Skip to main content

DMF-CL: Dense Multi-scale Feature Contrastive Learning for Semantic Segmentation of Remote-Sensing Images

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

Abstract

Recently, many segmentation methods based on supervised deep learning have been widely used in remote sensing images. However, these approaches often require a large number of labeled samples, which is difficult to obtain them for remote sensing images. Self-supervision is a new learning paradigm, and can solve the problem of lack of labeled samples. In this method, a large number of unlabeled samples are employed for pre-training, and then a few of labeled samples are leveraged for downstream tasks. Contrast learning is a typical self-supervised learning method. Inspired, we propose a Dense Multi-scale Feature Contrastive Learning Network (DMF-CLNet), which is divided into global and local feature extraction parts. Firstly, in the global part, instead of traditional ASPP, DenseASPP can obtain more context information of remote sensing images in a dense way without increasing parameters. Secondly, in the global and local parts, Coordinate Attention (CA) modules are introduced respectively to improve the overall performance of the segmentation model. Thirdly, in the global and local parts, the perceptual loss is calculated to extract deeper features. Two remote sensing image segmentation datasets are evaluated. The experimental results show that our model is superior to the current self-supervised contrastive learning methods and ImageNet pre-training techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, J., Feng, L., Yao, F.: Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information. ISPRS J. Photogramm. Remote Sens. 94, 102–113 (2014)

    Google Scholar 

  2. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  3. Sargent, I., Zhang, C., Atkinson, P.M.: Joint deep learning for land cover and land use classification (2020). https://doi.org/10.17635/Lancaster/thesis/42

  4. Sulla-Menashe, D., Gray, J.M., Abercrombie, S.P., Friedl, M.A.: Hierarchical mapping of annual global land cover 2001 to present: the MODIS collection 6 land cover product. Remote Sens. Environ. 222, 183–194 (2019)

    Google Scholar 

  5. Nan, L., Hong, H., Tao, F.: A novel texture-preceded segmentation algorithm for high-resolution imagery. IEEE Trans. Geosc. Remote Sens. 48(7), 2818–2828 (2010)

    Google Scholar 

  6. Huang, X., Zhang, L.: An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 51(1), 257–272 (2013)

    Article  Google Scholar 

  7. Du, S., Zhang, F., Zhang, X.: Semantic classification of urban buildings combining VHR image and GIS data: an improved random forest approach. ISPRS J. Photogramm. Remote Sens. 105, 107–119 (2015)

    Google Scholar 

  8. Li, Z., Duan, W.: Classification of hyperspectral image based on double-branch dual-attention mechanism network. Remote Sens. 12(3), 582 (2020)

    Google Scholar 

  9. Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Asari, V.K.: The history began from AlexNet: a comprehensive survey on deep learning approaches (2018)

    Google Scholar 

  10. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  11. Supervised, S., Welling, B.M., Zemel, R.S.: Self Supervised (2008)

    Google Scholar 

  12. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2020)

    Google Scholar 

  13. Li, H., et al.: Global and local contrastive self-supervised learning for semantic segmentation of HR remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

    Google Scholar 

  14. Yang, M., Yu, K., Chi, Z., Li, Z., Yang, K.: DenseASPP for semantic segmentation in street scenes CVPR (2018)

    Google Scholar 

  15. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design (2021)

    Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Frid-Adar, M., Ben-Cohen, A., Amer, R., Greenspan, H.: Improving the segmentation of anatomical structures in chest radiographs using U-Net with an ImageNet pre-trained encoder. arXiv (2018)

    Google Scholar 

  18. Ma, X., Li, R., Lu, Z., Wei, W.: Mining constraints in role-based access control. Math. Comput. Model. 55(1–2), 87–96 (2012)

    Article  Google Scholar 

  19. Jie, H., Li, S., Gang, S., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. PP(99) (2012)

    Google Scholar 

  20. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  21. Hu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. IEEE (2019)

    Google Scholar 

  22. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. arXiv (2019)

    Google Scholar 

  23. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. IEEE (2020)

    Google Scholar 

  24. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: International Conference on Computer Vision (2018)

    Google Scholar 

  25. Fw, A., Fi, D.B.: Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network. Remote Sens. Environ. 245, 111741 (2020)

    Google Scholar 

  26. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  27. Ding, L., Zhang, J., Bruzzone, L.: Semantic segmentation of large-size VHR remote sensing images using a two-stage multiscale training architecture. IEEE Trans. Geosci. Remote Sens. PP(99), 1–10 (2020)

    Google Scholar 

  28. Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S.: DeepGlobe 2018: a challenge to parse the earth through satellite images. IEEE (2018)

    Google Scholar 

  29. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. IEEE Computer Society (2015)

    Google Scholar 

  30. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 61901537), Research Funds for Overseas Students in Henan Province, China Postdoctoral Science Foundation (No. 2020M672274), Science and Technology Guiding Project of China National Textile and Apparel Council (No. 2019059), Postdoctoral Research Sponsorship in Henan Province (No. 19030018), Program of Young backbone teachers in Zhongyuan University of Technology (No. 2019XQG04), Training Program of Young Master's Supervisor in Zhongyuan University of Technology (No. SD202207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bicao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, M., Li, B., Wei, P., Shao, Z., Wang, J., Huang, J. (2022). DMF-CL: Dense Multi-scale Feature Contrastive Learning for Semantic Segmentation of Remote-Sensing Images. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics