. CoRR arXiv:2108.00401 (2021)

  5. Amid, E., Warmuth, M.K.: Trimap: large-scale dimensionality reduction using triplets. CoRR arXiv:1910.00204 (2019)

  6. Angiulli, F., Fassetti, F., Ferragina, L.: Improving deep unsupervised anomaly detection by exploiting VAE latent space distribution. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds.) DS 2020. LNCS (LNAI), vol. 12323, pp. 596–611. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61527-7_39

    Chapter  Google Scholar 

  7. Artelt, A., Hammer, B.: On the computation of counterfactual explanations - a survey. CoRR arXiv:1911.07749 (2019)

  8. Bodria, F., et al.: Benchmarking and survey of explanation methods for black box models. CoRR arXiv:2102.13076 (2021)

  9. Breunig, M.M., et al.: LOF: identifying density-based local outliers. In: SIGMOD Conference, pp. 93–104. ACM (2000)

    Google Scholar 

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Knowledge Discovery and Data Mining (KDD), pp. 855–864. ACM (2016)

    Google Scholar 

  11. Guidotti, R.: Counterfactual explanations and how to find them: literature review and benchmarking. In: Data Mining and Knowledge Discovery (DAMI), pp. 1–55 (2022)

    Google Scholar 

  12. Guidotti, R., et al.: Factual and counterfactual explanations for black box decision making. IEEE Intell. Syst. 34(6), 14–23 (2019)

    Article  Google Scholar 

  13. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93:1–93:42 (2019)

    Google Scholar 

  14. Guo, W., Diab, M.T.: Modeling sentences in the latent space. In: Association for Computational Linguistics (ACL), vol. 1, pp. 864–872. The Association for Computer Linguistics (2012)

    Google Scholar 

  15. Hoff, P.D., et al.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, B., et al.: Examples are not enough, learn to criticize! criticism for interpretability. In: Neural Information Processing Systems (NIPS), pp. 2280–2288 (2016)

    Google Scholar 

  17. Kim, J., Cho, S.: Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space. Expert Syst. Appl. 186, 115842 (2021)

    Article  Google Scholar 

  18. Kingma, D.P., et al.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  19. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Comparison-based inverse classification for interpretability in machine learning. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 100–111. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91473-2_9

    Chapter  Google Scholar 

  21. Lundberg, S.M., et al.: A unified approach to interpreting model predictions. In: Neural Information Processing Systems (NIPS), pp. 4765–4774 (2017)

    Google Scholar 

  22. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  23. McInnes, L., Healy, J.: UMAP: uniform manifold approximation and projection for dimension reduction. CoRR arXiv:1802.03426 (2018)

  24. Medrano-Gracia, P., et al.: Atlas-based anatomical modeling and analysis of heart disease. Drug Discov. Today Dis. Model. 14, 33–39 (2014)

    Article  Google Scholar 

  25. Mukherjee, S., et al.: Clustergan: latent space clustering in generative adversarial networks. In: AAAI, pp. 4610–4617. AAAI Press (2019)

    Google Scholar 

  26. Ng, A., et al.: Sparse autoencoder. CS294A Lect. Notes 72(2011), 1–19 (2011)

    Google Scholar 

  27. Peng, X., et al.: Structured autoencoders for subspace clustering. IEEE Trans. Image Process. 27(10), 5076–5086 (2018)

    Article  MathSciNet  Google Scholar 

  28. Pol, A.A., et al.: Anomaly detection with conditional variational autoencoders. CoRR arXiv:2010.05531 (2020)

  29. Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and captions. Adv. Neural Inf. process. Syst. 29 (2016)

    Google Scholar 

  30. Ribeiro, M.T., et al.: “why should I trust you”: explaining the predictions of any classifier. In: Knowledge Discovery and Data Mining (KDD). ACM (2016)

    Google Scholar 

  31. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)

    Article  Google Scholar 

  32. Schreyer, M., et al.: Detection of accounting anomalies in the latent space using adversarial autoencoder neural networks. CoRR arXiv:1908.00734 (2019)

  33. Spinner, T., et al.: Towards an interpretable latent space: an intuitive comparison of autoencoders with variational autoencoders. In: IEEE (2018)

    Google Scholar 

  34. Stepin, I., et al.: A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence. IEEE Access 9, 11974–12001 (2021)

    Article  Google Scholar 

  35. Tan, P., et al.: Introduction to Data Mining, 2nd edn. Pearson, Boston (2019)

    Google Scholar 

  36. Wang, Y., et al.: Understanding how dimension reduction tools work: an empirical approach to deciphering t-sne, umap, trimap, and pacmap for data visualization. J. Mach. Learn. Res. 22, 201:1–201:73 (2021)

    Google Scholar 

  37. Winant, D., Schreurs, J., Suykens, J.A.K.: Latent space exploration using generative kernel PCA. In: Bogaerts, B., Bontempi, G., Geurts, P., Harley, N., Lebichot, B., Lenaerts, T., Louppe, G. (eds.) BNAIC/BENELEARN -2019. CCIS, vol. 1196, pp. 70–82. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65154-1_5

    Chapter  Google Scholar 

  38. Wu, J., et al.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Neural Information Processing Systems (NIPS), pp. 82–90 (2016)

    Google Scholar 

  39. Yang, B., et al.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: International Conference on Machine Learning (ICML), vol. 70, pp. 3861–3870. PMLR (2017)

    Google Scholar 

  40. Yeh, C., et al.: Learning deep latent space for multi-label classification. In: AAAI. AAAI Press (2017)

    Google Scholar 

  41. Zhang, L., et al.: LSDT: latent sparse domain transfer learning for visual adaptation. IEEE Trans. Image Process. 25(3) 1177–1191 (2016)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the European Community Horizon 2020 program under the funding schemes: H2020-INFRAIA-2019–1: Research Infrastructure GA 871042 SoBigData++, G.A. 952026 HumanE-AI Net, ERC-2018-ADG GA 834756 XAI: Science and technology for the eXplanation of AI decision making, G.A. 952215 TAILOR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Guidotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodria, F., Guidotti, R., Giannotti, F., Pedreschi, D. (2022). Interpretable Latent Space to Enable Counterfactual Explanations. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics