

Edinburgh Research Explorer

The Stochastic Arrival Problem

Citation for published version:
Webster, T 2022, The Stochastic Arrival Problem. in AW Lin, G Zetzsche & I Potapov (eds), Proceedings of
the 16th International Conference on Reachability Problems. Lecture Notes in Computer Science, vol.
13608, Springer, Cham, pp. 93-107, The 16th International Conference on Reachability Problems, 2022,
Kaiserslautern, Germany, 17/10/22. https://doi.org/10.1007/978-3-031-19135-0

Digital Object Identifier (DOI):
10.1007/978-3-031-19135-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 16th International Conference on Reachability Problems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. May. 2024

https://doi.org/10.1007/978-3-031-19135-0
https://doi.org/10.1007/978-3-031-19135-0
https://www.research.ed.ac.uk/en/publications/6da0d138-3dde-46aa-a344-210467883ad4

The Stochastic Arrival Problem

Thomas Webster1

University of Edinburgh, Edinburgh, UK
thomas.webster@ed.ac.uk

Abstract. We study a new modification of the Arrival problem, which
allows for nodes that exhibit random as well as controlled behaviour, in
addition to switching nodes. We study the computational complexity of
these extensions, building on existing work on Reachability Switching
Games. In particular, we show for versions of the arrival problem involv-
ing just switching and random nodes it is PP-hard to decide if their value
is greater than a half and we give a PSPACE decision algorithm.

Keywords: Arrival · Markov Chains · Reachability Switching Games ·
MDPs · Simple Stochastic Games

1 Introduction

Arrival is a simple to describe decision problem defined by Dohrau, Gärtner,
Kohler, Matous̆ek and Welzl [4]. In simplistic terms, it asks whether a train
moving along the vertices of a given directed graph, with n vertices, will eventu-
ally reach a given target vertex, starting at a given start vertex. At each vertex,
v, the train moves deterministically, based on a given listing of outgoing edges
of v, taking the first out-edge, then the second, and so on, as it revisits that
vertex repeatedly, until the listing is exhausted after which it restarts cyclically
at the beginning of the listing of outgoing edges again. This process is known as
“switching” and can be viewed as a deterministic simulation of a random walk
on the directed graph. It can also be viewed as a natural model of a state transi-
tion system where a local deterministic cyclic scheduler is provided for repeated
transitions out of each state.

Dohrau et al. showed this Arrival decision problem lies in the complexity
class NP ∩ coNP, but it is not known to be in P. There has been a lot of recent
work, showing that a search version of the Arrival problem lies in sub-classes
of TFNP including PLS [12], CLS [8], and UniqueEOPL [7], as well as showing
that Arrival is in UP ∩ coUP [8]. There has also been work on lower bounds,
including PL-hardness and CC-hardness [13]. Further recent work by Gärtner
et al [9] gives an algorithm for Arrival with running time 2O(

√
n log(n)), the

first known sub-exponential algorithm. In addition, they give a polynomial-time
algorithm for “almost acyclic” instances.

The complexity of Arrival is particularly interesting in the context of other
games on graphs, such as Condon’s simple stochastic games, mean-payoff games,
and parity games [2, 16, 11], for which the two-player variants are known to be

2 T. Webster

in NP∩ coNP, whereas the one-player variants have polynomial time algorithms.
Arrival however is a zero-player game which has no known polynomial time
algorithm and furthermore it was shown by Fearnley et al. [6] that a one-player
generalisation of arrival is in fact NP-complete, in stark contrast to these two-
player graph games.

Further generalisations of Arrival to Reachability Switching Games were
considered, adding player controlled nodes to the game, by Fearnley, Gairing,
Mnich and Savani [6]. We provide a further generalisation, by introducing prob-
abilistic nodes, out of which we have random transitions according to a given
probability distribution, thus combining the elements of Fearnley et al. [6] and
those of Condon’s [2], by allowing a mixture of randomisation, switching, and
controlled or game behaviour.

Some of our main results consider a mixture of switching and randomisa-
tion. In this case we show there is an exponential upper bound on the expected
termination time of such a switching run. We also show that deciding whether
the value is greater than 0 (or equal to 1 resp.) is complete for NP (resp. coNP)
and that the quantitative decision problem is both hard for PP, under many-one
(Karp) reductions, and contained in PSPACE thus showing it is harder than the
single player switching games of Fearnley et al. [6]. We also give hardness results
for the natural generalisation with players, showing these are hard for PSPACE.
Some simpler upper bounds follow from viewing these as succinctly presented
instances of MDPs, or Condon’s simple stochastic games. A full summary of our
complexity results (and prior complexity results) can be found in Table 1.

Due to space limits, most proofs are relegated to the appendix.

2 Preliminaries

Our arrival instances represent a reachability problem in a given directed graph,
G = (V,E), with given start and target vertices s, t ∈ V , and where the nodes V
are partitioned into different types according to a given partition V, with nodes
of each type having slightly different behaviour. We use din(v) and dout(v) to
represent the in-degree and out-degree of a vertex v in a directed graph. Four
distinct types of nodes may be contained in V:

{ Probabilistic nodes - We denote the set of probabilistic nodes by VR ∈ V,
and we require a probability distribution, P , to be given on their outgoing
edges. These are sometimes also called as random, stochastic or nature nodes.

{ Switching nodes - We call the set of switching nodes VS ∈ V, and require
an ordering, Ord , to be given on their outgoing edges.

{ Max Player nodes - We call the set of max player nodes V1 ∈ V at which
choices are controlled by a player aiming to reach t. These are also referred
to as player 1 nodes.

{ Min Player nodes - We call the set of min player nodes V2 ∈ V at which
choices are controlled by a player aiming to avoid t. These are also referred
to as player 2 nodes.

The Stochastic Arrival Problem 3

Our instances then have the following structure.

De�nition 1. An instance of an arrival problem has the following signature
(V,E, s, t,V, P,Ord) where:

{ (V,E) is a �nite directed graph.
{ s, t ∈ V . s is called the start and t the target node.
{ For all v ∈ V , we require dout(v) ≥ 1, and we allow self loop edges of the

form (v, v).
{ For t we require (t, v) ∈ E =⇒ v = t, i.e. the only out-edge at the target is

a self-loop.
{ V ⊆ P(V) is a partition of the vertices of V − {t} into di�erent node types.

Often we will take V = {VR, VS , V1, V2}, omitting empty sets, with each of
these sets as described above.

{ A function P : VR × V → [0, 1] with the properties that for any v ∈ VR we
have

P
w∈V P (v, w) = 1 and where P (v, w) > 0 if and only if (v, w) ∈ E.

{ A function Ord : VS → V + from switching nodes to a �nite sequence of
vertices. We require that, for v ∈ VS, (v, w) ∈ E if and only if there exists
an i such that w = Ord(v)i. So, every outgoing edge from v is \used" in
Ord(v), but can be used more than once.

Given such a model, we wish to define a play of the game. To do so we first
need to define the current state. Due to how switching nodes work we will also
include the current positions of those nodes into our game state.

De�nition 2. Given a set of switching nodes VS the current switching node
position is a function q : VS → N0, i.e., a function from vertices to natural
numbers, where we require that ∀v ∈ VS, q(v) < |Ord(v)|. We call the set of all
such position functions Q. If there are no switching vertices then Q is a singleton
containing only the empty function.

De�nition 3. A state of the game consists of an ordered pair (v, q) ∈ V × Q
with v ∈ V denoting the current vertex, and q ∈ Q, denoting the current position
of the switching nodes (De�nition 2). Thus we call the set V ×Q our state space.

Now that we have a state space we can define valid transitions between states.

De�nition 4. We let Valid : V × Q → P(V × Q) be the function de�ned as
follows:

{ For v ∈ VS and any q ∈ Q, where by de�nition q : VS → N0, we de�ne
Valid(v, q) := {(u, q′)}, where u and q′ are de�ned as follows:
• Suppose Ord(v) = (u0, . . . , uk−1). We let u := uq(v). Note that this is

well de�ned, i.e., 0 ≤ q(v) < |Ord(v)| = k, because (v, q) is a state.
• For x ∈ VS with x ̸= v we let q′(x) := q(x).
• Furthermore, we let q′(v) := (q(v) + 1 mod k).

{ For v ∈ V1 ∪ V2 and any q ∈ Q, we let Valid(v, q) := {(u, q) : (v, u) ∈ E}.
{ For v ∈ VR and any q ∈ Q we let Valid(v, q) := {(u, q) : P (v, u) > 0}

4 T. Webster

We call a transition from a state (v, q) to a state (u, q′) ∈ Valid(v, q) valid, and
otherwise we call it invalid.

It follows directly from the definitions that for any state (v, q), Valid(v, q) ̸= ∅.
We call an infinite sequence π = (v0, q0)(v1, q1)(v2, q2) · · · ∈ (V ×Q)ω over the

state space V ×Q a play if for every i ∈ N0 we have (vi+1, qi+1) ∈ Valid(vi, qi).
We use Ω to denote the set of all (infinite) plays. A partial play of the game is
a finite initial prefix w ∈ (V ×Q)∗ of a play. For a partial play w, we define its
basic cylinder, C(w) ⊆ w(V × Q)ω, as the set of all plays with w as an initial
segment. We use Π ⊆ (V ×Q)∗ to denote the set of all finite partial plays. We
say a play π is winning for player 1 if there exists some index i with πi = (t, q).
Otherwise, it is a losing play (winning for player 2).

It follows from known results, namely, deterministic memoryless determinacy
of simple stochastic games ([2]), that for all our generalised arrival games it
suffices to consider deterministic “essentially memoryless” strategies for a player
i given by Strat i : (Vi × Q) → V , which ignore the history in a partial play π,
and only considers the current state (v, q) in order to choose (deterministically) a
move to the next vertex, v′, such that (v′, q) ∈ Valid(v, q). (Note that switching
positions only change during transitions out of switching nodes.) Indeed, we can
view our instances of generalised arrival as defining exponentially larger simple
stochastic games over the state space V × Q, because of the deterministic way
the switching position q updates with each transition.

Fixing a start state s, and strategies σ1 and τ2 for the two players, naturally
determines a probability space (Ω,F ,Pσ1,τ2) on the set Ω of (infinite) plays.
Here F denotes the Borel σ-algebra of events generated by the set of basic
cylinders {C(w) | w ∈ Π}, and Pσ1,τ2

denotes the probability measure defined
on events in F uniquely determined by probabilities of basic cylinders, which
are defined inductively in the standard way, starting with the base case given by
P(C((s, q0))) := 1, where by definition q0(v) := 0 for all v ∈ VS . In other words,
all plays begin, with probability 1, with state (s, q0) as the initial state.

De�nition 5. Given an instance G = (V,E, s, t, {VR, VS , V1, V2}, P,Ord) we
de�ne the value of the instance as follows. Let Reach ∈ F be the event Reach :=
{π = (s, q0)(v1, q1)(v2, q2) . . . ∈ Ω : ∃i ∈ N0, vi = t} and let σ1 and τ2 range over
strategies for each player:

val(G) := max
σ1

min
τ2

Pσ1,τ2(Reach)

We may sometimes refer to the value val(G) as the \winning probability" (for
player 1).

It follows from known results for simple stochastic games that these games
are determined, meaning that val(G) = minτ2 maxσ1 Pσ1,τ2(Reach) and that
these maxima and minima are obtained.
We generalise of the notion of a “hopeful edges” of [4, Definition 3]:

The Stochastic Arrival Problem 5

De�nition 6. Given an instance G := (V,E, s, t,V, P,Ord) we say a vertex
v ∈ G is hopeful if Player 1 can win the reachability game (V,E, v, t, {V ′

1 , V2}),
where V ′

1 := VR ∪ VS ∪ V1 and v is our start vertex. We call an edge (v, w) ∈ E
a hopeful edge if w is a hopeful vertex. A vertex or edge which isn’t hopeful is
called dead.

We note that we can decide whether v ∈ G is hopeful in NL if we have no player 2
nodes in G, and otherwise in P by solving the 2-player reachability game. We now
define different versions of the computational problems we wish to study, using
a common notation. We use a subset B ⊆ {R,S, 1, 2} to denote the different
kinds of nodes that are present in the instances for the problem in question.

De�nition 7. For a subset B ⊆ {R,S, 1, 2}, given an instance structure G =
(V,E, s, t, {Vσ : σ ∈ B}, P,Ord), we de�ne the following associated decision
problems. Let val(G) be the value of the underlying arrival/reachability game
associated with G, and let p ∈ (0, 1) be a (rational) probability given as part
of the input. We de�ne three variants of quantitative and qualitative B-Arrival
decision problems that we wish to study:

{ B-Arrival-Quant: Decide whether val(G) > p.
{ B-Arrival-Qual-0: Decide whether val(G) > 0.
{ B-Arrival-Qual-1: Decide whether val(G) = 1.

The original arrival problem studied in [4] corresponds to the above definition
with B = {S}. Reachability Switching Games defined in [6] correspond to B =
{S, 1} and B = {S, 1, 2}. Taking B ⊆ {R, 1, 2} corresponds to Markov Chains,
Markov Decision Processes and Simple Stochastic Games.

We note that when R /∈ B these problems all coincide, since in that case
val(G) ∈ {0, 1} and such instances constitute an (exponentially large) determin-
istic reachability game. In such a case we use B-Arrival to refer to the problem
of deciding if val(G) = 1. Several of these problems have previously known com-
plexity. Throughout this work we aim to show complexity results for the cases
when R ∈ B. When referring to an instance of some variant of the above arrival
problems, with node types B, we use the expression “instance of a generalised
B-arrival problem”. It is not hard to show:

Proposition 1. Given an instance of a generalised B-arrival problem G =
(V,E, s, t, {Vσ : σ ∈ B}, P,Ord), with R ∈ B, and given any rational p ∈
(0, 1), the decision problem B-Arrival-Quant is polynomial-time equivalent to
B-Arrival-Quant where p = 1/2.

Hence we will use B-Arrival-Quant to refer to the quantitative arrival problem
when p = 1

2 , and it suffices to only consider this quantitative decision problem.
The complexity status of the various different arrival problems, including the
results established in this paper, is summarized in Table 1, with references to
the original works, or to specific results in this paper that establish it.

While Fearnley et al. do not explicitly consider the {S, 2}-Arrival prob-
lem in [6] we are able to deduce NP-completeness using their results and our
generalised notion of hopefulness.

6 T. Webster

Table 1: Complexity of Arrival variants with different node types.
Problem Name Known Complexity Cite

fSg-Arrival
PL-hard, CC-hard (explicit input)
P-hard (succinct input)
in UEOPL, CLS,PLS, UP \ coUP

[13]
[6]
[8, 4]

fS; 1g-Arrival NP-complete [6]

fS; 2g-Arrival NP-complete Proposition 2

fS; 1; 2g-Arrival PSPACE-hard
in EXPTIME

[6]
[6]

fR; Sg-Arrival-Qual-0 NP-complete Theorem 2

fR; Sg-Arrival-Qual-1 coNP-complete Theorem 4

fR; Sg-Arrival-Quant PP-hard,
in PSPACE

Theorem 6,
Theorem 5

fR; S; 1g-Arrival-Qual-0 NP-complete Theorem 2

fR; S; 1g-Arrival-Qual-1 coNP-hard, in EXPTIME Theorem 4

fR; S; 1g-Arrival-Quant PSPACE-hard, in EXPTIME Theorem 1

fR; S; 2g-Arrival-Qual-0 equiv fS; 1; 2g-Arrival Theorem 3

fR; S; 2g-Arrival-Qual-1 in EXPTIME Proposition 5

fR; S; 2g-Arrival-Quant PSPACE-hard, in EXPTIME Corollary 2

fR; S; 1; 2g-Arrival-Qual-0 equiv fS; 1; 2g-Arrival Theorem 3

fR; S; 1; 2g-Arrival-Qual-1 in NEXPTIME \ coNEXPTIME Proposition 5

fR; S; 1; 2g-Arrival-Quant PSPACE-hard,
in NEXPTIME \ coNEXPTIME

Theorem 1,
Proposition 5

Proposition 2. The {S, 2}-Arrival problem is NP-complete.

We need a convenient notation for drawing instances of arrival diagrammat-
ically. To do so we use the shapes shown in Figure 1a to distinguish the different
node types. We also make use of gadgets, shown in dashed lines, which are re-
peated pieces of smaller graphs performing a specific function. Gadgets are shown
with entry and exit ports and are permitted to contain other gadgets in a non-
recursive way. At probabilistic nodes we assume there is a uniform distribution
over outgoing edges, otherwise we label each edge with the probability assigned
to it. At switching nodes we label each outgoing edge with numbers such that
if Ord(x) = u0 . . . uk we label an edge (x, y) with all the indices, i, such that
ui = y. For instance in Figure 1b we have k = a+1 and Ord(x) = y . . . yz, with
a consecutive y’s.

2.1 Preliminary Results

We may assume Arrival instances have simplified forms, any instance may be
transformed in polynomial-time to an equivalent form by Lemma 2. In our sim-
plified form we have two distinguished vertices t and d, with a single self-loop
edge. Every other v ∈ V \ {t, d} has dout(v) = 2 and (v, v) ̸∈ E. For v ∈ V
and (v, w) ∈ E we have P (v, w) = 1

2 and for v ∈ VS we have |Ord(v)| = 2

The Stochastic Arrival Problem 7

(a) Different node types. (b) Switching Orders.

Fig. 1: Pictorial representations of B-Arrival instances.

and there exists functions s0, s1 : VS → V with (v, s0(v)), (v, s1(v)) ∈ E,
Ord(v) = s0(v)s1(v) and s0(v) ̸= s1(v).

We may also view a generalised Arrival instance, G, as concise ways of speci-
fying a expanded (exponentially larger) game, Exp(G), without switching. These
results are shown in the appendix Lemmas 2 and 3. Using this fact we can es-
tablish lower bounds on how close the value of such an instance can be to zero,
without being equal to zero. Namely, if val(G) is not 0, then, val(G) = Ω(22

�n
)

where n is our instance bit encoding size.

Corollary 1. The value of an instance G of a generalised B-arrival problem is
a rational number val(G) := p

q which in lowest terms has 0 ≤ p, q ≤ 4k with

k = 2n(|V | ×M |VS |) with M = maxv∈VS |Ord(v)|.

However we can show that we can actually obtain a value of this small magnitude,
even in the case where we only have B = {R,S}.

Proposition 3. For any positive integer n, we can construct an instance G of
the generalised B-arrival problem containing node types B = {R,S}, such that
G has encoding size O(n), and such that val(G) is a positive value that is at
most 1

22n .

We note that, just as in the case of simple stochastic games, we could force these
games to terminate, i.e., reach either the target t or dead end d, by modifying
them by applying a small discount, ending the game with a small probability
after each step. However, unlike the situation with simple stochastic games, even
applying a very small discount of the form 1

2poly(n) can change the value of the
game drastically (taking a value close to 1 down to a value close to zero). We
can however use Proposition 3 to reduce a version of the quantitative B-arrival
problem with greater than or equals to the strict inequality decision problem:

Proposition 4. Given an instance of a generalised B-arrival problem G =
(V,E, s, t, {Vσ : σ ∈ B}, P,Ord), with R ∈ B, and given any rational p ∈ (0, 1),
deciding whether val(G) ≥ p is polynomial-time equivalent to B-Arrival-Quant

where p = 1/2, i.e., to deciding whether val(G) > 1/2.

8 T. Webster

We can also see from interpreting these models as succinct representations of
exponentially large Markov chains, MDPs, and simple stochastic games, respec-
tively, that we have the following simple upper bounds on these problems.

Proposition 5. The {R,S, 1}-Arrival-Quant and {R,S, 2}-Arrival-Quant
problems are contained in EXPTIME and the {R,S, 1, 2}-Arrival-Quant is con-
tained in NEXPTIME ∩ coNEXPTIME.

3 PSPACE-hardness with three or more node types

Here we show that {R,S, 1}-Arrival-Quant and {R,S, 2}-Arrival-Quant are
both hard for PSPACE. Our proof takes inspiration from Fearnley et al.’s proof
of PSPACE-hardness for {S, 1, 2}-Arrival ([6, Theorem 4.3]), but requires some
new tricks. From these results it trivially follows that {R,S, 1, 2}-Arrival-Quant
is also PSPACE-hard.

To show the {R,S, 1}-Arrival-Quant is PSPACE-hard we reduce from the
SSAT problem as defined by Papadimitriou ([14]):

De�nition 8 (SSAT). Given a 3CNF Boolean formula φ = C1 ∧C2 ∧ . . .∧Cm

with three literals per clause, involving variables x1, . . . , xn, where n is even,
we are asked whether there is a choice of Boolean value for x1 such that, for a
random choice (with probability of true and false each equal to 1

2) of truth value
for x2, there is a choice for x3, etc., so that the probability that φ comes out
true under these choices is greater than 1/2. We denote this as follows (read R
as \for uniformly random"):

∃x1 Rx2∃x3 . . . Rxn[P(φ(x1, . . . , xn) = ⊤) >
1

2
] (1)

By [14, Theorem 2] this problem is PSPACE-complete. Our aim is to take an in-
stance of SSAT and construct an instance G(φ) of generalised {R,S, 1}-Arrival
with the following property:

val(G(φ)) = max
x1

[Ex2
[max

x3

[. . .Exn [χ[φ(x1, . . . , xn) = ⊤] . . .] (2)

Where χ represents the indicator function for an event. With this we can see
that val(G(φ)) > 1/2 if and only if (1) holds. We now outline this construction
and show it can be performed efficiently, and that the value is as required.

Given an instance of SSAT with 3CNF φ, n variables and m clauses, we
construct the instance G(φ) of generalised {R,S, 1}-arrival shown in Figure 2
where each of the boxes represents the gadgets shown in Figures 3 and 4, re-
spectively and the values ai, bi and D are computable from the formula φ.

We now explain this construction in more detail. Given φ = C1∧C2∧. . .∧Cm,
to begin with, in polynomial time we enumerate our n variables as x1, . . . , xn

and for each we compute constants ai = |{l ∈ {1, . . . ,m} | xi ∈ Cl}| and
bi = |{l ∈ {1, . . . ,m} | ¬xi ∈ Cl}|. Here ai is the number of clauses in which

The Stochastic Arrival Problem 9

Fig. 2: Control gadget

the literal xi appears, and bi is the number of clauses in which the literal ¬xi

appears. We let D = max
S

i{ai, bi} be the maximum number of occurrences
of any literal. We divide the game into three phases which correspond to the
different nodes in Ord(start): the “assignment” phase, consisting of the time
strictly before the n + 1’th visit to the vertex start where the switching node
takes us to the node as, the “agreement” phase, consisting of the time strictly
before the Dn+1’th visit to the vertex start where the switching node takes us
to ag , and the “verification” phase consisting of the time afterwards where the
switching takes us to either ver or fail . Each phases has the following objectives:

{ Assignment Phase - In this phase the player and nature alternate in choos-
ing values of x1, . . . , xn in sequence.

{ Agreement Phase - In this phase the player must continue to agree with
the choices in the “assignment” phase. Each time we visit we go through a
list of clauses which our choice of assignment to that variable doesn’t satisfy.

{ Veri�cation Phase - In this phase we verify that the player acted honestly
and did agree with the choices in the “assignment” phase by moving through
each variable gadget.

10 T. Webster

(a) Randomly Quantified (b) Existentially Quantified

Fig. 3: Gadgets for quantified variables.

These phases correspond to the three distinct entries to each of our quantified
variable gadgets and we only use the entrance matching the phase we are in. We
use “pass” to refer to a path from an entry to the exit, the “initial pass” is the
one made in the “assignment” phase. Our gadgets function like:

{ The Control Gadget. In this structure shown in Figure 2 we enforce the
phases using the switching behaviour at start . The nodes as and ag cycle
through the n quantified variable gadgets, visiting each once in the “assign-
ment” phase and D times in the “agreement” phase. The node ver finally
starts the verification process by moving to ver1. We note any more visits
to start send us to fail . We note our quantified gadgets are connected with
edges between as and all asi and between ag and all ag i, return edges from
reti to start and a chain of edges going from ver to ver1, next1 to ver2,...,
and finally nextn to target .

{ Quanti�ed Variable Gadget. We have two variations of this gadget shown
in Figures 3a and 3b which depend on whether xi is existentially or randomly
quantified in φ, differing only in the node type of asi. On the initial pass
the assignment is chosen by the player or uniformly at random respectively.
The three entries correspond to the different phases of the game and we have
two exits, reti returns back to the start and next i moves us on to the next
variable’s verification entry ver i+1, or to target if i = n. The nodes xT

i and
xF
i represent choosing an assignment of the variable xi on this pass, and the

“initial assignment” is the one from the initial pass. The switching behaviour
of xT

i and xF
i prevents next i being reached without D + 2 visits to one of

The Stochastic Arrival Problem 11

(a) P osi consequence gadget (b) Negi consequence gadget (c) Clause gadget

Fig. 4: Gadgets for Consequences of variable xi and Clauses Cl

the two nodes, which forces D visits to the respective Consequence gadget
Negi or Posi.

{ Consequences Gadget. We have two consequences gadgets for each vari-
able, Negi and Posi, shown in Figures 4a and 4b. Negi (resp. Posi) enu-
merates the gadgets for clauses, Cj1

, . . . , Cjai
(resp. Ck1

, . . . , Ckbi
), where

the literal ¬xi (resp. xi) appears. When we choose an assignment of true
(resp. false) these clauses aren’t immediately satisfied by our assignment.
As any literal appears in at most D clauses by visiting this gadget D times
we are guaranteed to go through each of the contained clause gadgets. If
we have ai < D (resp. bi < D) then any further edges proceed straight to
the exit to ensure if we make exactly D passes we visit each clause gadget
exactly once.

{ The Clause Gadget. This is shown in Figure 4c. Here we check if it is
possible to still satisfy a clause. Note we pass through the clause gadget for
Cl only in the following situations:
• From a Negi gadget where we have assigned xi true on this pass and
¬xi appears in Cl,

• From a Posi gadget where we have assigned xi false on this pass and xi

appears in Cl,
Thus as a consequence of our truth assignment to xi it doesn’t witness the
truth of Cl. Our clause Cl has width 3 and if our assignment is satisfying
then we must have at least one of the 3 literals as a witness to the truth
of Cl. Thus our gadget acts as a simple counter of the number of literals in
the clause which evaluate to false, after 3 passes our switch sends the play
to the fail state, because the assignment we have chosen does not satisfy Cl.
On the first and second passes the counter is just incremented and we use
this gadget to ensure the clause is satisfied.

We can prove that instance G(φ) has value val(G(φ)) satisfying Equation (2).
We note that this construction remains polynomial in the size of the formula,

with the control gadget (Figure 2) only containing instances of the randomly and
existentially quantified variable gadgets, the quantified variable gadgets (Fig-
ure 3) only containing the Consequence gadgets Posi and Negi and the Conse-

12 T. Webster

quence gadgets (Figures 4a and 4b) only containing Clause Gadgets (Figure 4c).
Further the reti exits and all exits of the consequence and clause gadgets may be
treated as the node start , independent of the index i or l of the gadget, as each
has an onward path containing only nodes of out-degree one leading to start .

Theorem 1. {R,S, 1}-Arrival-Quant is PSPACE-hard.

Proof (sketch). We prove this by showing the above construction, which can
easily be carried out in polynomial time, given a SSAT instance, φ, constructs
an instance G(φ) whose value val(G(φ)) satisfies Equation (2). To do so we
note any play must reach the “agreement” phase, as there is no way to reach a
consequence gadget (containing fail nodes) or the next i nodes with a single pass
of each variable. Thus every play makes an initial assignment V : [n] → {T, F}
where we visit x

V (i)
i from asi.

We can then show that in any play we can only make at most D + 2 passes
of the Ex1 gadget, once through entrance as1, D times through ag1 and once
through ver1 and thus use the edge from next1 at most once. We may extend
this inductively to show in any play we can make at most D + 2 passes of any
quantified variable gadget and use the next i exit at most once. We can also show
by induction if we reach target we must make exactly D+2 passes of each gadget
and use the next i exit exactly once. To use the next i exit we must visit one of
xT
i or xF

i exactly D + 2 times.
Firstly we can use this to show in any play that reaches target that the

initial valuation V was satisfying. As we make D + 2 visits to xT
i (resp. xF

i) in
the “agreement” phase we must visit exactly one of Negi (resp. Posi) exactly D
times, which means we visit every clause gadget they contain exactly once. If we
reach the end of the “agreement” phase then there is at least one edge incoming
to each clause gadget that was unused, as there are three incoming edges which
can be used at most once each and we can not make three passes of the clause
gadget as it has an internal fail state. This lets us show valuation V satisfies φ.

Secondly we can show that under the “agreement strategy”, where the player
agrees with the initial assignment in the “agreement” and “verification” phases,
the play reaches target when V satisfies φ, and by the above we can never reach
target otherwise. Thus this strategy is optimal for the player in the “agreement”
and “verification” phases.

We then show our value is the maximum over strategies for the “assignment”
phase. In this phase we can consider the player and nature playing a game on
a binary tree, where the leaves are possible valuations V : [n] → {T, F} and
we call a leaf accepting if it’s a valuation satisfying φ. At the root the player
makes the choice between V (1) = T and V (1) = F . On the next level nature
randomises between V (2) = T or V (2) = F . The player then chooses between
V (3) = T or V (3) = F , etc... At each stage the player knows the past decisions
and maximises their choice with the aim that they reach an accepting leaf, which
gives exactly Equation (2). ⊓⊔

As an immediate corollary we can deduce hardness for {R,S, 2}-Arrival-Quant.

Corollary 2. {R,S, 2}-Arrival-Quant is PSPACE-hard.

The Stochastic Arrival Problem 13

4 The {R,S}-Arrival Problems

Firstly we give some bounds on the qualitative problems, then we give an inter-
esting bound on the expected number of times we use edges in each play. Finally,
for {R,S}-Arrival-Quant both a PSPACE algorithm and PP-hardness.

We are able to give two easy reductions by creating new instances where we
give control of random nodes to player 1 or randomise over player 1 choices,
these allow us to deduce NP-completeness for two of our problems.

Theorem 2. {R,S}-Arrival-Qual-0, {S, 1}-Arrival and
{R,S, 1}-Arrival-Qual-0 are all poly-time equivalent and NP-complete.

Theorem 3. {R,S, 1, 2}-Arrival-Qual-0, {S, 1, 2}-Arrival and
{R,S, 2}-Arrival-Qual-0 are all poly-time equivalent.

While the above arguments exploit exchanging player 1 and random nodes, we
note that a similar exchange for player 2 is not immediately possible. Consider
the case of a cycle of random nodes. Any play must almost surely escape this
cycle, however under player 2 control it is optimal to always stay in the cycle.

We now show coNP-hardness of {R,S}-Arrival-Qual-1, by exploiting a
construction in [4]. They showed that the {S}-Arrival problem lies in the class
NP ∩ coNP by constructing succinct witnesses for the fact that the play does
not reach the target t, by modifying the graph (such that reachability of t is
preserved) introducing a new dead end state d, and showing that exactly one of
t or d is reached in any play in the modified graph. Here we show we can use
a similar construction to reduce the complement of {R,S}-Arrival-Qual-0 to
{R,S}-Arrival-Qual-1. We assume (w.l.o.g., by Lemma 2) that we are working
with the instances of Arrival in our simplified form.

De�nition 9 (cf. [4, De�nition 3]). Let (V,E, s, t, {VS , VR}, P,Ord) be an
instance of generalised {R,S}-arrival. If (v, w) ∈ E is hopeful (De�nition 6) we
call its desperation the length of the shortest directed path from w to t.

We proceed to give our generalised versions of a Lemma in [4], generalised to the
randomised setting. We note that it is simple to process our inputs and replace
dead edges of the form (v, w) by an edge (v, d) immediately to the dead end.

De�nition 10. Let G be an instance of the generalised B-arrival problem and
e ∈ E an edge. De�ne the random variable Te to be the number of traversals of
e in a run of the instance starting from s.

Lemma 1. Let G be an instance of the generalised {R,S}-arrival problem in
simple form, and let e ∈ E be a hopeful edge of desperation k in G. Then E[Te] ≤
2k+1 − 1.

14 T. Webster

Lemma 1 (which is closely related to [4, Lemma 2]) enables us to bound the
expected length of a play by a single exponential in our input {R,S}-arrival
instance size. Note this is despite the fact the {R,S}-arrival instance succinctly
represents an exponentially larger Markov chain, and in general for an exponen-
tially large Markov chain the worst case expected termination (hitting) time can
be double-exponential. Note also that by contrast, by Proposition 3, the proba-
bility of reaching the target can be double-exponentially small. Using Lemma 1
we construct instances that almost surely terminate and given an instance G
construct a new instance G′ with val(G′) = 1− val(G). These allow us to show:

Theorem 4. The {R,S}-Arrival-Qual-1 problem is coNP-complete.

Theorem 2 and Theorem 4 together imply that {R,S}-Arrival-Quant is both
NP-hard & coNP-hard. In Theorem 6 we will show a stronger PP-hardness result
for {R,S}-Arrival-Quant. As an upper bound, we can show the following:

Theorem 5. The {R,S}-Arrival-Quant problem is in PSPACE.

Proof (sketch). We can view our instance G as an exponentially larger Markov
Chain (MC) with a succinct respresented transition probability matrix P . Using
suitable preprocessing, we can simplify the model so that the matrix (I − P)
is invertible, without altering the probability of reaching the target. We can
compute individual bits of the hitting probabilities on such a MC by computing
entries of (I − P)−1, which can be done in PSPACE, using the fact that an
(explicitly given) linear system of equations can be solved in NC2 ([3]). Using
these bits we can decide {R,S}-Arrival-Quant. ⊓⊔
We can finally use a construction similar to Theorem 1 to construct a hard
instance.

Theorem 6. {R,S}-Arrival-Quant is PP-hard.

Proof (sketch). We show this by a reduction from the MAJSAT problem, namely
deciding whether, for a given CNF formula φ(x) over n variables, the proba-
bility, pφ, that a uniformally random assignment of truth values to the vari-
ables x satisfy φ. MAJSAT is PP-complete ([10, 15]). We use similar gadgets
to those in the proof of Theorem 1, however for our PP-hardness proof for
{R,S}-Arrival-Quant, we make a new random assignment on each pass of
the variable gadget and use switching nodes to ensure this is the same as past
choices. Where we make different assignments to a variable on different passes
we move to a state which moves us randomly to target or fail , thus we only reach
the verification phase when we make the same assignment on every pass. Our
“verification” phase then checks if all clauses are satisfied. This allows us to dis-
tinguish three distinct cases, “invalid random assignment”, “valid, unsatisfying
assignment” and “valid, satisfying assignment”, which we can use to determine
if pφ > 1

2 . ⊓⊔
Acknowledgements. Thanks to a prior anonymous reviewer who sketched a
proof of Theorem 5, improving on our prior result which only showed that ap-
proximation of the {R,S}-Arrival value to within any given desired accuracy
ϵ > 0 is in PSPACE.

The Stochastic Arrival Problem 15

A Omitted Proofs

A.1 Proofs of Section 2

Proposition 2. The {S, 2}-Arrival problem is NP-complete.

Proof. We adapt the proof of NP-hardness of {S, 1}-Arrival given by Fearn-
ley et al. ([6, Theorem 3.8]). Given a 3SAT formula φ we construct their in-
stanceG = (V,E, start , target , {VS , V1},Ord) of {S, 1}-Arrival with max player
nodes V1 and nodes target and fail . We construct a new instance G′ = G =
(V,E, start , fail , {VS , V2},Ord) where V2 := V1 and we have interchanged target
and fail so that fail becomes our target and the node target is now a dead-end
state. Thus player 2 aims to avoid reaching fail .

It can be observed that in G′ all cycles in (V,E) contain the node start , and
after 3n + 2 visits to start we take the edge to fail , thus player 2 can only win
by reaching target . However this is now identical to the proof given by Fearnley
et al. [6] that {S, 1}-Arrival is NP-hard.

To show containment in NP, we modify G as follows. We introduce a new
dead end state d. If v is not a hopeful vertex, we remove it from G and replace
any edges (u, v) ∈ E by edges (u, d). If player 2 has a strategy to reach d then
there exists a “controlled switching flow”, as defined by [6, Section 3.1], from
s to d which witnesses the existence of a strategy by player 2 to reach d (and
hence not to reach t) in this new instance. A “controlled switching flow” has
a polynomial size encoding, and can be verified in polynomial time. Thus, all
that remains is to show show that in this modified instance any infinite play
reaches either t or d. Assume, to the contrary, that there is some play which
cycles (v1, q1), . . . , (vn, qn), (v1, q1), . . . forever, never reaching t or d. We must
have that v1 is hopeful, as we have removed all other vertices. However, since
starting at (v1, q1) we return to the same switching state (v1, q1), we must have
used along this cycle all outgoing edges from any nodes vi ∈ VS that appears
on this cycle. But this can be interpreted as providing a strategy for player 2 to
win the 2-player reachability game (i.e., avoiding t) starting from v1, where the
nodes in VS are controlled by player 1 (and the nodes in V2 controlled by player
2). But this implies that v1 is not hopeful. Thus such a cycle cannot exist. ⊓⊔

Lemma 2. Given an instance G of a generalised B-arrival problem,
G := (V,E, s, t,V, P,Ord) satisfying De�nition 1, any of the following restric-
tions may be placed upon G without altering the complexity of the
B-Arrival-Qual-0/1 and B-Arrival-Quant problems.

1. There is a distinguished vertex d ̸= t, the dead end node, where for any v ∈ V
if dout(v) = 1 then v = d or v = t, and where (d, d) ∈ E and if (v, v) ∈ E
then v = t or v = d. V partitions V − {t, d}.

2. For any v ∈ V we have dout(v) ≤ 2 and if dout(v) = 2 we have:
{ If v ∈ VR then for (v, u), (v, w) ∈ E, u ̸= w, we have P (v, u) = P (v, w) =

1/2.

16 T. Webster

{ If v ∈ VS then |Ord(v)| = 2 and there exists functions s0, s1 : VS → V
with
(v, s0(v)), (v, s1(v)) ∈ E, Ord(v) = s0(v)s1(v) and s0(v) ̸= s1(v).

Proof. We prove that given any instance of the form (V,E, s, t, {VR, VS , V1, V2},Ord , P)
we may create a new instance in polynomial time which has the desired proper-
ties and doesn’t alter the probability any play is winning.

1. To begin we consider the instance (V + d,E + (d, d), s, t, d,V,Ord , P). We
then construct a new instance, with fewer nodes of out degree 1, (V + d −
x,E′ + (d, d), s, t, d,V,Ord ′, P ′) as follows, take a vertex x ∈ V − t with
dout(x) = 1. We can find the unique w ∈ V with (x,w) ∈ E, if w = x then
we replace all xs with d. Otherwise for any edges (v, x) ∈ E we add an edge
(v, w) ∈ E′, if v is a switching node we replace all occurrences of x in Ord(v)
by w and if it’s a probabilistic node then we set P ′(v, w) = P (v, w)+P (v, x).
We also remove x from the relevant element of V. This new instance has one
fewer node of out degree 1 and can be computed in polynomial time, thus
after at most |V | iterations we are done.

2. We construct a new instance, which removes a vertex x with dout(x) > 2,
(V ′, E′, s, t,V,Ord ′, P ′) as follows:

{ If x ∈ V1 ∪ V2, we let k be such 2k ≥ dout(x) and replace x by a binary
tree of depth k − 1 and connect the 2k outgoing edges according to the
figure, as shown in Figure 5. This adds at most 2dout(x) new vertices.
We know there are at least 2k−1 outgoing edges from x, we connect each
of the 2k−1 leaves to one such vertex, then for any remaining vertices we
connect those using a second edge from those leaves. This adds at most

{ If x ∈ VS we let k be such 2k ≥ dout(x) and replace x by a binary
tree of depth k − 1 and connect the 2k outgoing edges according to the
figure, as shown in Figure 5. This adds at most 2dout(x) new vertices. As
shown in Figure 5 we can assign a binary word to each outgoing edge of
our 2k−1 leaves, we take the lexicographic order over such words and if
Ord(x) = (u0, . . . , um−1) we connect the edge labeled with the i’th word
to ui, then connect edges with the largest 2k − m words to x. We let
s0, s1 be the lexicographically first and second successors respectively.

{ If x ∈ VR then we can apply the classical construction from Markov
chains, for instance as in as demonstrated in [5, Proposition 2.1]. We
assume we have probability a

b of moving from x to v, and thus probability
1− a

b of moving to any other vertex from x, we will call this a new vertex
w. We let k be the number of bits required to write a and b. We now
use the random transitions to flip a sequence of coins, generating a k-bit
binary number. We check if this number is ≤ a, in which case we move
to v, ≤ b, in which case we move to w, or > b, in which case we return
to the start and generate a new number. Naively this would require 2k

states, however we may only use 2k if we see these flips as generating the
number starting from the most significant bit and after each flip checking
if we can determine early which case we are in. We note the new vertex

The Stochastic Arrival Problem 17

Fig. 5: Binary Tree Construction

w has a strictly smaller outdegree than x, thus we can apply the same
argument again to it’s transitions.

Finally we have to eliminate vertices v ∈ VR where dout(v) = 2 but where
have some (v, u), (v, w) ∈ E with u ̸= w, but P (v, u) ̸= P (v, w) ̸= 1/2. To
do so we let P (v, u) = au

bu
and P (v, w) = aw

bw
and let B = bu× bw and choose

some k with 2k ≥ B. We note we can express B in a polynomial number
of bits as it is a product of 2 numbers given as part of our input. We then
construct a binary tree of depth 2k−1 with 2k outgoing edges. We connect
exactly au × bw edges to u and exactly aw × bu edges to v. We then connect
the remaining 2k −B edges to x.

Lemma 3. Given an instance G of a generalised B-arrival problem with S ∈ B,
we can construct an (exponentially larger) instance, Exp(G), of (B\{S})-arrival
which has the same value, and there is a one-to-one correspondence between both
winning plays and strategies, in the two games.

Proof. We let our original instance be G := (V,E, s, t, {Vσ : σ ∈ B}, P,Ord) and
our new instance to be G′ := (V ′, E′, s′, t′, {V ′

σ : σ ∈ B \ {S}}, P ′). We begin
by letting t′ be a new vertex and define V ′ := (V × Q) + t′ we can then let
q0 : VS → N0 by q0(v) = 0 and take s′ = (s, q0). We know define our P ′ and
edges E′ in different cases.

{ For v ∈ (V1 ∪ V2) and any (v, u) ∈ E we let {((v, q), (u, q)) : q ∈ Q} ⊆ E′.
{ For v ∈ VRt and any (v, u) ∈ E we let {((v, q), (u, q)) : q ∈ Q} ⊆ E′ and

define P ′((v, q), (u, q)) = P (v, q).
{ For any v ∈ VS and q ∈ Q we let {((v, q), (u, q′)) : (u, q′) ∈ Valid(v, q)} ⊆ E′.

18 T. Webster

Fig. 6: Instance with double exponential probability of reaching target .

{ We let {((t, q), t′) : q ∈ Q} ⊆ E′.

We note that vertices in this game correspond exactly to states in the original
and the edges to valid state transitions. ⊓⊔

Corollary 1. The value of an instance G of a generalised B-arrival problem is
a rational number val(G) := p

q which in lowest terms has 0 ≤ p, q ≤ 4k with

k = 2n(|V | ×M |VS |) with M = maxv∈VS |Ord(v)|.

Proof. We apply the conversion from Lemma 3 to create a new exponentially
larger simple stochastic game, G′, on |V | × |Q| vertices, we then let M =
maxv∈VS |Ord(v)| and then apply the construction from Lemma 2 to the re-
sulting exponentially larger simple stochastic game, to modify G′ so that all out
degrees are 2 and that P (u, v) = 1

2 for all u ∈ VR and (u, v) ∈ E, which we can
do by replacing each vertex in v ∈ V1 ∪ V2 ∪ VR by at most 2dout(v) ≤ 2n new
vertices. We note that for vertices in VS these have out-degree 1 in G′.

Hence by applying [2, Lemma 2], we can bound p and q by 4N−1, where N is
the number of vertices in the simple stochastic game G′, as our games has out-
degree 2 and uniformally random choices, as required by Condon’s definitions.
Thus we have N ≤ 2n(|V | × |Q|) and further we know |Q| ≤ M |VS |, thus we can
take k = 2n(|V | × |Q|) and have 1 ≤ p, q ≤ 4k. ⊓⊔

Proposition 3. For any positive integer n, we can construct an instance G of
the generalised B-arrival problem containing node types B = {R,S}, such that
G has encoding size O(n), and such that val(G) is a positive value that is at
most 1

22n .

Proof. Consider the instance shown in Figure 6. This has a sequence of switching
nodes s1, . . . , sn and a single random node x with uniform distribution on Heads
and Tails. The instance in Figure 6 indeed has bit encoding size poly(n). This

The Stochastic Arrival Problem 19

instance is just a modification of the example given by Dohrau et. al. [4, Figure 1]
showing that a pure switching arrival instance can require exponentially many
steps to reach the target. We now compute the probability that a random play
starting at start reaches target .

It is easy to see the only way to reach target is by passing through the node
sn twice, and and inductively we can see that this requires visiting the node
sn−i, 2

i+1 times, for all i ∈ {1, . . . , n}. Hence this requires 2n visits to s1. Thus
we must make 2n−1 visits to the vertex x, and at each of these visits the random
choice between “Heads” and “Tails” must choose “Heads” because otherwise
if we ever chose “Tails” our play reaches the node fail . Thus the probability of
reaching the target is:

val(G) =

�
1

2

�2n−1

= 2−(2n−1)

⊓⊔

Proposition 4. Given an instance of a generalised B-arrival problem G =
(V,E, s, t, {Vσ : σ ∈ B}, P,Ord), with R ∈ B, and given any rational p ∈ (0, 1),
deciding whether val(G) ≥ p is polynomial-time equivalent to B-Arrival-Quant

where p = 1/2, i.e., to deciding whether val(G) > 1/2.

Proof. Given some instance G we reduce the case of deciding val(G) ≥ 1
2 to de-

ciding val(G) > 1
2 . By Corollary 1 we know that val(G) = p

q where in lowest form

we have 1 ≤ p, q ≤ 4k and k = 2n(|V | ×M |VS |), where M = maxv∈VS |Ord(v)|.
Note that M is upper bounded by the input’s bit encoding size. We can thus

say p, q ≤ 22
2Mn+2n+2

, because we have k ≤ 2n · n ·Mn = 21+2 log(n)+n log(M) ≤
22Mn+2n+1.

We construct a new instance G′ as shown in Figure 7. We will show that
val(G′) > 1/2 if and only if val(G) ≥ 1/2. G′ has a new start vertex s′ and in it
we begin by running a game analogous to Figure 6 which with large probability
moves to the start of our original instance G and with tiny probability moves
to the original target immediately. By Proposition 3 we know the value of this

instance is ϵ = 2−(2l−1), we take l = 3Mn+ 3n+ 3, which is polynomial in the
input size. Thus we have that val(G′) = (1−ϵ)val(G)+ϵ = val(G)+ϵ(1−val(G)).

Assuming that val(G) = p
q < 1

2 we have that 1
2 −

p
q = q−2p

2q > 1
2q ≥ 2−(2k+1).

Then 1
2 − val(G′) ≥ 2−(2k+1) − ϵ > 0, with the final inequality following by our

choice of ϵ, where we can see 2k + 1 ≤ 22Mn+2n+2 + 1 < 23Mn+3n+3 − 1, and
hence have val(G′) < 1

2 . By construction we can also see that val(G′) ≥ val(G)
and this is a strict increase when val(G) ̸= 1, hence if val(G) ≥ 1

2 we know we
have val(G′) > 1

2 .

We may also perform a similar reduction from the case of deciding val(G) > 1
2

to deciding val(G) ≥ 1
2 by performing the same construction, instead with a

small probability of moving to a dead-end, d. This strictly decreases the value
by ϵ. This gives the equivalence. ⊓⊔

20 T. Webster

Fig. 7: Proof of 4: reducing deciding ≥ 1/2 to deciding > 1/2: construction of G′

for a given instance G.

A.2 Proof of Section 3

Theorem 1. {R,S, 1}-Arrival-Quant is PSPACE-hard.

Proof. We note that given a formula φ we can easily compute the values ai =
|{l ∈ {1, . . . ,m} | xi ∈ Cl}| and bi = |{l ∈ {1, . . . ,m} | ¬xi ∈ Cl}|, by a single
loop over the m clauses, and we can compute D = max

S
i{ai, bi}. We trivially

have that D ≤ m, as without loss of generality we may assume each variable
appears at most once in each clause of the 3CNF formula. We can bound the
size of the created instance by polynomials in m and n as follows:

|V | = 6 + 5n+ 2m+
n

2
+ 2n+

n

2
= 6 + 8n+ 2m

|E| = 8 + 2n+ (n− 1) + 13n+ 2n+
X
i

(ai + bi) + 3m

= 7 + 18n+ 3m+
X
i

(ai + bi)

≤ 7 + 18n+ 3m+ 2Dn ≤ 7 + 18n+ 3m+ 2mn

|Ord| = (D + 1)n+ 2 + 2n+ 3 + 2n(D + 2) + (n− 1) + 1 + 3m+m

= 5 + 8n+ 4m+ 3Dn

≤ 5 + 8n+ 4m+ 3mn

Hence the instance constructed from a given SSAT instance is contained within
an amount of space bounded by a polynomial in n, the number of variables, and
m, the number of clauses, of that instance.

We first show that any play, π, must reach the “agreement” phase, under
any player 1 strategy. Assume otherwise, as we have not hit ag in our play π we

The Stochastic Arrival Problem 21

made at most n visits to start , thus we made at most one pass of any quantified
variable gadget. With only a single pass it is impossible for a variable gadget to
reach a fail state, because on the initial visit to xT

i or xF
i our switching order

requires us to move to reti, thus start . Hence we can not reach a fail l state
internally.

As we reach the “agreement” phase we can define the “initial assignment”

as a function Vπ : [n] → {T, F} with the property that x
V (i)
i was visited on

the initial pass of the i’th quantified variable gadget. As the “agreement” phase
must be reached this function is entire and well-defined.

Given a play π that reaches target , then we show for each i we must make
exactly D + 2 passes of the i’th variable gadget, using the next i exactly once
and can only visit one of the nodes xT

i or xF
i . Considering any play it is evident

we can only visit the (i + 1)’th gadget at most as often as we have visited the
i’th gadget, as our switching orders and next i edges always increase. Assume
we visit the Ex1 gadget D + 3 times. Because of the switching order at start
we can see we only visit once using the edge (as, asi), D times by (ag, agi) and
once via (ver , ver i), however we can not use any of these again without making
more than (D + 1)n + 2 visits to start , which would use the final edge to fail ,
contradicting us reaching target . Thus we can visit Ex1 at most D+2 times, and
thus can visit each at most D + 2 times. If π reaches target then we must have
used the edge (nextn, target). To reach nextn we need to make at least D + 2
passes of Rxn, so we must then visit all gadgets at least D + 2 times. Thus any
play reaching target must make exactly D + 2 passes. It is then trivial that we
must visit next i and exactly one of xT

i or xF
i , otherwise we must make more

than D + 2 passes or can not reach target .

Thus for our player in the “agreement” and “verification” phases it is optimal
for our player to play such that we only visit one of xT

i and xF
i , because we know

one of these was visited during the “assignment” phase and if they choose to visit
both they will be unable to reach the target. Thus any optimal strategy must
pick the node that was visited in the “assignment” phase and we can assume
the player uses such an “agreement strategy” once it reaches these stages.

Given a play π reaching target we now show that Vπ satisfies the given formula
φ = C1∧· · ·∧Cm. Assume not, then we can find some clause Cl in φ which is not
satisfied by Vπ. We consider the clause gadget for Cl, this has exactly 3 incoming
edges corresponding to the three atoms in the clause. As π reaches target we can
visit the node Cl at most twice, thus there is an edge into Cl which is not used.
We call this unused edge (negi, Cl), if it was in fact of the form (posi, Cl) we can
exchange true and negi for false and posi respectively in this argument. We now
consider the value Vπ(i). If we have Vπ(i) = F then as (negi, Cl) is an edge by
the construction we have that ¬xi appears in Cl, however our valuation makes
xi false, thus Cl is satisfied, contradicting our choice of Cl. If Vπ(i) = T we must
use the edge (xT

i ,next i), requiring us to make D visits to negi. However negi
has at most D edges, so we use each at least once, including the edge (negi, Cl),
contradicting our assumption we didn’t use this edge.

22 T. Webster

If Vπ is satisfying after the “assignment” phase then we are able to reach
target by following the “agreement strategy”, for contradiction assume there is
some satisfying Vπ which does not reach target under the “agreement strategy”.
Then our play must reach either fail or some fail l node. If we reach fail l for
some clause Cl then as this gadget has exactly 3 incoming edges we must either
use some edge twice or use all three edges once. We show each of these cases
leads to a contradiction:

{ If we reach fail l and use all three incoming edges to Cl once we note by
construction we have assigned each of the literals in Cl a false value, however
then Vπ can’t be satisfying as Cl is false which is a contradiction.

{ If we reach fail l and we’ve used some edge (negi, Cl) twice, it follows we’ve
made at least D+1 visits to negi, which would require at least D+3 passes
of the i’th variable gadget, but we know we can’t make D+3 passes without
using the edge (start , fail), contradicting that we reach fail l.

{ If we reach fail by the switching order at start we must visit ver and enter
the “verification” phase. As we enter the “verification” phase we must have
already made D + 1 passes of each variable gadget and by the “agreement
strategy” visited only one of xT

i or xF
i for each i. Thus from ver we proceed

to ver1 where we can make a D + 2’th visit to x
V�(1)
i and proceed to next1

and ver2. We can continue this and show we reach target , contradicting that
we reached fail .

We now compute the value of the game, which, by the above, will only depend
on the edge used out of each asi in the “assignment” phase. As we have shown
the player reaches target if and only if Vπ is satisfying, hence the player’s goal will
to be to maximise the probability Vπ is satisfying and we will have val(G) equal
to the probability Vπ is satisfying under an optimal strategy in the “assignment”
phase. Consider a tree of partial valuations V : [n] ⇀ {T, F} where we have so
far assigned an initial sequence of [n]. It is easy to see the “assignment” phase
is equivalent to a game on this tree where we start from the root on level 1 and
at odd levels allow the player to choose to move to some child and at even levels
play moves randomly to one of the children. The game wins if the total valuation
reached satisfies F . From this game we can see that we must have:

val(G(φ)) = max
x1

[Ex2 [max
x3

[. . .Exn [χ[φ(x1, . . . , xn) = ⊤] . . .]

Hence as SSAT is a PSPACE-complete problem and SSAT is poly-time re-
ducible to
{R,S, 1}-Arrival-Quant, thus problem is PSPACE-hard. ⊓⊔

Corollary 2. {R,S, 2}-Arrival-Quant is PSPACE-hard.

Proof. We can modify the construction of Theorem 1 by making the following
changes to also derive a hardness result for {R,S, 2}-Arrival-Quant, we replace
player 1 with player 2 and exchange the nodes target and fail , including in the

The Stochastic Arrival Problem 23

clause gadgets. By the same argument above we will construct an instance G′(φ)
where:

val(G′(φ)) = min
x1

[Ex2
[min
x3

[. . . (1− Exn [χ[φ(x1, . . . , xn) = ⊤]]) . . .] (3)

We can see that val(G′(φ)) = 1 − val(G(φ)), where G(φ) is the instance con-
structed above. As we know that coPSPACE ≡ PSPACE we have shown this
problem is also hard for PSPACE by reducing from the complement of the
{R,S, 1}-Arrival-Quant-Eq problem. ⊓⊔

A.3 Proofs of Section 4

Lemma 4. Suppose R ∈ B and let B′ = (B − {R}) ∪ {1}, then the problem
B-Arrival-Qual-0 is poly-time reducible to B′-Arrival.

Proof. Given an instance G := (V,E, s, t, {Vσ : σ ∈ B}, P,Ord) we define an
instance
G′ := (V,E′, s, t, {V ′

σ : σ ∈ B′},Ord) where we take the following:

{ V ′
1 := V1 ∪ VR, i.e. we give the max player control of all random nodes.

{ E′ := {(v, u) ∈ E : (v ̸∈ VR)∨ (v ∈ VR∧P (v, u) > 0)}. i.e. we removed edges
(v, u) ∈ E if P (v, u) = 0, thus they couldn’t be chosen in a valid random
transition.

{ If S or 2 ∈ B we take V2 = V ′
2 and VS = V ′

S .

This can easily be computed in polynomial time. We then claim that any win-
ning play of the new instance corresponds to a winning play in the original
instance. Consider a winning play (v0, q0), . . . , (vn, qn) in the new instance, we
then consider the conditions for the play to be a valid and winning play in the
original:

{ v0 = s and for all v ∈ VS we have q0(v) = 0. This follows from it being a
valid play in the new instance, making it valid in the new instance.

{ For all indices i with vi ̸∈ VS , (vi+1, qi+1) ∈ Valid(vi, qi), as there are no
changes to edges outside VS anything valid in the new instance is valid in
the original.

{ For indices i with vi ∈ V ′
1 − V1 = vR we know that (vi, vi+1) ∈ E′, by our

definition we must have P (vi, vi+1) > 0, thus this edge also forms a valid
transition from a probabilistic node in state (vi, qi) in the original instance.

{ If it was a winning play it is of finite length n and vn = t, which makes it
winning in the original instance.

Hence this play is also valid and winning in the original instance.
We also claim that if a play was winning in the original instance then it is

still winning in the new instance. Consider a winning play (v0, q0), . . . , (vn, qn)
in the original instance, we then consider the conditions for the play to be a
valid and winning play in the new instance:

24 T. Webster

{ v0 = s and for all v ∈ VS we have q0(v) = 0. This follows from it being a
valid play in the original instance, making it valid in the new instance.

{ For all indices i with vi ̸∈ VS , (vi+1, qi+1) ∈ Valid(vi, qi), as there are no
changes to edges outside VS anything valid in the original instance is valid
in the new instance.

{ For indices i with vi ∈ V ′
1 − V1 = vR we know that (vi, vi+1) ∈ E, thus we

must have P (vi, vi+1) > 0, hence this edge also forms a valid transition for
the player in state (vi, qi) in the new instance.

{ If it was a winning play it is of finite length n and vn = t, which makes it
winning in the new instance.

Hence this play is also valid and winning in the new instance.
Hence if vG > 0 then we have a winning play in G then there is a winning play

in G′ then vG0 = 1. Hence B-Arrival is poly-time reducible to B′-Arrival. ⊓⊔

Lemma 5. Suppose 1 ∈ B and let B′ = (B − {1}) ∪ {R}, then the problem
B-Arrival is poly-time reducible to B′-Arrival-Qual-0.

Proof. Given an instance G := (V,E, s, t, {Vσ : σ ∈ B}, P,Ord) of the original
we define a new instance (V,E, s, t, {V ′

σ : σ ∈ B′}, P ′,Ord) as follows:

{ V ′
R := VR ∪ V1, i.e. we replace the player with a random choice.

{ We then define P ′ : V ′
R × V → [0, 1].

{ For a v ∈ V1 we let k := dout(v) and then for (v, u) ∈ E we take P ′(v, u) :=
1/k and for (v, u) ̸∈ E we take P ′(v, u) := 0, this satisfies that

P
u∈V P ′(v, u) =

1 by the choice of k and as k ≥ 1 we have P ′(v, u) ∈ [0, 1].
{ For v ∈ vR and u ∈ V we define P ′(v, u) := P (v, u). This satisfies the

constraints as P does.
{ If S or 2 ∈ B we let V ′

S = VS and V ′
2 = V2.

This can easily be computed in polynomial time. Given an arbitrary strategy for
player 2, we can find a winning play of the original instance. We then claim any
winning play of the new instance corresponds to a winning strategy for player
1 in the original instance. Consider a play (v0, q0), . . . , (vn, qn), . . . in this new
instance with vn = t. We are able to “cut out” loops in our play and assume that
if i ̸= j then either vi ̸= vj or qi ̸= qj or we have reached t. We then construct
the strategy for the original instance as follows:

{ For (v, q) with v ∈ V1 appearing in our play there exists (a unique) i with
(v, q) = (vi, qi), thus we define Strat(v, q) := vi+1

{ For any other (v, q) we may define Strat(v, q) arbitrarily.

We then claim that the “cut out” play constitutes a valid, winning play in the
new instance under the given Strat for the max player. This is as follows:

{ v0 = s and for all v ∈ VS we have q0(v) = 0. This follows from it being a
valid play in the new instance, making it valid in the original.

The Stochastic Arrival Problem 25

{ For all indices i with vi ̸∈ V1, (vi+1, qi+1) ∈ Valid(vi, qi), as there are no
changes to edges or node types outside of V1 anything valid in the new
instance is valid in the original.

{ For indices i with vi ∈ V1 we require that Strat(vi, qi) = vi+1 and qi = qi+1,
however this is how we defined Strat and as qi = qi+1 in a probabilistic
transition this a valid player transition under Strat .

{ If it was a winning play it is still winning after “cutting out” loops, and
thus this play is of finite length n and has vn = t. Thus it is winning in the
original instance.

Hence this play is also valid and winning in the original instance.
Given an arbitrary strategy for players 1 and 2 and a corresponding winning

play in the original instance we show this play is also winning in the new instance
as follows:

{ v0 = s and for all v ∈ VS we have q0(v) = 0. This follows from it being a
valid play in the original instance, making it valid in the new instance.

{ For all indices i with vi ̸∈ V1, (vi+1, qi+1) ∈ Valid(vi, qi), as there are no
changes to edges or node types outside of V1 anything valid in the original
instance is valid in the new instance.

{ For indices i with vi ∈ V1 we know that Strat(vi, qi) = vi+1 and qi = qi+1.
However by our choice of random probabilities we know P (vi, vi+1) > 0, thus
this is a valid probabilistic transition.

{ If it was a winning play then it is of finite length n and has vn = t. Thus it
is winning in the new instance.

Thus deciding if there is a winning strategy for player 1 in the original instance
with 1 ∈ B has been reduced to determining if there is a winning play in the
new instance with 1 /∈ B but R ∈ B. ⊓⊔

Theorem 2. {R,S}-Arrival-Qual-0, {S, 1}-Arrival and
{R,S, 1}-Arrival-Qual-0 are all poly-time equivalent and NP-complete.

Proof. By the results in [6] we know that {S, 1}-Arrival is NP-complete. We
can use Lemma 4 to see that {R,S}-Arrival-Qual-0 is poly-time reducible
to {S, 1}-Arrival and then Lemma 5 to see {S, 1}-Arrival is poly-time re-
ducible to {R,S}-Arrival-Qual-0. Similarly, we can use Lemma 4 to see that
{R,S, 1}-Arrival-Qual-0 is poly-time reducible to {S, 1}-Arrival and the re-
verse reduction is obvious. Thus both are NP-complete as they are reducible to
{S, 1}-Arrival. ⊓⊔

Theorem 3. {R,S, 1, 2}-Arrival-Qual-0, {S, 1, 2}-Arrival and
{R,S, 2}-Arrival-Qual-0 are all poly-time equivalent.

Proof. We can use Lemma 4 to see that {R,S, 2}-Arrival-Qual-0 is poly-time
reducible to {S, 1, 2}-Arrival and then Lemma 5 to see {S, 1, 2}-Arrival is
poly-time reducible to {R,S, 2}-Arrival-Qual-0. Similarly, we can use Lemma 4
to see that {R,S, 1, 2}-Arrival-Qual-0 is poly-time reducible to {S, 1, 2}-Arrival
and the reverse reduction is obvious. Thus all are polynomial-time equivalent.

⊓⊔

26 T. Webster

Lemma 1. Let G be an instance of the generalised {R,S}-arrival problem in
simple form, and let e ∈ E be a hopeful edge of desperation k in G. Then E[Te] ≤
2k+1 − 1.

Proof. We prove by induction on the desperation k of e = (v, w). Consider a
hopeful edge of desperation 0, then we must have w = t and thus any run
traversing e reaches the destination, thus Te ∈ {0, 1}. From this E[Te] ≤ 1 =
20+1 − 1. Hence we have shown the base case of our induction.

Now consider a hopeful edge of desperation k > 0 and assume the result holds
for all hopeful edges of desperation k−1. There are two successor edges from w,
(w, s0(w)) and (w, s1(w)) and we must have that one of these is a hopeful edge
of desperation k− 1. Without loss of generality assume it is f := (w, s0(w)) and
thus we know that E[Tf] ≤ 2k − 1.

We let f ′ := (w, s1(w)) be the other edge. Then we know by flow conservation
that Te ≤ Tf + Tf 0 thus by linearity of expectation we have E[Te] ≤ E[Tf] +
E[Tf 0] ≤ (2k − 1) + E[Tf 0].

We can then consider the value of E[Tf 0] in the two cases of w ∈ VS and
w ∈ VR. If w ∈ VR as we make a uniformly random choice between edges f
and f ′ thus the expected number of times we use each edge must be the same,
E[Tf 0] = E[Tf] ≤ 2k − 1. If w ∈ VS then by the switching behaviour we must
have |Tf 0−Tf | ≤ 1 due to our alternating choices, hence E[Tf 0] ≤ E[Tf]+1 ≤ 2k.
Thus in either case we have E[Tf 0] ≤ 2k thus E[Te] ≤ (2k − 1) + 2k = 2k+1 − 1
as required. ⊓⊔

Proposition 6. Let G be an instance of the generalised {R,S}-arrival problem,
then the probability any run terminates, at either a dead end or target is 1.

Proof. Let L be a random variable defined as the number of steps until a run
terminates, L ∈ [0,∞]. If a path uses a dead edge (i.e., an edge to the dead end
node) then it must terminate. We note that no hopeful edge can have despera-
tion, k, greater than n, as any shortest path from that edge can’t use an edge
more than once, hence k ≤ n. We then let l := m · (2n+1 − 1) and consider the
events Ai := (L > iml + 1), by the choice of l and the pigeon hole principle the
event Ai implies we use some hopeful edge e at least i · m · (2n+1 − 1) times,
hence P (Ai) ≤ P (

W
e[Te > i ·m · (2n+1 − 1)]) ≤

P
e P (Te > i ·m · (2n+1 − 1)).

By Lemma 1 we have that E[Te] ≤ m · (2n+1 − 1) for any edge e, and thus by
Markov’s inequality:

P (Te > i ·m · (2n+1 − 1)) ≤ P (Te > i ·m · E[Te]) ≤
1

im

Thus P (Ai) ≤ 1
i and since ¬Term ⊆ Ai for any i thus P (¬Term) ≤ 1

i for any
i and thus P (¬Term) = 0. ⊓⊔

Corollary 3. Given G an instance of the generalised {R,S}-arrival, in polyno-
mial time we can construct another instance of {R,S}-Arrival with val(G′) =
1− val(G).

The Stochastic Arrival Problem 27

Proof. We apply Lemma 2 to create a dead end state d in polynomial time,
and this state and t are the only absorbing states in this new instance. By
Proposition 6 we have that any play almost surely reaches one of d or t in finite
time. If Reach is the event of reaching t and Dead that of reaching d we have 1 =
P(Term) = P(Dead) + P(Reach) =⇒ P(Dead) = 1− P(Reach) = 1− val(G).
Thus we may exchange t and d to construct such an instance. ⊓⊔

Theorem 4. The {R,S}-Arrival-Qual-1 problem is coNP-complete.

Proof. Given an instance of generalised {R,S}-arrival G we use Corollary 3 to
construct the instance G′ with val(G′) = 1 − val(G). We note val(G) > 0 if
and only if val(G′) < 1, thus val(G′) = 1 if and only if val(G) = 0. Hence this
question is poly-time equivalent to the complement of {R,S}-Arrival-Qual-0,
which is NP-complete by Theorem 2. ⊓⊔

Corollary 4. The {R,S}-Arrival-Quant problem is NP-hard & coNP-hard,
under many-one (Karp) reductions.

Proof. We begin by showing NP-hardness. We know by Theorem 2 that
{R,S}-Arrival-Qual-0 is NP-complete. Considering an instance of generalised
{R,S}-arrival, G := (V,E, s, t, {VR, VS}, P,Ord) we construct a new instance
G′ := (V + s′, E+(s′, t)+ (s′, s), s′, t, {(VR ++s′), vS}, P ′,Ord) where we add a
new start vertex s′ which transitions to either the original start s or the target
t. Then it is easy to see that val(G′) = 1

2 (1 + val(G)), thus is strictly greater
than a half iff we had val(G) > 0. Thus we have a many-one reduction from a
NP-complete problem.

For coNP-hardness we know by Theorem 4 that {R,S}-Arrival-Qual-1
is coNP-complete. Considering an instance of generalised {R,S}-arrival, G :=
(V,E, s, t, {VR, VS}, P,Ord) we construct a new instance G′ := (V + s′ + d,E +
(s′, d)+(s′, s)+(d, d), s′, t, {(VR+s′+d), vS}, P ′,Ord) where we add a new start
state s′ which transitions to either the original start s or a dead-end d. Then it
is easy to see that val(G′) = 1

2val(G), thus is greater than or equal to a half iff
we had val(G) = 1. Hence we have a many-one reduction from a coNP-complete
problem. ⊓⊔

Proof of Theorem 5.

Given an instance, G, of generalised {R,S}-Arrival we let Exp(G) be the ex-
panded, exponentially larger, instance given by Lemma 3 corresponding to a
Markov Chain on V × Q and let Reach(Exp(G), (v′, q′), (v, q)) be the problem
of deciding whether the vertex (v, q) ∈ Exp(G) can be reached from the start
state (v′, q′) of Exp(G). We define the decision problem Potential(G, (v, q)) for
each pair (v, q) ∈ V × Q as the problem of deciding {R,S}-Arrival-Qual-0
where we start in state (v, q) instead of (s, q0).

We let t ∈ V be our unique target and now define the index set J :=
((V \ {t, d}) × Q) ∪ {(t, ⋆)}, where (t, ⋆) represents all states of the form (t, q)

28 T. Webster

together, because all correspond to reaching the target. Where the probabilities
in a row sum to a positive value less than 1 this represents the fact that there
may be some transitions out of that state that go directly to a state that can
never reach t (i.e., a dead end). The matrix P ∈ [0, 1]J×J which is our modified
transition probability matrix in Exp(G), is defined as follows. For all v, w ∈ V
and q, q′ ∈ Q we define :

P ((t, ⋆), (w, q′)) := 0,

P ((t, ⋆), (t, ⋆)) := 0,

P ((v, q), (w, q′)) :=

8>>>>>><>>>>>>:

0, if ¬Reach(Exp(G), (s, q0), (v, q))

0, if ¬Reach(Exp(G), (s, q0), (w, q
′))

0, if ¬Potential(G, (v, q))

0, if ¬Potential(G, (w, q′))

PExp(G)((v, q), (w, q
′)), otherwise

(4)

P ((v, q), (t, ⋆)) :=

8><>:
0, if ¬Reach(Exp(G), (s, q0), (v, q))

0, if ¬Potential(G, (v, q))P
q?∈Q PExp(G)((v, q), (t, q

⋆)), otherwise

Lemma 6. Given as input an instance of a generalised B-Arrival problem G and
pairs (v, q), (w, q′) ∈ J we can compute in PSPACE the entry P ((v, q), (w, q′))
of the matrix P , given by the equations (4).

Proof. To show this is in PSPACE we note that to compute P ((v, q), (w, q′)) we
need to compute the following:

{ Reach(Exp(G), (s, q0), (v, q)) and Reach(Exp(G), (s, q0), (w, q
′)) - We note

this corresponds to an reachability problem on a succinctly represented expo-
nentially large directed graph. We can solve an explicit reachability problem
in NL and we can thus solve our succinctly represented version in PSPACE.

{ Potential(G, (w, q′)) and Potential(G, (w, q′)) - We note this corresponds to
an instance of {R,S}-Arrival-Qual-0 which by Theorem 2 is NP-complete.
Hence it can be solved in PSPACE.

{ PExp(G)((v, q), (w, q
′)) - To compute this we check if v ∈ VR or v ∈ VS . If v ∈

VR then we return PG(v, w). If v ∈ VS then we check if (w, q′) ∈ ValidG(v, q)
and return 1 if it is or 0 otherwise.

{
P

q?∈Q PExp(G)((v, q), (t, q
⋆)) - We note that there is at most one q⋆ ∈ Q

where the term PExp(G)((v, q), (t, q
⋆)) can be non-zero and we can deter-

mine q⋆ from (v, q). If v ∈ VR then we know transitions where q⋆ ̸= q
are impossible, thus PExp(G)((v, q), (t, q)) is the only term which may be
non-zero. If v ∈ VS we can determine the next switching state q⋆ and know
PExp(G)((v, q), (t, q

⋆)) is the only term which may be non-zero. Thus to com-
pute the sum we only have to evaluate a single transition probability, which
we can do as in the case when q′ ̸= ⋆. ⊓⊔

The Stochastic Arrival Problem 29

Lemma 7. The matrix P , given by equations (4), is substochastic, can be writ-

ten as P =

�
A 0
0 0

�
where A is a square matrix with some row summing to less

than 1. Finally we have limn→∞ Pn = 0.

Proof. First note that P is substochastic. P has row sums bounded by the row
sums of PExp(G), which is the transition probability matrix of a Markov Chain,
thus substochastic.

We let H ⊆ J be defined as:

H := {(v, q) ∈ (V \{t})×Q : Reach(Exp(G), (s, q0), (v, q))∧Potential(G, (v, q))}

Then let H⋆ := H ∪ {(t, ⋆)} and let A be the sub-matrix corresponding to rows
and columns in H⋆. We note the row or column corresponding to any (v, q) ̸∈ H⋆

is all zeros, because one of Reach(Exp(G), (s, q0), (v, q)) or Potential(G, v, q) is
false. The row corresponding to (t, ⋆) is also all zeros, however the column is not.

Thus P =

�
A 0
0 0

�
.

We let rn(v,q) for (v, q) ∈ H and n ∈ N0 correspond to the (v, q)th row of

An and let Rn
(v,q) be the sum of entries in rn(v,q). We know that for any (v, q) ∈

H we have Potential(G, v, q), thus there is some strictly positive probability
that starting from (v, q) we reach t. Thus we can find some N(v,q) ∈ N0 such
that there is a positive probability, p(v,q) > 0, that the {R,S}-Arrival instance
starting from (v, q) terminates in exactly N(v,q) steps. We know that that the

entries of the matrix A
N(v;q)

(v,q),(w,q0) correspond to the probability that after N(v,q)

steps, starting at (v, q) we will be in state (w, q′) ∈ H⋆. Thus we must have

A
Nv;q)

(v,q),(t,⋆) = p(v,q) > 0 and thus we have R
N(v;q)+1

(v,q) < 1. We also trivially have

that rnt,⋆ = 0 for any n.

Taking N := max(v,q)∈H(N(v,q) + 1) we note that thus RN
(v,q) < 1 for any

(v, q) ∈ H⋆. Thus each row of AN sums to strictly less than 1. Consider AjN ,
for integers j > 0. We must have AjN → 0 as j → ∞. Therefore Pn → 0 as

n → ∞, because Pn =

�
An 0
0 0

�
. ⊓⊔

Lemma 8. The matrix (I − P), where I is the identity matrix, is invertible
and for any (v, q), (w, q′) ∈ J the value of (I − P)−1

((v,q),(w,q0)) can be computed

in PSPACE, meaning (despite the fact that the rational number itself can be
exponentially large in terms of bit encoding size), we can query the bits of (I −
P)−1

((v,q),(w,q0)) in PSPACE.

Proof. By Lemma 7, the matrix (I−P) is invertible because Pn → 0 as n → ∞,
and in fact (I − P)−1 =

P∞
i=0 P

i.
We can compute the matrix inverse for an explicit matrix in NC2 ([3]) and

hence in polylogarithmic space. Thus we can compute bits of the inverse of the
succinctly presented matrix (I − P)−1 in PSPACE. ⊓⊔

30 T. Webster

Theorem 5. The {R,S}-Arrival-Quant problem is in PSPACE.

Proof. We know by Proposition 4 that the {R,S}-Arrival-Quant problem is
polynomial-time equivalent to {R,S}-Arrival-Quant-Eq, the problem of decid-
ing whether val(G) ≥ 1

2 . Thus we can show {R,S}-Arrival-Quant is in PSPACE
by showing that {R,S}-Arrival-Quant-Eq is in PSPACE. We let G be an in-
stance of {R,S}-Arrival-Quant-Eq. We observe that (I − P)−1 =

P∞
n=1 P

n.
Thus (I − P)−1

(s,q0),(t,⋆)
represents the hitting probability of reaching the state

(t, ⋆) starting from (s, q0), which is val(G). We know by Lemma 8 that we are
able to compute arbitary bits of (I −P)−1

(s,q0),(t,⋆)
in PSPACE. Thus we compute

the leading bit of (I − P)−1
(s,q0),(t,⋆)

, and we know that this is 1 if and only if

val(G) ≥ 1
2 , which decides {R,S}-Arrival-Quant-Eq. ⊓⊔

Theorem 6. {R,S}-Arrival-Quant is PP-hard.

Proof. We begin by formally defining the problem MAJSAT that we are reducing
from, this problem is complete for PP by the results of Gill and Simon [10, 15].
Unlike our definition of SSAT (Definition 8) we can not assume that φ is a 3CNF
([1]), we let wl be the clause width of Cl.

De�nition 11 (MAJSAT). Given a CNF formula φ with n variables, x1, . . . , xn

and m clauses, C1, . . . , Cm. We let pφ be the probability that a valuation, V :
[n] → {⊤,⊥}, chosen uniformly at random over all valuations satis�es φ. Decide
if pφ > 1

2 .

To perform the reduction we will create an instance of {R,S}-Arrival-Quant
where we have for some constant D computable from φ:

v =
1

2
+ (pφ − 1

2
) · 2(D+1)n (5)

We note that we have from this that v > 1
2 if and only if pφ > 1

2 .
We now explain this construction in more detail. Given φ = C1∧C2∧. . .∧Cm,

to begin with, in polynomial time we enumerate our n variables as x1, . . . , xn

and for each we compute constants ai = |{l ∈ {1, . . . ,m} | xi ∈ Cl}| and
bi = |{l ∈ {1, . . . ,m} | ¬xi ∈ Cl}|. Here ai is the number of clauses in which
the literal xi appears, and bi is the number of clauses in which the literal ¬xi

appears. We let D = max
S

i{ai, bi} be the maximum number of occurrences of
any literal.

We divide the game into two phases which correspond to the different nodes
in Ord(start): the “assignment” phase, consisting of the time strictly before the
(D + 1)n + 1’th visit to the vertex start where the switching node takes us to
the node as and the “verification” phase consisting of the time afterwards where
the switching takes us to either ver or target . These phases correspond to the
following key objectives:

{ Assignment Phase - In this phase we make D + 1 random choices of
assignment at each variable xi. If we ever make an inconsistent choice at

The Stochastic Arrival Problem 31

some xi the vertex consi will force us to visit bad , which brings the game
to an early end. Every time we make a choice we also visit the consequence
gadgets to initialise these. Assuming we make consistent choices we make D
visits to the consequences gadget and can only make at most wl visits to
each Cl gadget which means we can’t reach their internal fail state, thus we
either enter the “verification” phase or reach the vertex bad.

{ Veri�cation Phase - In this phase we know we made consistent choices,
then we check how many times we have visited each clause gadget by looping
through each. Any clause Cl which was visited wl times in ”assignment”
phase will take us to fail and otherwise our clauses will return us to start ,
thus in this phase we either reach some fail l or visit all the ver l vertices,
return to start for a final time then reach target .

We use “pass” to refer to a path from an entry to the exit of a gadget. We
now explain each of the gadgets and their purpose.

{ The Control Gadget. In this structure shown in Figure 8 we enforce the
phases using the switching behaviour at start . The node as cycles through
the n variable gadgets, visiting each D+1 times in the “assignment” phase.
The node ver finally starts the verification process by moving through ver1

to verm, visiting each once. We note any more visits to start send us to
target . We note our variable gadgets are have one exit back to start and
another to the vertex bad, which randomly moves to either target or fail .

{ Variable Gadget. In this gadget shown in Figure 9 we make random assign-
ment choices for xi and enforce consistency and initialise our clause gadgets.
The nodes xT

i and xF
i represent choosing an assignment of the variable xi

on this pass. The first time we visit these we go to consi, this provides a
check we have only visited one of xT

i and xF
i , if during our play we ever

make an inconsistent choice we move to bad, preventing us from ever reach-
ing both Negi and Posi. After our first visit we make successive visits to the
respective Consequence gadget Negi or Posi. As we make up to D+1 passes
we either reach bad or make exactly D passes of the respective consequence
gadget.

{ Consequences Gadget. We have two consequences gadgets for each vari-
able, Negi and Posi, shown in Figures 10a and 10b. Negi (resp. Posi) enu-
merates the gadgets for clauses, Cj1

, . . . , Cjai
(resp. Ck1

, . . . , Ckbi
), where

the literal ¬xi (resp. xi) appears. As a consequence of choosing assignment
of true (resp. false) these clauses aren’t immediately satisfied by our assign-
ment. As any literal appears in at most D clauses by visiting this gadget D
times we are guaranteed to go through each of the contained clause gadgets.
If we have ai < D (resp. bi < D) then any further edges proceed straight to
the exit to ensure if we make exactly D passes we visit each clause gadget
exactly once. These respectively enumerate the clauses in which the literals
¬xi and xi appear.

{ The Clause Gadget. This is shown in Figure 4c for a clause Cl of width
wl. We note in the “assignment” phase we only ever use the cl entrance and

32 T. Webster

in the “verification” phase we use the entrance ver l. In the “assignment”
phase we pass through the clause gadget only in the following situations:
• From a Negi gadget where we have assigned xi true on this pass and
¬xi appears in Cl,

• From a Posi gadget where we have assigned xi false on this pass and xi

appears in Cl,
Thus as a consequence of our truth assignment to xi it doesn’t witness the
truth of Cl. Our clause Cl has width wl and if our assignment is satisfying
then we must have at least one of the wl literals as a witness to the truth
of Cl. Thus our gadget acts as a simple counter of the number of literals in
the clause which evaluate to false, after wl from cl passes our switch sends
the play to the sat l state, because the assignment we have chosen does not
satisfy Cl. In the “assignment” phase as we make at most wl passes we can’t
reach fail l. Finally in the “verification” phase we visit sat l, if it was visited
in the “assignment” phase we know that Cl wasn’t satisfied and we move
to the fail l state, otherwise as it is our first visit we move to start and note
that Cl was satisfied.

To compute the value of the instance G(φ) we note there are three distinct
cases which lead us to one of the dead end states target , fail and each of the fail l
states:

{ A - We reach one of target or fail from the outgoing edges from bad .
{ B - We reach target using the edge from start .
{ C - We reach fail l using the edge from sat l inside one of our Cl clause

gadgets.

We note that we are in case (A) in any play where we reach bad , this occurs
when we make two visits to consi inside some variable gadget Rxi and in the
other cases we don’t reach bad and make at most one visit to each consi node.
To be in case (B) or (C) we must reach the “verification” phase, requiring us
to pass through each variable gadget exactly D + 1 times. We consider the
probability that our random choices at ag i doesn’t take us to consi twice with
exactly D + 1 passes, this means it must only visit exactly one of xT

i or xF
i ,

which it does with probability 2−(D+1). Thus we reach the “verification” phase
with probability (2−(D+1))n, as we independently progress through each of the
n variable gadgets, thus the probability of case (A) is 1− 2−n(D+1).

We now assume we are not in case (A) and reach the “verification” phase.
Thus we must have made D + 1 passes of each variable gadget Rxi and must
have only visited exactly one of xT

i or xF
i , we let V : [n] → T, F be a function

which chooses this vertex, so that for each i we visited x
V (i)
i . Each such V cor-

responds one-to-one with a play reaching the “verification” phase and this play
has measure 2−n(D+1) and from reaching the verification phase is deterministic
as we can not revisit the nodes as or ag without taking the edge from start
to target and this prevents us visiting any further random nodes. Thus each V
corresponds to single play in either case (B) or case (C), we now show that V
corresponds to a case (B) play if and only if V is a satisfying valuation of φ.

The Stochastic Arrival Problem 33

Assume V is a satisfying valuation of φ, then for each clause Cl in φ we can
find some variable xi which witnesses the truth of that clause, either by V (i) = T
and xi appearing in Cl or by V (i) = F and ¬xi appearing in Cl. Consider the
“assignemnet” phase where we have V (i) = T (resp. V (i) = F) then we note
in the gadget Rxi we only visit the Negi (resp. Posi) gadget. As we have that
xi (resp. ¬xi) appears in Cl we know that there is an edge from Posi (resp.
Negi) to Cl, and as we only visit the Negi (resp. Posi) gadget then we can not
traverse this edge. Thus we can make at most wl − 1 traversals of Cl via cl as
we can use each incoming edge at most once and we have shown there is one of
the wl incoming edges we can not use ever. Thus we must not visit sat l in the
“assignment” phase, thus if we visit ver l in the “verification” phase we return
to start . As this argument holds for each l we see we visit each ver l and proceed
to target . Thus V satisfying gives us a play in case (B).

Now assume V is not a satisfying valuation of φ, then there is some clause
Cl in φ which evaluates to false. Let xi be some variable where xi (resp. ̸= xi)
appears in Cl, then we must have V (i) = F (resp. V (i) = T). we can find
some variable xi which witnesses the truth of that clause, either by V (i) = T
and xi appearing in Cl or by V (i) = F and ¬xi appearing in Cl. Consider the
“assignemnet” phase where we have V (i) = F (resp. V (i) = T) then as we make

D + 1 visits to x
V (i)
i we make D visits to Posi (resp. Negi), as we have that xi

(resp. ¬xi) appears in Cl we must take the edge from posi (resp. negi) to the Cl

gadget. As this applies for each literal appearing in Cl we make wl visits to the
Cl gadget in the “assignemnet” phase. Thus if we visit ver l then we will make
a second visit to sat l and thus reach fail l. Thus we must reach some fail l state
and thus V not satisfying corresponds to a play in case (C).

We note that each valuation V is obtained under some random choices
with each possible valuation having probability 2−n(D+1). We also have that
a valuation chosen uniformly at random has probability pφ of being satisfying,
thus we have a probability of pφ · 2n · 2−n(D+1) of being in case (B) and of
(1 − pφ) · 2n · 2−n(D+1). We note in case (A) we reach bad with probability
1− 2−n(D+1), thus in case (A) we have probability 1

2 (1− 2−n(D+1)) of reaching
both target and fail . Combining the half of plays in case (A) and all case (B)
we have v = 1

2 (1− 2−n(D+1)) + pφ · 2n · 2−n(D+1) which is as required in Equa-
tion (5). ⊓⊔

