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Abstract. In spite of increased attention on explainable machine learn-
ing models, explaining multi-output predictions has not yet been exten-
sively addressed. Methods that use Shapley values to attribute feature
contributions to the decision making are one of the most popular ap-
proaches to explain local individual and global predictions. By consid-
ering each output separately in multi-output tasks, these methods fail
to provide complete feature explanations. We propose Shapley Chains
to overcome this issue by including label interdependencies in the expla-
nation design process. Shapley Chains assign Shapley values as feature
importance scores in multi-output classification using classifier chains,
by separating the direct and indirect influence of these feature scores.
Compared to existing methods, this approach allows to attribute a more
complete feature contribution to the predictions of multi-output classi-
fication tasks. We provide a mechanism to distribute the hidden contri-
butions of the outputs with respect to a given chaining order of these
outputs. Moreover, we show how our approach can reveal indirect fea-
ture contributions missed by existing approaches. Shapley Chains help
to emphasize the real learning factors in multi-output applications and
allows a better understanding of the flow of information through output
interdependencies in synthetic and real-world datasets.

Keywords: Machine Learning Explainability - Classifier Chains - Multi-
Output Classification - Shapley Values.

1 Introduction

A multi-output model predicts several outputs from one input. This is an impor-
tant learning problem for decision-making involving multiple factors and complex
criteria in the real-world scenarios, such as in healthcare, the prediction of mul-
tiple diseases for individual patients. Classifier chains [§] is one such approach
for multi-output classification, taking output dependencies into account by con-
necting individual base classifiers, one for each output. The order of output
nodes and the choice of the base classifiers are two parameters yielding different
predictions thus different explanations for the given classifier chain.

To address the lack of transparency in existing machine learning models, solu-
tions such as SHAP [5], LIME [9], DEEPLIFT [11] and Integrated Gradients [12]
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have been proposed. Using Shapley values [10] is one approach to attribute fea-
ture importance in machine learning. The framework SHAP [5] provides Shapely
values used to explain model predictions, by computing feature marginal con-
tributions to all subsets of features. This theoretically well founded approach
provides instance-level explanations and a global interpretation of model predic-
tions by combining these local (instance-level) explanations.

However, these methods are not suitable for multi-output configurations,
especially when these outputs are interdependent. In addition, the SHAP frame-
work provides separate feature importance scores only for independent multi-
output classifiers. By assuming the independence of outputs, one ignores the
indirect connections between features and outputs, which leads to assigning in-
complete feature contributions, thus an inaccurate explanation of the predic-
tions.

Fig. [[] is a graphical representation of a classifier chain: patients with two
conditions, obesity (Yog) and psoriasis (Ypso), given four features: genetic com-
ponents (Xgc), environmental factors (Xgg), physical activity (Xpa) and eating
habits (Xgn). From a clinical point of view, all factors X are associated with
both conditions Y, obesity and psoriasis. However, since obesity is a strong fea-
ture for predicting psoriasis [4] (indeed, a motivating factor for using such a
model is that predictive accuracy can be improved by incorporating outputs as
features), it may mask the effects of other features. Namely, Xpa and Xgy will
be found by methods as SHAP applied to each output separately to have zero
contribution towards predicting Ypso, and one might interpret that psoriasis is
mainly affected by factors which cannot be modified by the patient (environment
and genetics). The indirect effects (physical activity and eating habits) will not
be detected or explained.

We propose Shapley Chains to address this limitation of incomplete attri-
bution of feature importance in multi-output classification tasks by taking into
account the relationships between outputs and distributing their importance
among the features with respect to a given order of these outputs. Calculating
the Shapley values of outputs helps to better understand the importance of the
chaining that connects these outputs and to visualize this relationship impact on
the prediction of subsequent outputs in the chain. For these subsequent outputs,
the computation of the Shapley values of the associated outputs shows the indi-
rect influence of some features through the chain, which is generally not intuitive
and missed by existing work. Our method will successfully explain these indirect
effects. By attributing importance to the features Xpa and Xgy, Shapley Chains
will help doctors to emphasize the importance of eating healthy and practic-
ing physical activities in order to prevent and better cure psoriasis instead of
blaming only genetics and exterior environmental factors.

This paper addresses the problem of attributing feature contributions in
multi-output classification tasks with classifier chains when outputs are inter-
dependent. Our contribution in this paper is resumed to :

— We propose Shapley Chains, a novel post-hoc model agnostic explainability
method designed for multi-output classification task using classifier chains.



Shapley Chains: Extending Shapley Values to Classifier Chains 3

Fig. 1. An example of a multi-output task: predicting Y-outputs from X-features. A
classifier chain uses the first output Yog as an additional feature to predict the second
output Ypso.

— Shapley Chains attribute feature importance to all features that directly or
indirectly contribute to the prediction of a given output, by tracking all the
related outputs in the given chain order.

— Compared to existing methods, we show a more complete distribution of
feature importance scores in multi-output synthetic and real-world datasets.

We devote Section 2 to a background and related work. In Section 3, we detail
our proposed method Shapley Chains. Finally in Section 4, we run experiments
on a synthetic and real-world datasets. The results of our method compared to
SHAP values applied to independent classifiers are then discussed.

2 Background and Related Work

In this section we review multi-output classification, output dependencies, clas-
sifier chains and Shapley values to serve as a background for the rest of this
paper. The notation we used is summarized in the next table.

Table 1. Notation

Notation|Meaning

a given instance vector

a given output vector

the " feature of instance x

the %" output

the feature space of x;

the output space of y;

the number of features for each instance x
the number of outputs

S5 <KS 59
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2.1 Multi-output classification and output dependencies

A multi-output classifier H is a mapping function that for a given instance
x={x1, 2, ..., 2, }, such that x € X, it learns a vector of base classifiers H(x) =
h1(x), ha(X), ..., hm (x) and returns a vector of predicted valuesy = {y1,y2, ..., Ym }
, with y; € {0,1} and y € Y.

In real-world applications, outputs can be dependent or independent. De-
signing classifiers that incorporate these output dependencies makes it possible
to better represent the relationships in the data (between outputs, therefore be-
tween features and outputs). There are two types of output dependencies wrt
subsequent outputs; namely marginal independencies, P(y) = H;nzl P(y;), and
conditional output dependencies:

m

P(ylx) = [[ Pw;| X, 1, yj-1) (1)

Jj=1

In this article, we focus on output conditional dependencies. The nature of the
relationship between features and outputs and between outputs is not restricted
to causality. Therefore, no prior knowledge of the causal graph is necessary. This
specific subject is partially covered in Shapley Flow [I3], which is designed for
single-output tasks.

2.2 Classifier chains

A classifier chain is one multi-output method that learns m classifiers (one clas-
sifier for each output, also referred as base classifier). All the classifiers are linked
in a chain. The chaining method passes output information between classifiers,
allowing this method to take into account output dependencies [7] when learning
a given output in the chaining.

This method is exactly an expression of Eq. |1} if expressed according to the
chain rule of probability (i.e., Fig. [2| as a probabilistic graphical model repre-
sentation). That is one reason why conditional dependencies are interesting in
this context. However, a classifier chain is not faithful to a ‘proper’ inference
procedure, and rather takes a greedy approach to inference, plugging in pre-
dictions as observations; and proceeds much as a forward pass across a neural
network. This creates some ambiguity between how much effect is gained from
probabilistic dependence (as a probabilistic graphical model would) and feature
effect (as one encounters via the latent layers of deep learning). Although dis-
cussion has been ongoing e.g., [8[7], there is not yet a consistent understanding
in practice of what role a prediction plays as a feature to another label. By prop-
agating output contributions among the features, Shapley Chains help to clarify
these prediction roles, and confirm which outputs are interdependent using the
Shapley value described in the next section.
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Fig. 2. One example of a classifier chain structure

2.3 Shapley values

The Shapley value expresses the contribution of feature z;, to predict output y;
as a weighted sum:

s B S =Dy sy - ) @

Gu, i = X!

SCX\{i}

Where S C X, and f, is the value function that defines each feature’s con-
tribution to each subset S. It computes each feature’s average added value to
each combination of features when making a prediction for instance x.

Additivity is one axiom of a fair attribution mechanism that is satisfied by
the Shapley value. It finds a good interpretation in multi-output classification.
Consider two prediction tasks (X, f), (X, g) composed of the same set of fea-
tures. We create a coalition prediction task (X, f+g¢) by adding the two previous
prediction tasks in the following way: (f + ¢)(S) = f(S) + g(S) for all S C X.
The additivity axiom states that the allocation of the prediction (X, f + g) will
be equal to the sum of the allocations of the two original prediction tasks. One
should note that in this definition, we assume that the two prediction tasks are
completely independent meaning that feature contributions to one prediction has
no effect on the second one, which is not always the case because in real-world
applications tasks are more often interdependent. One approach we propose is
to use classifier chains because it permits to represent these relationships by in-
troducing different chaining orders of these outputs. The overall feature Shapley
values for a classifier chain can be calculated by marginalizing over all possible
output chain structures. Ve € C, the Shapley value of z; in Eq.[2] can be written
as follows: )

¢yj93i = ﬁ Z qsy;xl (3)

cCC

with qby? being the contribution of feature x; to the prediction of y; with respect
to the given chaining order c. For the matter of simplicity, we use ¢, to refer
to ¢y]c_ in the rest of this paper. We report feature contribution for each chain
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structure independently to show the impact of different chaining orders and the
marginalization over these orders in Section [£.1]

2.4 Related work

The explainability of machine learning is an active research topic in the recent
years. Several contributions have been made to explain single-output models
and predictions. Inspecting feature importance scores of existing models is an
intuitive approach that has served for many studies. These feature importance
scores are either derived directly from feature weights in a linear regression
for instance, or learned from feature permutations based on the decrease in
model performance. Other more complex methods like LIME [9] learn a surrogate
model locally (around a given instance) in order to explain the predictions of the
initial model with simple and interpretable models like decision trees. On the
other hand, DeepLift [I1], Integrated gradient [I2] and LRP [6] are some neural
network specific methods proposed to explain deep neural networks.

The SHAP framework is one popular method attributing Shapley values
as feature contributions. It provides a wide range of model-specific and model-
agnostic explainers. Researchers have also proposed other Shapley value inspired
methods incorporating feature interactions in the explanation process. For ex-
ample, asymmetric Shapley values [3] incorporates causal knowledge into model
explanations. This method attributes importance scores to features that do not
directly participate in the prediction process (confounders), but fails to capture
all direct feature contribution. On the other hand, on manifold Shapley values [2]
focus on better representing the out of coalition feature values but provides mis-
leading interpretation of feature contributions. Wang et al. [I3] have proposed
Shapley Flow, providing both direct and indirect feature contributions when a
causal graph is provided. Resuming feature interactions to causality and assum-
ing the causal graph is provided and accurate are two downsides of this method.
These methods significantly contributed to advancing the explainability of ma-
chine learning models but none of them have tackled multi-output problems,
more specifically when outputs are interdependent. Shapley Chains address this
limitation.

3 Proposed Method: Shapley Chains

In this section, we introduce our approach to compute direct and indirect feature
Shapley values for a classifier chain model. Note that our proposed method is
model-agnostic, meaning that our computations do not depend directly on the
chosen base learner used by the classifier chain.

We want to compute feature contributions to the prediction of each output
y; € Y for each instance x. For example, Fig. |§| shows the direct and indirect
contributions of z; to predict output y4 given in Fig. 2| In the next two sec-
tions, we detail the computations of the Shapley value of each feature to predict
each output. We refer to these Shapley values as direct and indirect feature
contributions.
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Fig. 3. Representation of direct and indirect contributions for a dataset with 4 outputs
(y1, Y2, y3 and ya). For example: the 4th output ys4 has 7 indirect Shapley values (7
paths ending with square leave) and one direct Shapley value (one path ending with a
circle leaf).

Direct contributions The direct contributions are computed for features and
outputs as in Eq. 2] Consider again the example of patients with the two con-
ditions: psoriasis and obesity. For both Yog and Ypso, we use the framework
SHAP in order to compute the Shapley value of each feature : Xgc, Xer, Xpa
and Xgy. This will attribute non zero Shapley values to X¢c and Xgr to predict
Yog and Ypso separately. On the other hand, Xgr and Xpa will have non-zero
Shapley values to predict Yog and zero values for the prediction of Ypso. The
classifier chain method will add Yog to the feature set to predict Ypso. By run-
ning the SHAP framework on this new set, Yog will have a non zero Shapley
value because it is dependent to Ypspo. This Shapley value will be attributed
to the features that are correlated to Yog. The attribution mechanism of direct
feature (and output) contributions can be generalized to the classifier H with m
base classifiers as shown in Algorithm [I}

For the first output y;, we calculate the Shapley value of each feature ac-
cording to Eq. 2] as done in the SHAP framework. This marginal value of all
possible subsets to which the feature can be associated to is the feature’s contri-
bution to predict the first output y;. For the second output y2, we append the
predictions y; made by the first classifier h; to the features set, and we train
a second classifier ho to learn the second output y,. We again use the SHAP
framework to assign Shapley values to features and the first output y;. Here,
the feature set includes the first prediction. We perform the same steps for each
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Algorithm 1 Computing direct feature contributions

1: procedure DICONTRIBUTION(X,Y, H) b features, outputs, classifier chain model
2: i1=3j=0
|
while j < len(Y) do
while ¢ < len(X) do
&,z <+ SHAP(X,y;, H) > Shapley values of inputs wrt each output
append y; to X
append &y, z; to ®

return @ > & contains features and outputs Shapley values

remaining output. At each step, we calculate the Shapley values for features
and previous predicted outputs that are linked via the chaining to the current
output. At the final step, the feature set will contain n features and m outputs:

X = {x1a$27 vy Ty Y1, Y2, ,ym}

Indirect contributions The indirect contribution @mdirectyj(xi) of z; to pre-
dict y; is the weighted sum of the direct contributions of all 4, € Y that are
chained to y;. Pindirectyj(zi) is computed according to the Eq.

j—1
Qsindirectyj (xz) = Z @y] (yk) : Zk (xz) (4)
k=1
where j > 1 and the function Zg(z;) computes the weight vector for all
paths from output yi down to x,;. For k > 1 and Z;(z;) = W(y1,x;), Zg(x;) is
recursively computed as follows:

k—1
(i) = Z WYk, yr—1) - Zr—1(z:i) + W(yr, z:) (5)
1=1
where W (yk,yr—1) is the corresponding weight of y,_; to predict the next
output y (the direct contribution of yx_; to predict yi. And, W (yg,x;) is the
weight of x; to predict yi (the direct contribution of z; to predict yx). The
weights W (yk, yx—1) and W (yx, z;) are calculated according to:

Wy, ) = 7— [y ()] (6)
(o [y o)| + X [P0

where @y (z,) is the direct contribution, as in Eq. [2} of each feature x, to
predict yx). p < k means the output p is chained to the output j forming a
directed acyclic graph illustrated in Fig. 2]

For instance, in order to have a complete fair distribution of feature impor-
tance for the prediction of Ypsg, we compute the indirect Shapley values of the
features Xpp and Xgy. We do so by distributing the direct Shapley value of
Yo computed previously to the four features. By the distribution operation, we




Shapley Chains: Extending Shapley Values to Classifier Chains 9

mean the multiplication of the direct Shapley value of each feature by the direct
Shapley value of Ypg, divided by the sum of the shapley values of all features
for to predict the same output(here Yog).

We generalize this mechanism in Algorithm [2| of calculating indirect Shapley
values to the chain structure in Fig. The first output y; has always zero
indirect Shapley values because there is no output that precedes it in the chain-
ing. Thus, for the rest of this section, we compute feature indirect contributions
for y; € {y2,y3, ..., ym }. For each output y;, there exists one direct path to the
features thus one direct feature contributions and 27 — 1 indirect paths for each
feature.

Algorithm 2 Computing feature indirect contributions

1: procedure INCONTRIBUTION(X,Y, ®) > inputs, outputs, Shapley values of
features and outputs

2 i=j=0

3: while j < len(Y) do

4: while ¢ < len(X) do

5: compute W (yk, yr—1) and W (yk,z;) in Eq. |§|

6: compute Zi(x;) in Eq.

T return @indirecty; (i) in Eq. > returning indirect feature contributions.

One should notice that for the matter of the simplicity of understanding,
we take the absolute value in Eq. [6] Thus, all the contributions will be positive.
These absolute values can be replaced by the raw Shapley values in order to keep
the positive or negative sign of feature contributions. Keeping the sign helps to
understand if the feature penalizes or is in favor of the prediction.

4 Experiments

In order to assess the importance of the features that is attributed by our pro-
posed frameworkﬂ to explain their contributions to predict multiple outputs with
a classifier chain, we run experiments on both synthetic and real-world datasets:
a zor data that we describe next, and the Adult Income dataset from the UCI
repository [I]. Here, we rely on human explanation to validate our results.

4.1 Synthetic data

To demonstrate our work, we first run experiments on a multi-output synthetic
dataset containing two features (1 and z3) and three outputs (and, or and zor)
corresponding to the logical operations of the same names performed on x; and
x3. We split this dataset to 80% for the training and 20% for the test of our
classifier.

3 https://github.com/cwayad/shapleychains
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Fig. 4. The classifier chain structure for zor data. X is the set of features x1 and z».
and, or and xor are the outputs for which we want to compute direct and indirect
Shapley values.

Next, we construct a classifier chain with the chaining order illustrated in
Fig. [4 We use a logistic regression as the base learner. Our method is model
agnostic meaning that it can be applied to a classifier chain with any other base
learners. The use of the logistic regression as the base learner to predict zor is
justified by the accuracy that this model achieves compared to other classifiers
like decision trees. The classifier chain is trained on the train set using z; and x»
to predict and and or separately. Then, we append these two predicted outputs
to the features set in order to predict xor. Here, the order in which we predict
and and or does not change our method’s behavior.

X1

direct_ AND s direct OR
direct_OR mm direct_ AND
indirect_OR s indirect_AND
direct XOR BN direct XOR
mmm indirect_XOR mmm indirect XOR
0.0 0.2 0.4 0.6 0.8 10 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
(f) Shapley chains with order = ['AND', 'OR’, 'XOR'] (f) Shapley chains with order = ['OR’, 'AND", 'XOR']

X2

X1
mmm direct_ AND
s direct_OR
mmm direct_XOR

0.00 0.05 0.10 0.15 0.20
(*) SHAP on independent classifiers

Fig. 5. A comparison of SHAP applied on independent classifiers and Shapley Chains.
From the left to the right. (a) and (b) Normalized direct and indirect feature contri-
butions made by Shapley Chains to predict and, or and zor for chain orders [and, or,
zor] and [or, and, zor]. (x) SHAP assigns contributions to z1 and z2 only to predict
and and or outputs and completely misses their contributions to predict zor. Absent
colors refer to null Shapley values.
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To explain the influence of x7 and x5 on the prediction of zor, we compared
the application of the framework SHAP on each classifier independently and
Shapley Chains on the trained classifier chain. We report our analysis on the
test data. The results of the comparison shown in Fig. [5|indicate that the output
chaining propagates the contributions of x; and x5 to predict zor via and and
or. Specifically, Fig. [f[a) and Fig. [5|(b) illustrate that our method detects the
indirect contributions of z; and zs (indirect_xor) to predict xor thanks to the
chaining of and and or to xor implemented with the classifier chain model,
which tracks down all feature contributions through the chaining of outputs.
Furthermore, Fig. a) and Fig. b) confirm that predicting or before and or
vice versa does not affect the feature contributions attribution, which confirms
the chain structure for this data. On the other hand, these contributions of
x1 and xo are completely neglected by the SHAP framework on independent

classifiers (Fig. [[()).

Impact of the chaining order on the classifier chain explainability In
order to measure the impact of the chaining order on the explainability of our
classifier chain model with Shapley Chains, we performed analysis on the 3! = 6
possible output chaining orders in the synthetic dataset (scenarios (a) and (b)
in Fig. [f] and scenarios (c), (d), (e) and (f) in Fig. [6).

X2 X2

s direct AND
I direct_XOR X1
mmm  indirect_XOR
BN dircct_ OR

== indirect_OR

= direct OR
I direct_XOR
B indirect_XOR
BN dircct AND
mmm indirect AND

X1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
(f) shapley chains with order = ['AND’, 'XOR’, 'OR'] (f) shapley chains with order = ['OR’, 'XOR', 'AND']

X2 X2

== direct XOR
mmm direct AND X1
= indirect AND
mEE direct_OR

=== indirect_OR

== direct XOR
e direct_ OR
= indirect_OR
=N direct AND
== indirect_AND

X1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(f) Shapley chains with order = ['XOR', 'AND", 'OR'] (f) Shapley chains with order = ['XOR', 'OR', 'AND']

Fig. 6. Possible output chaining orders for xor data. Normalized total feature contri-
butions (direct and indirect Shapley values) for ¢, d, e and f.
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The information known to the classifier chain when training each output
changes depending on the order of these outputs. For instance, in scenarios a
and b (Fig. ), we first learn the two outputs and and or using x1 and x5 features.
xor is then predicted using and and or. Here, in both scenarios, both features x
and xo contribute indirectly (through and and or) to predict zor. Meanwhile in
the scenario ¢ (or d), the model relies on and(or or), x1 and z2 to predict zor.
We observe that x; and o have direct and indirect contributions, meaning that
the classifier chain relies partially on these two features to predict xor (direct
contributions of z; and x2), and on and (indirect contributions of z; and x5 via
and). The last two scenarios e and f show no contribution of 21 and x5 to predict
xor, which is explained by the fact that using only these two features, the model
can not predict xor without having the information about the dependencies of
xor to and and or.

These results show that the chain order of and, or and xor outputs has
an important role in the explainability of the classifier chain, because feeding
different inputs to the classifier chain yields different predictions, thus different
Shapley values are attributed to the features. x; and x5 importance scores can
either be derived from a direct inference of xor output only if there is additional
information on output dependencies (for example and is linked to xor) or by
extracting it from the chain that links and and or to zor. In the absence of
all output dependencies of and or or to zor, the model completely ignores the
importance of features x; and x5 in the prediction of xor.

4.2 Explaining Adult Income with Shapley chains

We run Shapley Chains on the UCI Adult Income dataset. This dataset contains
over 32500 instances with 15 features. We first discretize workclass, marital
status and relationship characteristics. We remove race, education and native
country and normalize the dataset with the min/max normalizer. Next, we split
it into two subsets, using 80% for the training and the remaining 20% for testing.
We evaluated the hamming loss of a classifier chain with different base learners
and we kept the best base classifier, the logistic regression in this case.

In order to explain feature contributions to the predictions of the three out-
puts sex, occupation and income, we compared the results of Shapley Chains
against classic Shapley values applied on separate logistic regression classifiers
for different chain orders. Fig. [7] shows graphical representation of normalized
and stacked feature contributions when applying Shapley Chains on our data
set (Fig. [7}(a)), and stacked feature contributions from independent logistic
regression classifiers (Fig. (b)) In both cases, the magnitude of the feature
contributions is greater in Shapley Chains compared to independent Shapley
values, which confirms our initial hypothesis of some contributions are missed
by SHAP framework, and these contributions can be detected when we take
into account output dependencies. For example, the number of hours worked
in a week (hours.per.week) has a more important indirect contribution to pre-
dict individual’s occupation than a direct contribution. This is explained by
the fact that sex is related to occupation, and this relationship is propagated
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to the features by Shapley Chains. relationship is another example of Shapley
Chains detecting indirect feature contributions to predict occupation. Further-
more, feature rankings are different in Shapley Chains. For example, the ranking
of capital.gain comes in the fourth position (before workclass) using SHAP ap-
plied to independent classifiers. In our method, this feature’s ranking is always
less important (according to different chaining orders) than workclass to predict
sex, occupation and income which makes more sens to us.

relationship relationship

education.num education.num

hours.per.week hours.per.week

workclass capital.gain

age age

capital.gain
P 9 workclass

direct_sex
direct_occupation marital.status

marital.status

fnlwgt indirect_occupation

mmm direct_sex

direct_income fnlwgt X X
capital.loss indirect_income W direct_occupation
capital.loss mmm  direct_income
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 |
order = [sex, occupation, income] 0.0 0.1 0.2 0.3 0.4
(a) Shapley Chains (b) SHAP on independent classifiers

Fig. 7. (a) Direct and indirect Shapley values on Adult Income data: we normalize
and stack each feature’s direct and indirect contributions to each output. sex has only
direct contributions because it is the first output we predict in this chain order. (b)
Stacked Shapley values of independent classifiers on Adult Income data.

We also tested the impact of different chain orders of these three outputs
on the feature importance attribution. Fig. [§] illustrates three different chaining
orders. Each different order allows each classifier to use different prior knowledge
to learn these outputs. For example in Fig. b)7 we first predict income and
sex and we use this information to predict occupation. Intuitively, occupation
is correlated to individual’s sex and income. The classifier chain uses this in-
formation provided to the third classifier to predict occupation. Here, Shapley
Chains attribute more importance to the factors that predict both income and
sex, when predicting occupation. Shapley Chains preserve the order of feature
importance scores across all the chaining orders in general, but the magnitude
of each feature’s importance differs from one chain to another. This is due to
the prior knowledge that is fed into the classifier when learning each output. In
addition, these feature importance scores are always more important in Shapley
Chains compared to Shapley values of independent classifiers for all chain orders.

5 Conclusions and Perspectives

In this paper, we presented Shapley Chains, a novel method for calculating
feature importance scores based on Shapley values for multi-output classifica-
tion with a classifier chain. We defined direct and indirect contribution and
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relationship relationship [ S relationship
education.num education.num I education.num
hours.per.week hours.per.week _ hours.per.week
workclass workclass I workclass
age capital.gain - age
capital.gain age- capital.gain
tal stat W direct_sex tal.stat I I direct_income ital.stat I direct_occupation
marital.status . " marital.status . marital status .
m direct_occupation e direct_sex e direct_sex
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Fig. 8. Stacked direct and indirect feature effects for 3 different chain structures over
Adult Income data.

demonstrated on synthetic and real-world data how the attribution of indirect
feature contribution to the prediction is more complete with Shapley Chains.
Our method helps practitioners to better understand hidden influence of the
features on the outputs by detecting indirect feature contributions hidden in
output dependencies. Although the rankings of feature importance are not al-
ways different from independent feature importance scores, the magnitude of
these scores is always important in Shapley Chains, which is more important to
look at in applications that are sensitive to the magnitude of these importance
scores rather than their rankings. By extending the Shapley value to feature
importance attribution of classifier chains, we make use of output interdepen-
dencies that is implemented in classifier chains in order to represent the real
learning factors of a multi-output classification task.

To extend this work, Shapley Chains could be evaluated on multi-output
regression tasks. Exploring the relationship’s type between the outputs, and
studying wether Shapley Chains preserve all these relationships when attributing
feature contributions is another open question of our work.
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