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Abstract

We consider the reachability problem for higher-order functional programs and study
the relationship between reachability games (i.e., the reachability problem for programs
with angelic and demonic nondeterminism) and may-reachability (i.e., the reachability
problem for programs with only angelic nondeterminism). We show that reachability
games for order-n programs can be reduced to may-reachability problems for order-
(n + 1) programs, and vice versa. We formalize the reductions by using higher-order
fixpoint logic and prove their correctness. We also discuss applications of the reductions
to higher-order program verification.

1 Introduction

This paper considers the reachability problem for simply-typed, call-by-name higher-order
functional programs with integers, recursion, and two kinds of non-deterministic branches
(angelic and demonic ones). The problem of solving reachability games (hereafter, simply
called the reachability game problem) asks, given a higher-order functional program and a
specific control point succ of the program, whether there exists a sequence of choices on
angelic non-determinism that makes the program reach succ no matter what choices are
made on demonic non-determinism. Thus, our reachability game problem is just a special
case of the notion of two-player reachability games [7], where the game arena is specified as a
higher-order functional program. (An important restriction compared to the general notion
of reachability games is that each vertex may have only a finite number of outgoing edges,
although there can be infinitely many vertices.) Various program verification problems can
be reduced to the reachability game problem. For example, the termination problem, which
asks whether a given program terminates for any sequence of non-deterministic choices, is
a special case of the reachability game problem, where all the non-deterministic branches
are demonic, and all the termination points are expressed by succ. The safety verification
problem, which asks whether a given program may fall into an error state after some sequence
of non-deterministic choices, is also a special case, where all the non-deterministic branches
are angelic, and error states are expressed by succ.

We establish relations between the reachability game problem and the may-reachability
problem, a special case of the reachability game problem where all the non-deterministic
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choices are angelic (hence, may-reachability is a one-player game). We show mutual transla-
tions between the reachability game problem for order-n programs and the may-reachability
problem for order-(n + 1) programs. (Here, the order of a program is defined as the type-
theoretic order; the order of a function that takes only integers is 0, and the order of a
function that takes an order-0 function is 1, etc.) The translations are size-preserving in the
sense that for any order-n programM , one can effectively construct an order-(n+1) program
M ′ such that the answer to the reachability game problem for M is the same as the answer
to the may-reachability problem for M ′, and the size of M ′ is polynomial in that of M ; and
vice versa.

The translation from reachability games to may-reachability allows us to use higher-order
program verification tools specialized to may-reachability (or, unreachability to error states)
such as MoCHi [14] and Liquid types [20] to check a wider class of properties represented as
reachability games. Conversely, the translation from may-reachability to reachability games
allows us, for example, to use verification tools that can solve reachability games for order-0
programs, such as CHC solvers [17, 8, 4] to check may-reachability of order-1 programs.

We formalize our translations for µHFL(Z), which is a fragment HFL(Z) [16] with-
out greatest fixpoint operators and modal operators, where HFL(Z) is an extension of
Viswanathan and Viswanathan’s higher-order fixpoint logic [24] with integers. The use of
higher-order fixpoint formulas rather than higher-order programs in the formalization of the
translations is justified by the result of Kobayashi et al. [16, 25], that there is a direct cor-
respondence between the reachability problem for higher-order programs and the validity
problem for the corresponding higher-order fixpoint formulas, where angelic and demonic
branches in programs correspond to disjunctions and conjunctions respectively.

The rest of this paper is structured as follows. Section 2 introduces µHFL(Z), and clari-
fies the relationship between the validity checking problem for µHFL(Z) and the reachability
problem for higher-order programs. Section 3 formalizes a reduction from the order-n reach-
ability game problem to the order-(n + 1) may-reachability problem (as a translation of
µHFL(Z) formulas), and proves its correctness. Section 4 formalizes a reduction in the op-
posite direction, from the order-(n+1) may-reachability problem to the order-n reachability
game problem, and proves its correctness. Section 5 discusses applications of the reduc-
tions and reports some experimental results. Section 6 discusses related work and Section 7
concludes the paper.

2 µHFL(Z) and Reachability Problems

In this section, we first introduce µHFL(Z), a fragment of higher-order fixpoint logic
HFL(Z) [16] (which is in turn an extension of Viswanathan and Viswanathan’s higher-order
fixpoint logic [24] with integers) without greatest fixpoint operators. We then review the
relationship between µHFL(Z) and reachability problems, and state the main theorem of
this paper.

2.1 Syntax

The set of (simple) types, ranged over by κ, is given by:

κ (types) ::= Int | τ
τ (predicate types) ::= ⋆ | κ→ τ.
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K, x : κ ⊢ST x : κ
(T-Var)

K ⊢ST ϕ1 : ⋆ K ⊢ST ϕ2 : ⋆

K ⊢ST ϕ1 ∨ ϕ2 : ⋆
(T-Or)

K ⊢ST ϕ1 : ⋆ K ⊢ST ϕ2 : ⋆

K ⊢ST ϕ1 ∧ ϕ2 : ⋆
(T-And)

K, x : τ ⊢ST ϕ : τ

K ⊢ST µx
τ .ϕ : τ

(T-Mu)

K ⊢ST ϕ1 : τ2 → τ K ⊢ST ϕ2 : τ2

K ⊢ST ϕ1ϕ2 : τ
(T-App)

K, x : κ ⊢ST ϕ : τ

K ⊢ST λx
κ.ϕ : κ→ τ

(T-Abs)

K ⊢ST ϕ : Int → τ K ⊢ST e : Int

K ⊢ST ϕe : τ
(T-AppInt)

K ⊢ST e1 : Int K ⊢ST e2 : Int

K ⊢ST e1 ≤ e2 : ⋆
(T-Le)

K ⊢ST n : Int
(T-Int)

K ⊢ST e1 : Int K ⊢ST e2 : Int

K ⊢ST e1 + e2 : Int
(T-Plus)

K ⊢ST e1 : Int K ⊢ST e2 : Int

K ⊢ST e1 × e2 : Int
(T-Mult)

Figure 1: Simple Type System for µHFL(Z)

For a type κ, the order and arity of κ, written ord(κ) and ar(κ) respectively, are defined by:

ord(Int) = −1 ord(⋆) = 0
ord(κ→ τ) = max(ord(τ), ord(κ) + 1)
ar(Int) = ar(⋆) = 0 ar(κ → τ) = ar(τ) + 1.

For example, ord(Int → Int → ⋆) = 0 and ord((Int → ⋆) → ⋆) = 1.1

The set of µHFL(Z) formulas, ranged over by ϕ, is given by:

ϕ (formulas) ::=
x | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| µxτ .ϕ (least fixpoint operator)
| ϕ1ϕ2 | λxκ.ϕ (λ-abstractions and applications)
| ϕe | e1 ≤ e2 (extension with integers)
e (integer expressions) ::= n | x | e1 + e2 | e1 × e2.

Intuitively, µxτ .ϕ denotes the least predicate x of type τ such that x = ϕ. We write true

and false for 0 ≤ 0 and 1 ≤ 0. For a formula ϕ, the order of ϕ is defined as:

max({0} ∪ {ord(τ) | µτx.ϕ′ occurs in ϕ}).

We call a µHFL(Z) formula ϕ disjunctive if the conjunction ∧ occurs in ϕ only in the form
of e1 ≤ e2 ∧ ϕ1 (i.e., the left-hand side of ϕ is a primitive constraint on integers).

We write ϕ̃j,...,k for a sequence of formulas ϕj , . . . , ϕk; it denotes an empty sequence if
k < j. We often omit the subscript and just write ϕ̃ for ϕ̃j,...,k when the subscript is not
important. Similarly, we also write ẽ and κ̃ for sequences of expressions and types respectively.
We use the metavariables α, β, and γ to denote either a formula or an integer expression.

The simple type system for µHFL(Z) formulas is defined in Figure 1. Henceforth, we
consider only well-typed formulas (i.e., formulas ϕ such that K ⊢ST ϕ : κ for some K and κ).
A formula ϕ is called a closed formula of type κ if ∅ ⊢ST ϕ : κ.

1Defining the order of Int as −1 is a bit unusual, but convenient for stating our technical result.

3



2.2 Semantics

For each simple type κ, we define the partially ordered set [[κ ]] = ((| κ |),⊑κ) where ⊑κ⊆
(|κ |)× (|κ |) by:

(| Int |) = Z m ⊑Int n⇔ m = n
(| ⋆ |) = {⊥,⊤} x ⊑⋆ y ⇔ x = ⊥ ∨ y = ⊤
(| κ→ τ |) =
{f ∈ (|κ |) → (| τ |) | ∀x, y ∈ (| κ |) .x ⊑κ y ⇒ f(x) ⊑τ f(y)}
f ⊑κ→τ g ⇔ ∀x ∈ (|κ |) .f(x) ⊑τ g(y).

Here, Z denotes the set of integers. For each τ , [[ τ ]] (but not [[ Int ]]) forms a complete lattice.
We write ⊥τ (⊤τ ) for the least (greatest, resp.) element of [[ τ ]], and ⊓τ (⊔τ , resp.) for the
greatest lower bound (least upper bound, resp.) operation with respect to ⊑τ . We also define
the least fixpoint operator LFPτ ∈ (|(τ → τ) → τ |) by:

LFPτ (f) = ⊓τ{g ∈ (| τ |) | f(g) ⊑τ g}

For a simple type environment K, we write (| K |) for the set of maps ρ such that dom(ρ) =
dom(K) and ρ(x) ∈ (| K(x) |) for each x ∈ dom(ρ).

For each valid type judgment K ⊢ST ϕ : κ, its semantics [[K ⊢ST ϕ : κ ]] ∈ (| K |) → (|κ |) is
defined by:

[[ Γ, x : κ ⊢ST x : κ ]](ρ) = ρ(x)

[[ Γ ⊢ST ϕ1 ∨ ϕ2 : ⋆ ]] ρ = [[ Γ ⊢ST ϕ1 : ⋆ ]] ρ ⊔⋆ [[ Γ ⊢ST ϕ2 : ⋆ ]] ρ

[[ Γ ⊢ST ϕ1 ∧ ϕ2 : ⋆ ]] ρ = [[ Γ ⊢ST ϕ1 : ⋆ ]] ρ ⊓⋆ [[ Γ ⊢ST ϕ2 : ⋆ ]] ρ

[[ Γ ⊢ST µx
τ .ϕ : τ ]] ρ = LFPτ (λv ∈ (| τ |) . [[ Γ, x : τ ⊢ST ϕ : τ ]](ρ{x 7→ v}))

[[ Γ ⊢ST λx
κ.ϕ : τ ]] ρ = λw ∈ (|κ |) . [[ Γ, x : κ ⊢ST ϕ : τ ]](ρ{x 7→ w})

[[ Γ ⊢ST ϕ1ϕ2 : τ ]] ρ = [[ Γ ⊢ST ϕ1 : τ2 → τ ]] ρ ([[ Γ ⊢ST ϕ2 : τ2 ]] ρ)

[[ Γ ⊢ST ϕe : τ ]] ρ = [[ Γ ⊢ST ϕ : Int → τ ]] ρ ([[ Γ ⊢ST e : Int ]] ρ)

[[ Γ ⊢ST e1 ≤ e2 : ⋆ ]] ρ =

{
⊤ if [[ Γ ⊢ST e1 : Int ]] ρ ≤ [[ Γ ⊢ST e2 : Int ]] ρ
⊥ otherwise

[[ Γ ⊢ST n : Int ]] ρ = n

[[ Γ ⊢ST e1 + e2 : Int ]] ρ = [[ Γ ⊢ST e1 : Int ]] ρ+ [[ Γ ⊢ST e2 : Int ]] ρ

[[ Γ ⊢ST e1 × e2 : Int ]] ρ = [[ Γ ⊢ST e1 : Int ]] ρ× [[ Γ ⊢ST e2 : Int ]] ρ

For a closed formula ϕ of type ⋆, we just write [[ϕ ]] for [[ ∅ ⊢ST ϕ : ⋆ ]]. The validity checking
problem for µHFL(Z) is the problem of deciding whether [[ϕ ]] = ⊤, given a closed µHFL(Z)
formula ϕ of type ⋆.

For closed formulas, the following alternative semantics is sometimes convenient. Let us
define the reduction relation ϕ −→ ϕ′ by the following rules.

i ∈ {1, 2}

E[ϕ1 ∨ ϕ2] −→ E[ϕi]

E[false∧ ϕ] −→ E[false]
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E[true ∧ ϕ] −→ E[ϕ]

E[µx.ϕ] −→ E[[µx.ϕ/x]ϕ]

E[(λx.ϕ)e] −→ E[[e/x]ϕ]

E[(λx.ϕ)ψ] −→ E[[ψ/x]ϕ]

b =

{
true if [[ ⊢ST e1 : Int ]] ≤ [[ ⊢ST e2 : Int ]]
false otherwise

E[e1 ≤ e2] −→ E[b]

Here, E denotes an evaluation context, defined by:

E ::= [ ] | E ∧ ϕ | E ϕ.

We write −→∗ for the reflexive and transitive closure of −→. We have the following fact (see,
e.g., [22]).

Fact 1. Suppose ⊢ST ϕ : ⋆. Then, [[ϕ ]] = ⊤ if and only if ϕ −→∗ true.

Example 1. Suppose ⊢ST ϕ : Int → ⋆. Then,

ψ := (µxInt→⋆.λy.ϕ y ∨ ϕ(−y) ∨ ϕ(y + 1))0 −→∗ true

just if ϕn −→∗ true for some n. Thus, the formula ψ represents ∃z.ϕ z.

The example above indicates that existential quantifiers on integers can be expressed in
µHFL(Z). Henceforth, we treat existential quantifiers as if they were primitives.

2.3 Relationship with Reachability Problems

We consider reachability problems for a call-by-name, simply-typed λ-calculus extended with
two kinds of non-determinism (� and �) and a special term succ, which represents that the
designated target has been reached.2 The sets of types and terms, ranged over by σ and M
respectively, are defined by:

σ ::= Int | η

η ::= unit | σ → η

M ::= ( ) | succ | x | λx.M |M1M2 |M e

| fixη(x,M) |M1�M2 |M1�M2 | assume(e1 ≤ e2);M.

Here, fixη(x,M) denotes a recursive function x of type η such that x =M . The termM1�M2

denotes a demonic choice betweenM1 andM2, where the choice is up to the environment (or,
the opponent O of the reachability game), andM1�M2 denotes an angelic choice betweenM1

and M2, where the choice is up to the term (or, the player P of the reachability game). The

2In the context of program verification, we are often interested in (un)reachability to bad states. Thus,
in that context, succ in this section is actually interpreted as an error state, and the terms “angelic” and
“demonic” below are swapped.
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term assume(e1 ≤ e2);M first checks whether e1 ≤ e2 holds and if so, proceeds to evaluate
M ; otherwise aborts the evaluation of the whole term. Using assume, we can express a
conditional expression if e1 ≤ e2 thenM1 elseM2 as (assume(e1 ≤ e2);M1)�(assume(e2+
1 ≤ e1);M2). Henceforth, we consider only terms well-typed in the simple type system (which
is standard, hence omitted), where ( ) and succ are given type unit.

The order of a type σ is defined by:

ord(Int) = −1 ord(unit) = 0
ord(σ → η) = max(ord(η), ord(σ) + 1)

The order of a term M is defined as the largest order of type η such that fixη(x,M) occurs
in M . We write Intn → ⋆ for Int → · · · Int︸ ︷︷ ︸

n

→ ⋆.

For a closed simply-typed termM of type unit, a play is a (possibly infinite) sequence of
reductions of M . The play is won by the player P if it ends with succ; otherwise the play is
won by the opponent O. The reachability game forM is the problem of deciding which player
(P or O) has a winning strategy. For the general notion of reachability games and strategies,
we refer the reader to [7]. As a special case of the translation of Watanabe et al. [25] from
temporal properties of programs to HFL(Z) formulas, we obtain the following translation (·)†

from reachability games to µHFL(Z) formulas.

( )† = false succ† = true x† = x

(λx.M)† = λx.M † (M1M2)
† =M †

1M
†
2 (M e)† =M † e

(fix(x,M))† = µx.M † (assume(e1 ≤ e2);M)† = e1 ≤ e2 ∧M
†

(M1�M2)
† =M †

1 ∧M †
2 (M1�M2)

† =M †
1 ∨M †

2 .

The following is a special case of the result of Watanabe et al. [25].

Theorem 2 ([25]). For any closed simply-typed term M of type unit and order k, [[M ]] is
a closed µHFL(Z) formula of type ⋆ and order k. The player P wins the reachability game
for M , if and only if, [[M ]] = ⊤.

Based on the result above, we focus on the validity checking problem for µHFL(Z) formu-
las, instead of directly discussing the reachability problem. Note that the may-reachability
problem (of asking whether, given a closed termM of which all the branches are angelic, there
exists a reduction sequence from M to succ) corresponds to the validity checking problem
for disjunctive µHFL(Z) formulas.

Example 2. Let us consider the following OCaml program.

let rec sum x k =

assert(x>=0);

if x=0 then k 0 else sum(x-1)(fun y-> k(x+y))

in sum n (fun r -> assert(r>=n))

Suppose we are interested in checking whether the program suffers from an assertion failure.
It is modelled as the reachability problem for the term Msum n (λr.assume(r < n); succ),
where Msum is:

fix(sum, λx.λk.(assume(x < 0); succ)

�(assume(x = 0); k 0)
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�(assume(x > 0); sum (x− 1) (λy.k(x+ y)))).

Here, note that an assertion failure is modelled as succ in our language. By Theo-
rem 2, the above term is reachable to succ just if the (disjunctive) µHFL(Z) formula
ϕex1 := ϕsum n (λr.r < n) is valid, where ϕsum is:

µsum.λx.λk.

x < 0 ∨ (x = 0 ∧ k 0) ∨ (x > 0 ∧ sum (x− 1) (λy.k(x+ y))).

The formula ϕex1 is valid only if n < 0, which implies that the OCaml program suffers from
an assertion failure just if n < 0.

2.4 Main Theorem

The main theorem of this paper is stated as follows.

Theorem 3. There exist polynomial-time translations (·)# and (·)♭ between order-n
µHFL(Z) formulas and order-(n+1) disjunctive µHFL(Z) formulas that satisfy the following
properties.

• For any order-n closed µHFL(Z) formula ϕ, ϕ# is an order-(n+ 1) closed disjunctive
formula such that [[ϕ ]] = [[ϕ# ]].

• For any order-(n+1) closed disjunctive µHFL(Z) formula ϕ, ϕ♭ is an order-(n) closed
formula such that [[ϕ ]] = [[ϕ♭ ]].

Due to the connection between reachability problems and µHFL(Z) validity checking
problems discussed in Section 2.3, the theorem above implies that any order-n reachability
game can be converted in polynomial time to order-(n + 1) may-reachability problem, and
vice versa. The result allows us to use a tool for checking the may-reachability of higher-order
programs (such as MoCHi [14]) to solve the reachability game, and conversely, to use a tool
for solving the order-n reachability game (such as νHFL(Z) validity checkers [9, 10] and a
HoCHC solver [3]) to check the may-reachability of order-(n+1) programs; see Section 5 for
more discussion on the applications.

3 From Order-n Reachability Games to Order-(n + 1)
May-Reachability

In this section, we show the translation (·)# from order-n µHFL(Z) formulas to order-(n+1)
disjunctive µHFL(Z) formulas.

The idea is to transform each proposition ϕ (i.e. a formula of type ⋆) to a predicate ϕ#′

of type ⋆ → ⋆, so that true and false are respectively converted to the identity function
λx.x and the constant function λx.false. We can then encode the conjunction ϕ1 ∧ ϕ2 as

λx⋆.ϕ#′

1 (ϕ#′

2 x), which is equivalent to the identity function just if both ϕ#′

1 and ϕ#′

2 are.
We first define the translation of types by:

⋆# = ⋆→ ⋆ Int# = Int

(κ→ τ)# = κ# → τ#.

We extend it to type environments by:

(x1 : κ1, . . . , xk : κk)
# = x1 : κ

#
1 , . . . , xk : κ

#
k .
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The translation (·)# of formulas is defined as follows.

ϕ# = ϕ#′

true

(e1 ≤ e2)
#′

= λx⋆.(e1 ≤ e2 ∧ x)

(λxκ.M)#
′

= λxκ
#

.M#′

(ϕ1ϕ2)
#′

= ϕ#′

1 ϕ#′

2 (ϕe)#
′

= ϕ#′

e

(µxτ .ϕ)#
′

= µxτ
#

.ϕ#′

(ϕ1 ∨ ϕ2)
#′

= λx⋆.ϕ#′

1 x ∨ ϕ#′

2 x (ϕ1 ∧ ϕ2)
#′

= λx⋆.ϕ#′

1 (ϕ#′

2 x).

Example 3. Consider the formula ϕ := (µpInt→⋆.λy.y = 0∨ (p (y− 1)∧ p (y+1)))n (where
n is an integer constant). We obtain the following formula as ϕ#:

(µpInt→⋆→⋆.λy.λx⋆.(λx⋆.y = 0 ∧ x)x

∨ (λx⋆.p (y − 1) (p (y + 1)x))x)n true.

By simplifying the formula with β-reductions, we obtain:

(µpInt→⋆→⋆.λy.λx⋆.

(y = 0 ∧ x) ∨ p (y − 1) (p (y + 1)x))n true.

The following lemma guarantees that the translation preserves typing.

Lemma 4. If K ⊢ST ϕ : κ, then K# ⊢ST ϕ
#′

: κ#.

Proof. Straightforward induction on the derivation of K ⊢ST ϕ : κ.

Corollary 5. If ϕ is an order-n closed µHFL(Z) formula, then ϕ# is an order-(n+1) closed
disjunctive µHFL(Z) formula.

Proof. Suppose ϕ is an order-n closed µHFL(Z) formula. By Lemma 4, we have ∅ ⊢ST ϕ
#′

:

⋆→ ⋆, which implies ∅ ⊢ST ϕ
# : ⋆. Since each µ-formula µxτ .ϕ′ in ϕ is translated to µxτ

#

.ϕ′

and ord(τ#) = ord(τ)+1, ϕ# is an order-(n+1) formula. Furthermore, all the conjunctions
in ϕ# are of the form e1 ≤ e2 ∧ ψ; hence it is disjunctive.

The following theorem states the correctness of the translation.

Theorem 6. If ∅ ⊢ST ϕ : ⋆, then [[ϕ ]] = [[ϕ# ]].

To prove the theorem, we define the relation ∼κ⊆ [[κ ]]× [[κ# ]] between the values of the
source and the target of the translation, by induction on κ.

∼Int= {(n, n) | n ∈ [[Z ]]}

∼⋆= {(⊥, λx ∈ [[ ⋆ ]] .⊥)} ∪ {(⊤, λx ∈ [[ ⋆ ]] .x)}

∼κ→τ=

{(f, g) | ∀(v, w) ∈ [[κ ]]× [[ τ ]] .v ∼κ w ⇒ f v ∼τ g w}.

We extend ∼κ pointwise to the relation ∼K⊆ [[K ]]× [[K# ]] on environments by:

ρ ∼K ρ′ ⇔ ρ(x) ∼K(x) ρ
′(x) for every x ∈ dom(ρ).

We first prepare the following lemma.

8



Lemma 7. If f ∼τ→τ g, then LFPτ (f) ∼τ LFPτ#(g).

Proof. By Cousot and Cousot’s fixpoint theorem [5], there exists an ordinal γ such that
LFP(f) = fγ(⊥τ ) and LFP(g) = gγ(⊥τ#). Here, fγ(x) is defined by:

f(x) =





x if γ = 0

f(fγ′

(x)) if γ = γ′ + 1

⊔γ′<γf
γ′

(x) if γ is a limit ordinal.

Thus, it suffices to show fγ(⊥τ ) ∼τ g
γ(⊥τ#) by induction on γ. The case where γ = 0 or

γ = γ′ + 1 is trivial. Suppose γ is a limit ordinal. Suppose τ = κ1 → · · · → κk → ⋆, and
vi ∼κi

wi for i ∈ {1, . . . , k}. It suffices to show

fγ(⊥τ )v1 · · · vk ∼⋆ g
γ(⊥τ#)w1 · · · wk.

By the induction hypothesis, we have fγ′

(⊥τ ) ∼τ g
γ′

(⊥τ#) for any γ′ < γ. Thus, we have:

fγ(⊥τ )v1 · · · vk

= (⊔γ′<γf
γ′

(⊥τ ))v1 · · · vk

= ⊔γ′<γ(f
γ′

(⊥τ )v1 · · · vk)

∼⋆ ⊔γ′<γ(g
γ′

(⊥τ )w1 · · · wk)

= (⊔γ′<γg
γ′

(⊥τ ))w1 · · · wk

= gγ(⊥τ )w1 · · · wk

Theorem 6 is an immediate corollary of the following lemma.

Lemma 8. Suppose K ⊢ST ϕ : κ. Then ρ ∼K ρ′ implies [[K ⊢ST ϕ : κ ]] ρ ∼κ [[K# ⊢ST ϕ
#′

:
κ# ]] ρ′.

Proof. The proof proceeds by induction on the derivation of K ⊢ST ϕ : κ. Since the other
cases are similar or trivial, we show only the main cases.

• Case T-And: In this case, ϕ = ϕ1 ∧ ϕ2 and ϕ#′

= λx.ϕ#′

1 (ϕ#′

2 x), with κ = ⋆ and

K ⊢ST ϕi : ⋆. By the induction hypothesis, we have [[K ⊢ST ϕi : ⋆ ]] ρ ∼⋆ [[K# ⊢ST ϕ
#′

i : ⋆# ]] ρ′

for i ∈ {1, 2}. If [[K ⊢ST ϕ : ⋆ ]] ρ = ⊤, then [[K ⊢ST ϕi : ⋆ ]] ρ = ⊤ for both i = 1

and 2. Thus, [[K# ⊢ST ϕ
#′

i : ⋆# ]] ρ′ = λx.x for both i = 1 and 2. Therefore, we have

[[K# ⊢ST ϕ
#′

: ⋆# ]] ρ′ = λx.x as required. Otherwise, i.e., if [[K ⊢ST ϕ : ⋆ ]] ρ = ⊥, then

[[K ⊢ST ϕi : ⋆ ]] ρ = ⊥ for i = 1 or 2. Thus, [[K# ⊢ST ϕ
#′

i : ⋆# ]] ρ′ = λx.⊥ for such i.

Therefore, we have [[K# ⊢ST ϕ
#′

: ⋆# ]] ρ′ = λx.⊥ as required.

• Case T-Mu: In this case, ϕ = µxτ .ϕ′ and ϕ#′

= µxτ
#

.ϕ′#′

with κ = τ and K, x : τ ⊢ST

ϕ′ : τ . By the induction hypothesis, we have [[K, x :τ ⊢ST ϕ
′ : τ ]](ρ{x 7→ v}) ∼τ [[K, x :τ# ⊢ST

ϕ′#′

: τ# ]](ρ′{x 7→ w}), which implies [[K ⊢ST λx.ϕ
′ : τ → τ ]] ρ ∼τ [[K# ⊢ST λx.ϕ

′#′

: (τ →
τ)# ]] ρ′. Thus, the required result follows by Lemma 7.

We are now ready to prove Theorem 6.

Proof of Theorem 6. Suppose ∅ ⊢ST ϕ : ⋆. By Lemma 8, we have [[ϕ ]] = [[ ∅ ⊢ST ϕ : ⋆ ]] ∅ ∼⋆

[[ ∅ ⊢ST ϕ
#′

: ⋆ ]] ∅. Thus, if [[ϕ ]] = ⊤, then [[ϕ# ]] = [[ϕ#′

]]⊤ = (λx.x)⊤ = ⊤. If [[ϕ ]] = ⊥,
then [[ϕ# ]] = [[ϕ#′

]]⊤ = (λx.⊥)⊤ = ⊥, as required.
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4 From Order-(n + 1) May-Reachability to Order-n
Reachability Games

In this section, we show the translation (·)♭ from order-(n+ 1) disjunctive µHFL(Z) formu-
las to order-n µHFL(Z) formulas. The translation (·)♭ is much more involved than in the
translation (·)#.

To see how such translation can be achieved, let us recall the formula ϕex1 :=
ϕsum n (λr.r < n) in Example 2, where ϕsum : Int → (Int → ⋆) → ⋆ is:

µsum.λx.λk.

x < 0 ∨ (x = 0 ∧ k 0) ∨ (x > 0 ∧ sum (x− 1) (λy.k(x+ y))).

Note that the order of the formula above is 1. We wish to construct a formula ψ of order 0,
such that [[ϕex1 ]] = [[ψ ]]. Recall that, by Fact 1, [[ϕex1 ]] = ⊤ just if ϕex1 −→∗ true. There
are the following two cases where the formula ϕex1 may be reduced to true.

1. φ is reduced to true without the order-0 argument λr.r < n being called.

2. φ is reduced to (λr.r < n)m for some m, and then (λr.r < n)m is reduced to true.

Let ϕsum0
n be the condition for the first case to occur, and let ϕsum1

nm be the condition
that (λr.r < n)m is called. Then, ϕsum0

and ϕsum1
can be expressed as follows.

ϕsum0
:=µsum0.λx.x < 0 ∨ (x > 0 ∧ sum0 (x− 1)).

ϕsum1
:=µsum1.λx.λz.(x = 0 ∧ z = 0)

∨ (x > 0 ∧ ∃y.sum1 (x− 1) y ∧ z = x+ y).

To understand the formula ϕsum1
, notice that ϕsum (x − 1) (λy.k(x + y)) is reduced to k z

just if sum (x − 1) (λy.k(x + y)) is first reduced to (λy.k(x + y))y for some y (the condition
for which is expressed by sum1 (x − 1) y), and z = x+ y holds.

Using ϕsum0
and ϕsum1

above, the formula ϕsum can be translated to:

ψ := ϕsum0
n ∨ ∃r.ϕsum1

n r ∧ r < n.

Note that the order of ψ is 0.
In general, if ϕ is an order-1 (disjunctive) formula of type

Intk → (Intℓ1 → ⋆) → · · · → (Intℓm → ⋆) → ⋆

and ψi (i ∈ {1, . . . ,m}) is a formula of type Intℓi → ⋆, then ϕ ẽ1,...,k ψ1 · · · ψm can be
translated to an order-0 formula of the form:

ϕ0 ẽ1,...,k ∨
∨

i∈{1,...,m}

∃ỹ1,...,ℓi .(ϕi ẽ1,...,k ỹ1,...,ℓi ∧ ψi ỹ1,...,ℓi),

where the part ϕ0 ẽ1,...,k expresses the condition for ϕ ẽ1,...,k ψ1 · · · ψm to be reduced to
true without ψi being called, and the part ϕi ẽ1,...,k ỹ1,...,ℓi expresses the condition for
ϕ ẽ1,...,k ψ1 · · · ψm to be reduced to ψi ỹ1,...,ℓi .

For higher-order formulas, the translation is more involved. To simplify the formalization,
we assume that a formula as an input or output of our translation is given in the form
(Θ, D, ϕ0), called an equation system; here D is a set of mutually recursive fixpoint equations
of the form {F1 x̃1 =µ ϕ1, . . . , Fn x̃n =µ ϕn} and Θ is the type environment for F1, . . . , Fn.
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We sometimes omit Θ and just write (D,ϕ0). Here, each ϕi (i ∈ {0, . . . , n}) should be
fixpoint-free, ϕ0 is well-typed under Θ, and ϕi (i ∈ {1, . . . , n}) should have some type τi
under the type environment:

Θ, xi,1 : κi,1, . . . , xi,mi
: κi,mi

,

where Θ(Fi) = κi,1 → · · · → κi,mi
→ τi and x̃i = xi,1 · · ·xi,mi

. The µHFL(Z) formula
(D,ϕ0)

µ represented by (Θ, D, ϕ0) is defined by:

(∅, ϕ)µ = ϕ

(D ∪ {F x̃ =µ ψ}, ϕ)
µ = ([µF.λx̃.ψ/F ]D, [µF.λx̃.ψ/F ]ϕ)µ.

We write [[(D,ϕ) ]] for [[(D,ϕ)µ ]].
For an equation system as an input of our translation, we further assume, without loss of

generality, the following conditions.
(I) Each ϕi (i ∈ {1, . . . , n}) on the right-hand side of a definition in D has type ⋆ and is

generated by the following grammar (where the metavariable may be a fixpoint variable Fj

or its parameters):
ϕ ::= x | ϕ1 ∨ ϕ2 | e1 ≤ e2 ∧ ϕ | ϕ1ϕ2 | ϕe. (1)

In particular, (i) ϕi is a disjunctive µHFL(Z) formula, (ii) ϕi contains neither λ-abstractions
nor fixpoint operators, and (iii) a formula of the form e1 ≤ e2 may occur only in the form
e1 ≤ e2 ∧ ϕ.

(II) Every integer predicate (i.e., a formula of type of the form Intℓ → ⋆ with ℓ ≥ 0) that
occurs in an argument position has the same arity M . In other words, in any function type
κ→ τ , either κ = IntM → ⋆, or ord(κ) 6= 0.

(III) The “main formula” ϕ0 is a formula of the form F λx̃1,...,M .true.
Note that the assumption above does not lose generality. Given an order-(n+ 1) disjunctive
µHFL(Z) formula ϕ, it can be first transformed to a formula of the form ϕ′ true, where true
does not occur on the right-hand side of any conjunction in ϕ′. We then set M to the largest
arity of integer predicates that occur in argument positions in ϕ′ true, and raise the arity of
every integer predicate argument to M by adding dummy arguments. For example, given

(λf Int→⋆.f 1)((λgInt→Int→⋆.g 1)(λxInt.λyInt.x ≤ y)),

we can set M to 2, and replace the formula with:

(λf ′Int→Int→⋆.f ′ 1 0)

λz1.λz2.((λg
Int→Int→⋆.g 1)(λxInt.λyInt.x ≤ y)) z1.

Here, we have inserted dummy (actual and formal) parameters 0 and z2 to increase the arities
of f and the argument of (λf Int→⋆.f 1). We can then apply λ-lifting to remove λ-abstractions
and generate a set of top-level definitions D.

The formula ϕsum given earlier in this section is represented as: (Θsum , Dsum , S λz.true),
where Dsum consists of the following equations. Here, M is set to 1.

S t =µ sum t n (C t)

C t r =µ r < n ∧ t 0

sum t x k =µ

(x < 0 ∧ t 0) ∨ (x = 0 ∧ k 0) ∨ (x > 0 ∧ sum t (x− 1) (K k x))

K k x y =µ k(x+ y),

11



and Θsum is:

S : (Int → ⋆) → ⋆, C : (Int → ⋆) → Int → ⋆,

sum : (Int → ⋆) → Int → (Int → ⋆) → ⋆,

K : (Int → ⋆) → Int → Int → ⋆.

We translate each equation F y1 · · · ym =µ ϕ in D as follows. We first decompose the
formal parameters y1, . . . , ym to two parts: y1, . . . , yj and yj+1, . . . , ym, where the orders of
(the types of) yj+1, . . . , ym are at most 0, and the order of yj is at least 1; note that the
sequences y1, . . . , yj and yj+1, . . . , ym are possibly empty. We further decompose yj+1, . . . , ym
into order-0 variables x1, . . . , xk and integer variables z1, . . . , zp (thus, j + k + p = m).
Formally, the decomposition of formal parameters is defined by:

decomparg(ǫ, ⋆) = (ǫ, ǫ, ǫ)

decomparg(u · ỹ, κ→ τ) =




((u : κ) · K, x̃, z̃) if decomparg(ỹ, τ) = (K, x̃, z̃),K 6= ǫ
(u : κ, x̃, z̃) if ord(κ) > 0,

decomparg(ỹ, τ) = (ǫ, x̃, z̃)
(ǫ, u · x̃, z̃) if κ = IntM → ⋆,

decomparg(ỹ, τ) = (ǫ, x̃, z̃)
(ǫ, x̃, u · z̃) if κ = Int, decomparg(ỹ, τ) = (ǫ, x̃, z̃)

Here, decomparg(ỹ1,...,m,Θ(F )) decomposes the sequence of variables ỹ1,...,m and returns a
triple (K, x̃, z̃), where K is the type environment for y1, . . . , yj, x̃ is the sequence of integer
predicate variables, and z̃ is the sequence of integer variables.

For example, given an equation

F u1 u2 u3 u4 u5 =µ ϕ,

where Θ(F ) = Int → ((Int → ⋆) → ⋆) → Int → (Int → ⋆) → Int → ⋆, the formal
parameters u1 · · · u5 are decomposed as follows.

decomparg(u1 · · · u5,Θ(F ))

= ({u1 : Int, u2 : (Int → ⋆) → ⋆}, u4, u3u5).

Given an equation F ỹ =µ ϕ where decomparg(ỹ,Θ(F )) = (K, x̃1,...,k, z̃) with K = y1 :
κ1, . . . , yj : κj, we generate equations for new fixpoint variables F0, . . . , Fk. As in the order-1
case, for i ∈ {1, . . . , k}, Fi ϕ̃

′
1,...,j z̃ ũ1,...,M represents the condition for F ϕ̃1,...,j to be reduced

to xi ũ1,...,M (where ϕ̃′
1,...,j is the sequence of formulas obtained by translating ϕ̃1,...,j in a

recursive manner). F0 is a new component required to deal with higher-order formulas; it is
used to compute the condition for F ỹ to be reduced to x ũ1,...,ℓi for some order-0 predicate
x, which has been passed through higher-order parameters ỹ1,...,j. For example, consider a
formula F (Gx) y where F : ((Int → ⋆) → ⋆) → (Int → ⋆) → ⋆,G : (Int → ⋆) → (Int →
⋆) → ⋆. Then, the condition for F (Gx) y to be reduced to y n is computed by using F1,
while the condition for F (Gx) y to be reduced to xn is computed by using F0. A more
concrete version of this example is discussed later in Example 4.

To compute F0, . . . , Fk, we translate each subformula ϕ of the body of F to:

(ϕ∗, ϕ0, ϕ1, . . . , ϕk, ϕk+1, . . . , ϕk+gar(τ)),
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where τ is the type of ϕ, and gar(τ) denotes the number of order-0 arguments passed after
the last argument of order greater than 0. More precisely, we define the decomposition of
types as follows.

decomp(⋆) = (ǫ, ǫ, 0)

decomp(κ→ τ) =




(κ · κ̃,m, n) if decomp(τ) = (κ̃,m, n), κ̃ 6= ǫ
(κ,m, n) if ord(κ) > 0, decomp(τ) = (ǫ,m, n)
(ǫ,m+ 1, n) if κ = IntM → ⋆, decomp(τ) = (ǫ,m, n)
(ǫ,m, n+ 1) if κ = Int, decomp(τ) = (ǫ,m, n)

Then, gar(τ) denotes m when decomp(τ) = (κ̃,m, n). For example, for τ = (Int → ⋆) →
((Int → ⋆) → ⋆) → (Int → ⋆) → Int → (Int → ⋆) → ⋆, decomp(τ) = ((Int → ⋆) · ((Int →
⋆) → ⋆), 2, 1); hence gar(τ) = 2. Here, ϕ1, . . . , ϕk are analogous to F1, . . . , Fk: they are

used for computing the condition for ϕ ψ̃ to be reduced to xi ñ. Similarly, ϕk+i (where

i ∈ {1, . . . , gar(τ)}) is used for computing the condition for ϕ ψ̃ to be reduced to ψi ñ, where
ψi is the i-th order-0 argument of ϕ. The component ϕ0 is analogous to F0, and used to
compute the condition ϕ ψ̃ to be reduced to x ñ, where x is some order-0 predicate passed
through higher-order arguments of ϕ. The other component ϕ∗ is similar to ϕ0, but the
target order-0 predicate x may have already been set inside ϕ∗.

Based on the intuition above, we formalize the translation of a formula as the following
relation:

K; x̃1,...,k ⊢Θ ϕ : τ  (ϕ∗, ϕ0, . . . , ϕk+gar(τ)).

Here, Θ denotes the type environment for fixpoint variables defined byD. If ϕ is a subformula
of the body of F , and F is defined by F ỹ = ϕF , then K and x̃F are set to KF , z̃ : Ĩnt and
x̃F respectively, where decomparg(ỹ,Θ(F )) = (KF , x̃F , z̃).

The output (ϕ∗, ϕ0, . . . , ϕk+gar(τ)) of the translation has type τ ♭,k+2 under the type en-

vironment Θ♭′ ,K♭, where the translations of types and type environments are defined by:

Int♭,k = Int

τ ♭,k = (Πi=1,...,k(κ̃
♭,2 → Intn+M → ⋆))

× (Πi=1,...,m(κ̃♭,1 → Intn+M → ⋆))

(if decomp(τ) = (κ̃,m, n))

∅♭ = ∅

(K, y : Int)♭ = K♭, y : Int

(K, y : τ)♭ = K♭, y∗ : τ∗, y0 : τ0, . . . , yk : τk

where τ ♭,2 = τ∗ × τ0 × · · · × τk

∅♭
′

= ∅

(Θ, F : τ)♭
′

= Θ♭′ , F0 : τ0, . . . , Fk : τk

where τ ♭,1 = τ0 × · · · × τk.

Here, we have extended simple types with product types; we extend the definition of the
order of a type by: ord(τ1× · · ·× τn) = max(ord(τ1), . . . , ord(τn)). In the translation above,
M is an integer constant, which denotes an upper-bound of the arities of integer predicates
that may occur in the formula to be translated. Note that the translation of a type decreases
the order of the type by one, i.e., ord(τ ♭,k) = max(0, ord(τ) − 1).
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ϕj =

{
λz̃1,...,M .λw̃1,...,M . ∧p=1,...,M (zp = wp), if j = i
λz̃1,...,M .λw̃1,...,M .false otherwise

K; x̃1,...,k ⊢Θ xi : Int
M → ⋆ (ϕ∗, ϕ0, . . . , ϕk)

(Tr-VarG)

decomp(K(y)) = (κ̃,m, p)

K; x̃1,...,k ⊢Θ y : K(y) (y∗, y0, . . . , y0︸ ︷︷ ︸
k+1

, y1, . . . , ym)
(Tr-Var)

decomp(Θ(F )) = (κ̃,m, p)

K; x̃1,...,k ⊢Θ F : Θ(F ) (F0, F0, . . . , F0︸ ︷︷ ︸
k+1

, F1, . . . , Fm)
(Tr-VarF)

K; x̃1,...,k ⊢Θ ϕ : ⋆ (ϕ∗, ϕ0, . . . , ϕk) ψj = λz̃1,...,M .e1 ≤ e2 ∧ ϕj z̃1,...,M

K; x̃1,...,k ⊢Θ e1 ≤ e2 ∧ ϕ : ⋆ (ψ∗, ψ0, . . . , ψk)
(Tr-Le)

ord(κ0 → τ) > 1 gar(κ0 → τ) = m gar(κ0) = m′

K; x̃1,...,k ⊢Θ ϕ : κ0 → τ  (ϕ∗, ϕ0, . . . , ϕk+m)
K; x̃1,...,k ⊢Θ ψ : κ0  (ψ∗, ψ0, . . . , ψk+m′)

K; x̃1,...,k ⊢Θ ϕψ : τ  (ϕ∗(ψ∗, ψ0, ψk+1, . . . , ψk+m′), ϕ0(ψ0, ψ0, ψk+1, . . . , ψk+m′),
ϕ1(ψ1, ψ0, ψk+1, . . . , ψk+m′), . . . , ϕk(ψk, ψ0, ψk+1, . . . , ψk+m′),
ϕk+1(ψ0, ψk+1, . . . , ψk+m′), . . . , ϕk+m(ψ0, ψk+1, . . . , ψk+m′))

(Tr-App)
decomp(τ) = (ǫ,m− 1, p)

K; x̃1,...,k ⊢Θ ϕ : (IntM → ⋆) → τ  (ϕ∗, ϕ0, . . . , ϕk+m)
K; x̃1,...,k ⊢Θ ψ : IntM → ⋆ (ψ∗, ψ0, . . . , ψk)

ξj = λz̃1,...,p.λw̃1,...,M .ϕj z̃ w̃ ∨ ∃ũ1,...,M .(ϕk+1 z̃ ũ1,...,M ∧ ψj ũ1,...,M w̃1,...,M )

K; x̃1,...,k ⊢Θ ϕψ : τ  (ξ∗, ξ0, . . . , ξk, ϕk+2, . . . , ϕk+m)
(Tr-AppG)

K; x̃1,...,k ⊢Θ ϕ : Int → τ  (ϕ∗, ϕ0, . . . , ϕℓ+k)

K; x̃1,...,k ⊢Θ ϕe : τ  (ϕ∗ e, ϕ0 e, . . . , ϕℓ+k e)
(Tr-AppI)

K; x̃1,...,k ⊢Θ ϕ : ⋆ (ϕ∗, ϕ0, . . . , ϕk) K; x̃1,...,k ⊢Θ ψ : ⋆ (ψ∗, ψ0, . . . , ψk)
ξj = λz̃1,...,M .ϕj z̃1,...,M ∨ ψj z̃1,...,M

K; x̃1,...,k ⊢Θ ϕ ∨ ψ : ⋆ (ξ∗, ξ0, . . . , ξk)
(Tr-Disj)

decomparg(w̃,Θ(F )) = (ỹ : κ̃, x̃1,...,k, z̃)

y1 : κ1, . . . , ym : κm, z̃ : Ĩnt; x̃1,...,k ⊢Θ ϕ : ⋆ (ϕ∗, ϕ0, . . . , ϕk){
ỹi = (yi,∗, yi,0, . . . , yi,gar(κi)) ỹ′i = (yi,0, . . . , yi,gar(κi)) if i ∈ {1, . . . ,m}, κi 6= Int

ỹi = yi ỹ′i = yi if i ∈ {1, . . . ,m}, κi = Int

⊢Θ (F w̃ =µ ϕ) {F0 ỹ1 · · · ỹm z̃ =µ ϕ∗} ∪ {Fi ỹ
′
1 · · · ỹ′m z̃ =µ ϕi | i ∈ {1, . . . , k}}

(Tr-Def)
D′ =

⋃
{D′′ |⊢Θ (F ỹ =µ ϕ) D′′ | F ỹ =µ ϕ ∈ D}

(D,S λz̃.true) (D′, ∃z̃.S1 z̃)
(Tr-Main)

Figure 2: Translation from order-(n+ 1) disjunctive µHFL(Z) to order-n µHFL(Z).
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The translation rules are given in Figure 2. We explain the main rules below. In the
rule Tr-VarG for an order-0 variable xi (which should disappear after the translation),
ϕj z̃1,...,M w̃1,...,M should represent the condition for xi z̃1,...,M −→∗ xj w̃1,...,M ; thus ϕj

is defined so that z̃1,...,M w̃1,...,M is equivalent to true just if i = j and z̃1,...,M = w̃1,...,M .
In the rule Tr-Var for a variable y in K, the output of the translation is constructed
from (y∗, y0, y1, . . . , ym), whose values will be provided by the environment. Because the
environment does not know order-0 variables x1, . . . , xk, we use y0 to compute the condition
for y ψ̃ to be reduced to xi m̃. The rule Tr-VarF for fixpoint variables is almost the same as
Tr-Var, except that the component F0 is reused for F∗. The rationale for this is as follows:
both ϕ∗ and ϕ0 are used for computing the condition for a target order-0 predicate variable
(which is set by the environment) to be reached, and the only difference between them is
that the target predicate may have already been set in ϕ∗, but since F is a closed formula,
such distinction does not make any difference; hence F0 and F∗ need not be distinguished
from each other.

In the rule Tr-App, the first two components (ϕ∗(ψ∗, . . .) and ϕ0(ψ0, . . .)) are used for
computing the condition for some target predicates (set by the environment) to be reached,
and the next k components (ϕ1(ψ1, . . .), . . . , ϕk(ψk, . . .)) are used for computing the condition
for predicate x1, . . . , xk to be reached. The rule Tr-AppG is another rule for applications,
where the argument ψ is an order-0 predicate. The component ξj of the output is used for
computing the condition for the predicate xi to be reached (i.e., the condition for a formula

of the form ϕψ ψ̃′ (where ψ̃′ consists of order-0 predicates and integer arguments z̃1,...,p)

to be reduced to xi w̃1,...,ℓj .) The formula ϕψ ψ̃′ may be reduced to xi w̃1,...,ℓj if either (i)

ϕψ ψ̃′ −→∗ xi w̃1,...,ℓj without ψ being called, or (ii) ϕψ ψ̃′ is first reduced to ψ z̃ ũ for some
ũ, and then ψ z̃ ũ is reduced to xi w̃1,...,ℓj . The part ϕj z̃ w̃ represents the former condition,
and the part ∃ũ. · · · represents the latter condition. In the rule Tr-Def for definitions,
the bodies of the definitions for F0, . . . , Fk are set to the corresponding components of the
translation of the body of F .

Example 4. Consider S (λx.true), where S is defined by:

S t =µ F (Gt) t

F v w =µ v H ∨ w 2

Gp q =µ p 1

H x =µ H x

Notice that there are the following two ways for S t to be reduced to t n for some n:

S t −→ F (Gt) t −→ GtH ∨ t 2 −→ GtH −→ t 1

S t −→ F (Gt) t −→ GtH ∨ t 2 −→ t 2.

The output of our transformations (with some simplification) is ∃z.S1 z where:

S1 =µ λw1.F0 (λw1.G0 w1 ∨G1 w1, G0, G2)w1 ∨ F1 (G0, G2)w1

F0 (v∗, v0, v1) =µ λz1.v∗ z1 ∨ ∃u1.v1 u1 ∧H0 u1 z1

F1 (v0, v1) =µ λz1.v0 z1 ∨ (∃u1.v1 u1 ∧H0 u1 z1) ∨ 2 = z1

G0 =µ λw1.false

G1 =µ λw1.1 = w1

G2 =µ λw1.false

H0 x =µ H0 x.
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Notice that the formula S1 z has the following two reduction sequences that lead to the
conditions of the form z = n for some n.

S1 z −→
∗ F0 (λw1.G0 w1 ∨G1 w1, G0, G2) z

−→∗ (λw1.G0 w1 ∨G1 w1)z

−→∗ G0 z −→ 1 = z

S1 z −→
∗ F1 (G0, G2) z

−→∗ G0 z ∨ (∃u1.G2 u1 ∧H0 u1 z) ∨ 2 = z

−→∗ 2 = z.

The former reduction sequence corresponds to the reduction sequence of the original formula
S t −→∗ t 1 where t embedded in the first argument of F (in F (Gt) t) is called, and the
latter reduction sequence corresponds to the reduction sequence S t −→∗ t 2 where the second
argument t of F (in F (Gt) t) is called. Note that the first condition 1 = z has been computed
by using F0, and the second condition 2 = z has been computed by using F1.

Example 5. Recall the example of Dsum given earlier in this section. The following is the
output of the translation (with some simplification by β-reductions and simple quantifier
eliminations).

S0 =µ λw1.sum0 nw1 ∨ ∃u1.sum2 nu1 ∧ C0 u1 w1

S1 =µ λw1.sum0 nw1 ∨ sum1 nw1

∨ ∃u1.sum2 nu1 ∧ (C0 u1 0 ∨ c1 u1 w1)

C0 x =µ λz1.false

C1 x =µ λz1.x < n ∧ 0 = z1

sum0 x =µ λz1.(x > 0 ∧ (sum0 (x− 1) z1

∨ ∃u1.sum2 (x− 1)u1 ∧K0 xu1 z1))

sum1 x =µ x < 0 ∨ (x > 0 ∧ (sum0 (x− 1) 0 ∨ sum1(x− 1)

∨ ∃u1.sum2 (x− 1)u1 ∧K0 xu1 0))

sum2 x =µ λz1.x = 0 ∧ 0 = z1

∨ (x > 0 ∧ (sum0 (x− 1) z1

∨ ∃u1.sum2 (x− 1)u1

∧ (K0 xu1 z1 ∨ ∃u2.(K1 xu1 u2 ∧ u2 = z1))))

K0 x y =µ λw1.false

K1 x y =µ λw1.x+ y = w1

Although the output may look complicated, since the order of the resulting formula is 0,
we can directly translate its validity checking problem to a CHC solving problem using the
method of [12], for which various automated solvers are available [17, 8, 4].

Example 6. Let us consider the formula S λz.true3, where:

S t =µ sum plus n (C t)

C t x =µ x < n ∧ t 0

sum f x k =µ x ≤ 0 ∧ k 0 ∨ x > 0 ∧ f x (Df xk)

3Taken from [9].
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plus x k =µ k(x+ x)

Df xk y =µ sum f (x− 1) (E y k)

E y k z =µ k(y + z).

It is translated to ∃z.S1 z, where:
4

S1 =µ λw1.sum0 (plus0, plus0, plus1)nw1

∨ ∃u1.sum1(plus0, plus1)nu1 ∧ (C0 u1w1 ∨ C1 u1w1)

C0 x =µ λz1.false

C1 x =µ λw1.x < n ∧ 0 = z1

sum0 (f∗, f0, f1)x =µ λz1.x > 0 ∧ (f∗ x z1

∨ ∃u1.f1 xu1 ∧D0(f∗, f0, f1)xu1 z1)

sum1 (f0, f1)x =µ λz1.x ≤ 0 ∧ 0 = z1 ∨ x > 0 ∧ (f0 x z1∨

∃u1.f1 xu1 ∧ (D0(f0, f0, f1)xu1 z1 ∨D1(f0, f1)xu1 z1))

plus0 x =µ λw1.false

plus1 x =µ λw1.x+ x = w1

D0 (f∗, f0, f1)x y =µ λw1.sum0 (f∗, f0, f1) (x− 1)w1

∨ ∃u1.sum1 (f0, f1) (x − 1)u1 ∧E0 y u1 w1

D1 (f0, f1)x y =µ λw1.sum0 (f0, f0, f1) (x − 1)w1

∨ ∃u1.sum1(f0, f1)u1

∧ (E0 y u1w1 ∨ ∃u2.E1 y u1 u2 ∧ u2 = w1)

E0 y z =µ λw1.false

E1 y z =µ λw1.y + z = w1.

The order of the original formula is 2 (since sum : (Int → (Int → ⋆) → ⋆) → Int →
(Int → ⋆) → ⋆), while the order of the formula obtained by the translation is 1; note that
sum0 : (Int2 → ⋆)× (Int2 → ⋆)× (Int2 → ⋆) → Int2 → ⋆. By further simplifications (note
that the 0-components sum0, C0, D0, . . . actually return false), we obtain:

S1 =µ λw1.∃u1.sum1(plus0, plus1)nu1 ∧ C1 u1 w1

C1 x =µ λw1.x < n ∧ 0 = z1

sum1 (f0, f1)x =µ λz1.x ≤ 0 ∧ 0 = z1

∨ x > 0 ∧ (f0 x z1 ∨ ∃u1.f1 xu1 ∧D1(f0, f1)xu1 z1)

plus0 x =µ λw1.false

plus1 x =µ λw1.x+ x = w1

D1 (f0, f1)x y =µ λw1.∃u1.sum1(f0, f1)u1 ∧ E1 y u1 w1

E1 y z =µ λw1.y + z = w1.

The following lemma states that the output of the translation is well-typed.

Lemma 9. If K; x̃1,...,k ⊢Θ ϕ : τ  (ϕ∗, ϕ̃0,...,k+gar(τ)), then Θ♭′ ,K♭ ⊢ST (ϕ∗, ϕ̃0,...,k+gar(τ)) :

τ ♭,k+2. Also, for (y : τ) ∈ K, y∗ does not occur free in ϕ̃0,...,k+gar(τ).
4This is a mechanically generated output based on the transformation rules, followed by slight manual

simplification.
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Proof. Straightforward induction on the derivation of K; x̃1,...,k ⊢Θ ϕ : τ  

(ϕ∗, ϕ̃0,...,k+gar(τ)).

The following theorem states the correctness of the translation.

Theorem 10. If (D,S λz̃1,...,M .true) (D′, ψ), then [[(D,S λz̃1,...,M .true) ]] = [[(D′, ψ) ]].

Proof. The proof consists of two steps. First we reduce the proof to the case where D is
recursion-free. This is achieved by a rather standard technique; we use the finite approxi-
mation (D(m), S(m) λz̃1,...,M .true) (m ∈ N), which behaves like (D,S λz̃1,...,M .true) up to
m-steps, but diverges after m-steps.

Then in the recursion-free case, we show a subject reduction property, where we use two
substitution lemmas that correspond to Tr-App and Tr-AppG. For the subject reduction,
we also uses a reduction relation modified by explicit substitution. The explicit substitution
delays the substitution of order-0 arguments, and we extend the translation given in Figure 2
by a new rule for explicit substitution formulas, which “simulates” the rule Tr-AppG. See
Appendix A for details.

5 Applications

As mentioned already, the translation from order-n reachability games to order-(n+1) may-
reachability enables us to use automated (un)reachability checkers for solving the reachability
game problem, and the translation in the other direction enables us to use, for example,
reachability game solvers for non-higher-order programs as a may-reachability checker for
order-1 programs.

As a direct application of the former translation, we have applied it to the νHFL(Z) solver
ReTHFL [10], which is a refinement-type-based validity checker for formulas of νHFL(Z), the
fragment of HFL(Z) without least fixpoint operators (but with greatest fixpoint operators).
The fragment νHFL(Z) is dual to µHFL(Z), in the sense that, for every closed formula ϕ
of type ⋆ of µHFL(Z), there exists a νHFL(Z) formula ϕ such that ϕ is valid if and only
if ϕ is invalid, and vice versa; ϕ is obtained from ϕ by just replacing each logical operator
(including fixpoint operators) with its de Morgan dual, and e1 ≤ e2 with e1 > e2. Using
a refinement type system, ReTHFL reduces the validity of a given νHFL(Z) formula in
a sound (but incomplete) manner to an extended CHC (constraint Horn clauses) problem,
where disjunction is allowed in the head of each clause, and passes the problem to an extended
CHC solver called PCSat [21]. For a fragment of νHFL(Z) corresponding to disjunctive
µHFL(Z), however, the reduced problem is actually an ordinary CHC problem, for which
more efficient tools [17, 8, 4] can be invoked. Thus, we can use the translation in Section 3
to improve the efficiency of ReTHFL.

From the benchmark suite of ReTHFL [10] (which originates from [9],
https://github.com/Hogeyama/hfl-benchmark/tree/master/inputs/hfl/HO-nontermination),
we picked the “non-termination” benchmark set, which consists of formulas obtained from
non-termination verification of higher-order programs. All the formulas in that benchmark
set do not belong to (the dual of) disjunctive µHFL(Z) (in contrast, the problems in
the other benchmark sets belong to disjunctive µHFL(Z), hence our translation is not
required). We have implemented the translation in Section 3, applied it to the problems in
the “non-termination” benchmark set, and then ran ReTHFL with a CHC solver HoIce

as the back-end solver. We have compared the result with plain ReTHFL (without the
transformation), which uses the extended CHC solver PCSat.

The results are summarized in Table 1. The column ’ReTHFL’ shows the result of plain
ReTHFL with PCSat as the back-end extended CHC solver (since ordinary CHC solvers
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Table 1: Experimental results. Times are measured in seconds, with the timeout of 180
seconds.
input ReTHFL ReTHFL+i.s. ReTHFL+ tr.

fixpoint nonterm 11.579 0.054 0.102
unfoldr nonterm timeout unknown 4.22
indirect e 16.832 0.035 0.066
alternate unknown unknown unknown
fib CPS nonterm timeout 0.047 0.075
foldr nonterm 8.447 unknown 0.122
passing cond 116.423 unknown 0.444
indirectHO e 11.582 0.044 0.073
inf closure timeout 20.171 9.080
loopHO timeout 0.026 0.121

are inapplicable to this benchmark set, as explained above). The column ’ReTHFL+i.s.’
show the result of ReTHFL where the subtyping relation has been replaced by the imprecise
one (equivalent to that of Horus [3], a HoCHC solver that can also be viewed as a νHFL(Z)
solver) so that the type checking problem is reduced to ordinary CHC solving. The column
’ReTHFL+tr.’ shows the result of ReTHFL with our translation. In both ’ReTHFL+i.s.’
and ’ReTHFL+tr.’, HoIce was used as the back-end CHC solver. The entry “unknown”
indicates that the solver terminated with the answer “ill-typed”, in which case, we do not
know whether the formula is valid or invalid, due to the incompleteness of the underlying
refinement type system.5 The refinement type system used in ’ReTHFL+i.s.’ is less precise
than the one used in ReTHFL; hence, it returns more unknowns. As clear from the table,
our translation significantly improved the efficiency of ReTHFL.

The translation in the other direction presented in Section 4 also sometimes helps
ReTHFL, especially for relaxing the limitation caused by the incompleteness of the un-
derlying refinement type system. For example, consider the formula S true, where:

S t =µ App (λx.x 6= 0 ∧ t) 0

App p y =µ p y ∨ App (λz.p(z − 1)) (y + 1).

The formula is invalid, but ReTHFL (nor Horus [3], a higher-order CHC solver based on a
refinement type system) cannot prove the validity of the dual formula, due to the incomplete-
ness of the refinement type system (which is related to the incompleteness of a refinement
type system addressed by [23] by inserting extra arguments). By applying the transformation
in Section 4, we obtain an equivalent order-0 formula, for which the underlying type system
of ReTHFL is complete and thus automatically proved.

6 Related Work

The relationship between order-n reachability games and order-(n+1) may-reachability has
some deep connection to the relationship between order-n tree languages and order-(n+ 1)
word languages [6, 1, 2], intuitively because the may-reachability problem is concerned about
the set of “paths” of the execution tree of a given program, whereas the reachability game

5Although the understanding of the refinement type systems ReTHFL is not required below, interested
readers may wish to consult [10].
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problem is also concerned about the branching structures of the execution tree. Indeed, our
translations (especially, the use of ϕ∗ and ϕ0 components in the translation in Section 4) have
been inspired by Asada and Kobayashi’s translations between tree and word languages [2].
Kobayashi et al. [11] have also used a similar idea for a characterization of termination
probabilities of higher-order probabilistic programs.

For finite-data programs (programs in Section 2.3 without integers), according to the
complexity results on HORS model checking [18, 13], both the order-n reachability game
problem and the order-(n + 1) may-reachability game problem are n-EXPTIME complete,
which imply that there are mutual translations between them. Concrete translations have,
however, not been given (except unnatural translations through Turing machines). Also, the
complexity-theoretic argument for the existence of translations does not apply in the presence
of integers.

For HORS model checking, Parys [19] developed an order-decreasing transformation for
higher-order grammars, which shares some ideas with our translation in Section 4. The
details of the translations are however quite different. His translation makes use of finiteness
in a crucial manner, and is not applicable in the presence of integers. Also, his translation is
not size-preserving.

For order-1 programs, Kobayashi et al. [12] have shown that linear-time omega regular
properties can be translated to order-0 HFL(Z) formulas. Our translation in Section 4 may
be viewed as a higher-order extension of their translation, while the properties are restricted
to may-reachability.

The fragment µHFL(Z) (or its dual fragment νHFL(Z)) is essentially (modulo the restric-
tion of data domains to integers) equivalent to HoCHC [3], a higher-order extension of CHC.
Therefore, the result of this paper should be useful also for improving HoCHC solvers.

7 Conclusion

We have shown translations between order-n reachability games and order-(n + 1) may-
reachability, and proved their correctness. We have applied the translations to higher-order
program verification, and obtained promising results in preliminary experiments. As men-
tioned in Section 6, our results are closely related to the correspondence between higher-order
word and tree languages [2]. A deeper investigation of the relationship and generalization of
the translations that subsume the related translations [2, 11] are left for future work.
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Appendix

A Proof of Theorem 10

We prove Theorem 10 in the following two steps: (i) we first reduce the proof of Theorem 10
to the case where a given equation system is recursion-free (in Appendix A.1), by using a
standard technique of finite approximation, and then (ii) we show the recursion-free case (in
Appendix A.3, with some preparation in Appendix A.2). The latter step is the main part of
this proof.

For an equation system (Θ, D, S true), we define =D as follows: ϕ =D ψ if [[(D,ϕ) ]] =
[[(D,ψ) ]]. For (F x̃ =µ ϕ) ∈ D, we may drop the subscript µ and write F x̃ = ϕ if there is no
confusion. We write [ψi/xi]

m
i=1ϕ for the substitution [ψ1/x1, . . . , ψm/xm]ϕ.

A.1 Reduction to the Recursion-free Case

Here we briefly explain how we can reduce Theorem 10 to the recursion-free case.

For an equation system (Θ, D, ϕ0) andm ∈ N, them-th approximation (Θ(m), D(m), ϕ
(m)
0 )

is defined as follows:

Θ(m) := {F (i) 7→ Θ(F ) | F ∈ dom(Θ), 0 ≤ i ≤ m}

ϕ(i) := [F (i)/F ]F∈dom(Θ)ϕ (for any ϕ and i ∈ {0, . . . ,m})

D(m) := {F (i) x̃ = ϕ(i−1) | (F x̃ = ϕ) ∈ D, 1 ≤ i ≤ m}

∪ {F (0) x̃ = false∧ ϕ(0) | (F x̃ = ϕ) ∈ D}.

For F (0) above, we use false ∧ ϕ(0) rather than false, in order to keep the form of Equa-
tion (1). By the technique in [15, Appendix B.1], we can show that

[[(D,ϕ0) ]] = ⊔τ{[[(D
(m), ϕ

(m)
0 ) ]] | m ∈ N}.

An equation system (Θ, D, ϕ0) is called recursion free if there is no cyclic dependency
on D. More precisely, we define a binary relation ≻ on dom(Θ) as follows: F ≻ F ′ iff
F ′ ∈ FV′(ϕ) where (F x̃ = ϕ) ∈ D and FV′(ϕ) is defined by the following:

FV′(x) = {x},

FV′(ϕ1 ∨ ϕ2) = FV′(ϕ1) ∪ FV′(ϕ2),

FV′(e1 ≤ e2 ∧ ϕ) =

{
∅ (e1 ≤ e2 = false)

FV′(ϕ) (e1 ≤ e2 6= false)
,

FV′(ϕ1 ϕ2) = FV′(ϕ1) ∪ FV′(ϕ2),

FV′(ϕe) = FV′(ϕ).

Then D is recursion free if the transitive closure ≻∗ of ≻ is irreflexive (i.e., F ≻∗ F for no

F ∈ dom(Θ)). Clearly (D(m), ϕ
(m)
0 ) is recursion-free.

Now, since our translation is compositional, we can easily show the following:

Lemma 11. If (D(m), (S λz̃.true)(m))  (Dm, ϕm), then [[(Dm, ϕm) ]] =
[[(D′(m), (∃z̃.S1 z̃)

(m)) ]].
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Then we can reduce the proof of Theorem 10 to the recursion-free case as follows. Let
(D,S λz̃.true) (D′, ∃z̃.S1 z̃) and (D(m), (S λz̃.true)(m)) (Dm, ϕm); then

[[(D,S λz̃.true) ]] = ⊔⋆{[[(D
(m), (S λz̃.true)(m)) ]] | m ∈ N}

= ⊔⋆{[[(Dm, ϕm) ]] | m ∈ N}

= ⊔⋆{[[(D
′(m), (∃z̃.S1 z̃)

(m)) ]] | m ∈ N}

= [[(D′, ∃z̃.S1 z̃) ]]

where for the second equation we assume the recursion-free case.

A.2 Reduction Relation with Explicit Substitution

In our proof of the recursion-free case, we show a subject reduction property. To this end, we
modify the reduction strategy by using explicit substitution, keeping the adequacy for the
semantics. For this modification, we first extend the syntax of formulas as follows:

ϕ ::= x | ϕ1 ∨ ϕ2 | e1 ≤ e2 ∧ ϕ | ϕ1ϕ2 | ϕe

| {ϕ1/x1, . . . , ϕm/xm}ϕ
(2)

Here {ϕ1/x1, . . . , ϕm/xm}ϕ is called an explicit substitution, and limited to ground types as
follows:

K ⊢ST ϕi : Int
M → ⋆ (i = 1, . . . ,m)

K, x1 : Int
M → ⋆, . . . , xm : IntM → ⋆ ⊢ST ϕ : ⋆

K ⊢ST {ϕ1/x1, . . . , ϕm/xm}ϕ : ⋆
(T-ESub)

Its meaning is given through

(D, {ϕ1/x1, . . . , ϕm/xm}ϕ)µ := (D, [ϕ1/x1, . . . , ϕm/xm]ϕ)µ.

Thus explicit substitution has the same meaning as ordinary substitution, but delays substi-
tution until we need ϕi for further reduction. As in the definition of −→D below, while we
use ordinary substitutions for β-redex to which we can apply Tr-App and Tr-AppI, we use
explicit substitution for those corresponding to Tr-AppG because, the argument after the
translation by Tr-AppG is never substituted.

We extend the translation by adding the following rule for explicit substitutions:

K; x̃1,...,k ⊢Θ ξi : Int
M→⋆ (ξi,∗, ξi,0, . . . , ξi,k)

(i = 1, . . . ,m)

K; x̃1,...,k, x̃′1,...,m ⊢Θ ϕ : ⋆ (ϕ∗, ϕ0, . . . , ϕk+m)

ψj = λw̃1,...,M . ϕj w̃ ∨
∨m

i=1 ∃ũ1,...,M .
(
ϕk+i ũ ∧ ξi,j ũ w̃

)

(j = ∗, 0, . . . , k)

K; x̃1,...,k ⊢Θ {ξ1/x′1, . . . , ξm/x
′
m}ϕ : ⋆ (ψ∗, ψ0, . . . , ψk)

(Tr-ESub)

In the rest of this section, by a formula we mean a formula that may contain extended
substitutions, except for formulas in an equation system and except for the case where we
explain explicitly. Note that output formulas of the extended translation never contain
explicit substitutions.
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Let (Θ, D, S λz̃.true) be an equation system. For decomposing actual arguments
α1, . . . , αm of a function F ∈ dom(Θ)—recall that αi ranges over formulas and integer
expressions—we define decompArg(α1, . . . , αm′ ,Θ(F )) in the same way as decomparg as fol-
lows:

decompArg(ǫ, ⋆) = (ǫ, ǫ, ǫ)

decompArg(α · β̃, κ→ τ) =




(α · ϕ̃, ψ̃, ẽ) if decompArg(β̃, τ) = (ϕ̃, ψ̃, ẽ), ϕ̃ 6= ǫ

(α, ψ̃, ẽ) if ord(κ) > 0, decompArg(β̃, τ) = (ǫ, ψ̃, ẽ)

(ǫ, α · ψ̃, ẽ) if κ = IntM → ⋆,

decompArg(β̃, τ) = (ǫ, ψ̃, ẽ)

(ǫ, ψ̃, α · ẽ) if κ = Int, decompArg(β̃, τ) = (ǫ, ψ̃, ẽ)

Now we define the modified reduction relation −→D for a formula ϕ such that Θ, x1 :
IntM→⋆, . . . , xk :Int

M→⋆ ⊢ST ϕ : ⋆ holds for some x1, . . . , xk. We define the set of evaluation
contexts by:

E ::= [ ] | E ∨ ϕ | ϕ ∨ E | {ϕ1/x1, . . . , ϕm/xm}E.

Then −→D is defined by the following rules:

[[ ⊢ST e1 : Int ]] > [[ ⊢ST e2 : Int ]] (e1 ≤ e2) 6= false

E[e1 ≤ e2 ∧ ϕ] −→D E[false ∧ ϕ]

[[ ⊢ST e1 : Int ]] ≤ [[ ⊢ST e2 : Int ]]

E[e1 ≤ e2 ∧ ϕ] −→D E[ϕ]

(F w1 · · · wm = ϕ) ∈ D

decompArg(α1, · · · , αm,Θ(F )) = (ϕ̃, ψ̃, ẽ)
decomparg(w1, · · · , wm,Θ(F )) = (ỹ : κ̃, x̃, z̃)

x̃ do not occur in E[F α1 · · · αm]

E[F α1 · · · αm] −→D E[{ψ̃/x̃}[ẽ/z̃][ϕ̃/ỹ]ϕ]

E[{ϕ̃/x̃}(xi ẽ)] −→D E[ϕi ẽ]

x /∈ {x1, . . . , x|x̃|} ∪ dom(Θ)

E[{ϕ̃/x̃}(x ẽ)] −→D E[x ẽ]

E[{ϕ̃/x̃}(ψ1 ∨ ψ2)] −→D E[({ϕ̃/x̃}ψ1) ∨ ({ϕ̃/x̃}ψ2)]

E[{ϕ̃/x̃}(false ∧ ϕ)] −→D E[false ∧ ({ϕ̃/x̃}ϕ)]

Note that the above reduction preserves the form of (2) and hence the applicability of the
translation  . For any ϕ, ϕ is a normal form with respect to −→D iff ϕ is generated by:

ζ ::= x ẽ (x /∈ dom(Θ)) | false ∧ ϕ | ζ ∨ ζ. (3)

Clearly we have:

Lemma 12. If ϕ −→D ψ, then [[(D,ϕ) ]] = [[(D,ψ) ]].
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A.3 Correctness in the Recursion-free Case

To show the correctness in the recursion-free case, first we prepare two substitution lemmas
that correspond to the application rules Tr-App and Tr-AppI. Then we show the subject
reduction property and then the correctness.

The following is the substitution lemma corresponding to Tr-AppI:

Lemma 13 (Substitution lemma (integer)). Let ϕ be a formula that does not contain an
explicit substitution, e be a closed integer expression, and

K, z : Int; x̃1,...,k ⊢Θ ϕ : τ  (ϕ∗, ϕ0, . . . , ϕk+m).

where m = gar(τ). Then we have

K; x̃1,...,k ⊢Θ [e/z]ϕ : τ  ([e/z]ϕ∗, [e/z]ϕ0, . . . , [e/z]ϕk+m).

Proof. By straightforward induction on ϕ.

Next we show the substitution lemma corresponding to Tr-App. First we prepare some
definitions and a lemma.

For a formula ϕ, we write ϕ̃m
\k for (ϕ0, ϕk+1, . . . , ϕk+m). Note that the translation result

of ϕψ in Tr-App in Figure 2 can be written as the following:

(
ϕ∗(ψ∗, ψ̃

m′

\k ), ϕ0(ψ0, ψ̃
m′

\k ), ϕ1(ψ1, ψ̃
m′

\k ), . . . , ϕk(ψk, ψ̃
m′

\k ),

ϕk+1(ψ̃
m′

\k ), . . . , ϕk+m(ψ̃m′

\k )
)

The following can be shown easily by induction on ϕ.

Lemma 14 (weakening). If

K; x̃1,...,k ⊢Θ ϕ : τ  (ϕ∗, ϕ0, ϕ1, . . . , ϕk, ϕk+1, . . . , ϕk+m)

then

K; x̃1,...,k, x ⊢Θ ϕ : τ  (ϕ∗, ϕ0, ϕ1, . . . , ϕk, ϕ0, ϕk+1, . . . , ϕk+m).

Now we show the substitution lemma. Here we consider simultaneous substitution, be-
cause we cannot apply this lemma repeatedly since [ψ̃/ỹ]ϕ below may contain an explicit
substitution.

Lemma 15 (Substitution lemma (higher-order)). Let ϕ be a formula that does not contain
an explicit substitution, and

ỹ1,...,q : κ̃; x̃′1,...,m ⊢Θ ϕ : τ  (ϕ∗, ϕ0, . . . , ϕm+gar(τ))

m′
i = gar(κi) decomp(κi) = (κ̃i,m

′
i, pi) (i = 1, . . . , q)

x̃1,...,k ⊢Θ ψi : κi  (ψi,∗, ψi,0, . . . , ψi,k+m′

i
) (i = 1, . . . , q)

ỹi = (yi,∗, yi,0, . . . , yi,gar(κi)) ỹ◦i = (yi,0, . . . , yi,gar(κi))

θj =
[
(ψi,j , ψ̃i

m′

i

\k )/ỹi
]q
i=1

(j = ∗, 0, . . . , k)

θ◦ =
[

ψ̃i

m′

i

\k /ỹ
◦
i

]q
i=1

x̃1,...,k, x̃′1,...,m ⊢Θ [ψ̃/ỹ]ϕ : τ  (ϕ◦
∗, ϕ

◦
0, . . . , ϕ

◦
k+m+gar(τ)).

Then we have:
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1. θ0ϕ∗ = θ0ϕ0.

2. (ϕ◦
∗ , ϕ◦

0 , ϕ◦
1 , . . ., ϕ◦

k , ϕ◦
k+1, . . ., ϕ

◦
k+m+gar(τ))

=D′ (θ∗ϕ∗, θ
0ϕ∗, θ

1ϕ∗, . . ., θ
kϕ∗, θ

◦ϕ1 , . . ., θ
◦ϕm+gar(τ) ).

Proof. We can show Item 1 easily by induction on ϕ and case analysis on the last rule used
for the derivation ỹ1,...,q : κ̃; x̃′1,...,m ⊢Θ ϕ : τ  (ϕ∗, ϕ0, . . . , ϕm+gar(τ)). We show Item 2 by
the same induction and case analysis. Basically the proof is straightforward, where we use
the latter part of Lemma 9. Here we show only the cases of Tr-Var and Tr-App; in the
latter case, we use Item 1.

• Case of Tr-Var: Let the last rule be the following, where i ∈ {1, . . . , q}:

decomp(κi) = (κ̃i,m
′
i, pi)

ỹ : κ̃; x̃′1,...,m ⊢Θ (ϕ =) yi : κi

 
(
(ϕ∗ , ϕ0 , ϕ1 , . . ., ϕm , ϕm+1, . . ., ϕm+gar(τ)) =

)

(yi,∗, yi,0, yi,0, . . ., yi,0, yi,1 , . . ., yi,m′

i
)

By the weakening lemma (Lemma 14), we have

x̃1,...,k, x̃′1,...,m ⊢Θ ([ψ̃/ỹ]ϕ =) ψi : κi  (
(ϕ◦

∗ , ϕ◦
0 , ϕ◦

1 , . . ., ϕ◦
k , ϕ◦

k+1, . . ., ϕ
◦
k+m, ϕ

◦
k+m+1, . . ., ϕ

◦
k+m+m′

i
) =

)

(ψi,∗, ψi,0, ψi,1, . . ., ψi,k, ψi,0 , . . ., ψi,0 , ψi,k+1 , . . ., ψi,k+m′

i
)

Then we can check the required equation component-wise.
• Case of Tr-App: Let the last rule be the following:

ord(κ′ → τ) > 1 gar(κ′ → τ) = m′ gar(κ′) = m′′

ỹ : κ̃; x̃′1,...,m ⊢Θ ϕ′ : κ′ → τ  (ϕ′
∗, ϕ

′
0, . . . , ϕ

′
m+m′)

ỹ : κ̃; x̃′1,...,m ⊢Θ ψ′ : κ′  (ψ′
∗, ψ

′
0, . . . , ψ

′
m+m′′)

ỹ : κ̃; x̃′1,...,m ⊢Θ (ϕ =) ϕ′ ψ′ : τ  
(
(ϕ∗, ϕ0, ϕ1 . . . , ϕm, ϕm+1 . . . , ϕm+gar(τ)) =

)

(
ϕ′
∗(ψ

′
∗, ψ̃

′
m′′

\m ), ϕ′
0(ψ

′
0, ψ̃

′
m′′

\m ),

ϕ′
1(ψ

′
1, ψ̃

′
m′′

\m ), . . . , ϕ′
m(ψ′

m, ψ̃
′
m′′

\m ),

ϕ′
m+1(ψ̃

′
m′′

\m ), . . . , ϕ′
m+m′(ψ̃′

m′′

\m )
)

Here note that we have gar(τ) = gar(κ′ → τ) = m′ since ord(κ′ → τ) > 1.
By induction hypothesis, there exist ϕ′◦

∗ , ϕ
′◦
0 , . . . , ϕ

′◦
k+m+m′ such that

x̃1,...,k, x̃′1,...,m ⊢Θ [ψ̃/ỹ]ϕ′ : κ′ → τ  

(ϕ′◦
∗ , ϕ′◦

0 , ϕ′◦
1 , . . ., ϕ′◦

k , ϕ′◦
k+1, . . ., ϕ

′◦
k+m+m′)

=D′ (θ∗ϕ′
∗, θ

0ϕ′
∗, θ

1ϕ′
∗, . . ., θ

kϕ′
∗, θ

◦ϕ′
1 , . . ., θ

◦ϕ′
m+m′ ),

and there exist ψ′◦
∗ , ψ

′◦
0 , . . . , ψ

′◦
k+m+m′′ such that

x̃1,...,k, x̃′1,...,m ⊢Θ [ψ̃/ỹ]ψ′ : κ′  
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(ψ′◦
∗ , ψ′◦

0 , ψ′◦
1 , . . ., ψ′◦

k , ψ′◦
k+1, . . ., ψ

′◦
k+m+m′′ )

=D′ (θ∗ψ′
∗, θ

0ψ′
∗, θ

1ψ′
∗, . . ., θ

kψ′
∗, θ

◦ψ′
1 , . . ., θ

◦ψ′
m+m′′ ).

For any j and j′ ∈ {∗, 0, 1, . . . , k, ◦}, by the latter part of Lemma 9, θjξ = θj
′

ξ for any
formula ξ that occurs in

(
ϕ′
0(ψ

′
0, ψ̃

′
m′′

\m ), ϕ′
1(ψ

′
1, ψ̃

′
m′′

\m ), . . ., ϕ′
m(ψ′

m, ψ̃
′
m′′

\m ),

ϕ′
m+1(ψ̃

′
m′′

\m ) , . . ., ϕ′
m+m′(ψ̃′

m′′

\m )
)
.

Especially, for any j ∈ {∗, 0, 1, . . . , k, ◦}, we have

ψ̃′◦
m′′

\k+m = (ψ′◦
0 , ψ

′◦
k+m+1, . . . , ψ

′◦
k+m+m′′ , )

=D′ (θ0ψ′
∗, θ

◦ψ′
m+1, . . . , θ

◦ψ′
m+m′′)

= (θ0ψ′
0, θ

◦ψ′
m+1, . . . , θ

◦ψ′
m+m′′) (by Item 1)

= (θjψ′
0, θ

jψ′
m+1, . . . , θ

jψ′
m+m′′) = θj ψ̃′

m′′

\m .

Now, with Tr-App, we have

(ϕ◦
∗, ϕ

◦
0, ϕ

◦
1, . . . , ϕ

◦
k, ϕ

◦
k+1, . . . , ϕ

◦
k+m, ϕ

◦
k+m+1, . . . , ϕ

◦
k+m+m′)

=
(
ϕ′◦
∗ (ψ

′◦
∗ , ψ̃

′◦
m′′

\k+m), ϕ′◦
0 (ψ

′◦
0 , ψ̃

′◦
m′′

\k+m),

ϕ′◦
1 (ψ

′◦
1 , ψ̃

′◦
m′′

\k+m) , . . . , ϕ′◦
k (ψ

′◦
k , ψ̃

′◦
m′′

\k+m) ,

ϕ′◦
k+1(ψ

′◦
k+1, ψ̃

′◦
m′′

\k+m), . . . , ϕ′◦
k+m(ψ′◦

k+m, ψ̃
′◦
m′′

\k+m),

ϕ′◦
k+m+1(ψ̃

′◦
m′′

\k+m) , . . . , ϕ′◦
k+m+m′ (ψ̃′◦

m′′

\k+m)
)

=D′

(
θ∗ϕ′

∗(θ
∗ψ′

∗, θ
∗ψ̃′

m′′

\m ), θ0ϕ′
∗(θ

0ψ′
∗, θ

0ψ̃′
m′′

\m ),

θ1ϕ′
∗(θ

1ψ′
∗, θ

1ψ̃′
m′′

\m ), . . . , θkϕ′
∗(θ

kψ′
∗, θ

kψ̃′
m′′

\m ) ,

θ◦ϕ′
1(θ

◦ψ′
1, θ

◦ψ̃′
m′′

\m ), . . . , θ◦ϕ′
m(θ◦ψ′

m, θ
◦ψ̃′

m′′

\m ),

θ◦ϕ′
m+1(θ

◦ψ̃′
m′′

\m ) , . . . , θ◦ϕ′
m+m′(θ◦ψ̃′

m′′

\m )
)

=
(
θ∗
(
ϕ′
∗(ψ

′
∗, ψ̃

′
m′′

\m )
)
, θ0

(
ϕ′
∗(ψ

′
∗, ψ̃

′
m′′

\m )
)
,

θ1
(
ϕ′
∗(ψ

′
∗, ψ̃

′
m′′

\m )
)
, . . . , θk

(
ϕ′
∗(ψ

′
∗, ψ̃

′
m′′

\m )
)
,

θ◦
(
ϕ′
1(ψ

′
1, ψ̃

′
m′′

\m )
)
, . . . , θ◦

(
ϕ′
m(ψ′

m, ψ̃
′
m′′

\m )
)
,

θ◦
(
ϕ′
m+1(ψ̃

′
m′′

\m )
)
, . . . , θ◦

(
ϕ′
m+m′(ψ̃′

m′′

\m )
) )

= (θ∗ϕ∗, θ
0ϕ∗, θ

1ϕ∗, . . . , θ
kϕ∗, θ

◦ϕ1, . . . , θ
◦ϕm+m′),

as required.

Now we show the subject reduction property. For a type τ = κ1 → · · · → κn → τ ′, we
write τ@n for τ ′.
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Lemma 16 (subject reduction). Suppose that we have (D,S λz̃.true)  (D′, ∃z̃.S1 z̃). If
ϕ −→D ψ and

x̃1,...,k ⊢Θ ϕ : ⋆ (ϕ∗, ϕ0, . . . , ϕk),

then there exist ψ0, . . . , ψk+1 such that

x̃1,...,k ⊢Θ ψ : ⋆ (ψ∗, ψ0, . . . , ψk)

and ϕi =D′ ψi for each i ∈ {∗, 0, . . . , k}.

Proof. For the convenience of the proof, we rename the metavariables ϕ, ψ, ϕi, ψi with
ϕ′, ψ′, ϕ′

i, ψ
′
i: so we suppose ϕ′ −→D ψ′ and x̃1,...,k ⊢Θ ϕ′ : ⋆  (ϕ′

∗, ϕ
′
0, . . . , ϕ

′
k), and

prove that we have x̃1,...,k ⊢Θ ψ′ : ⋆  (ψ′
∗, ψ

′
0, . . . , ψ

′
k) and ϕ′

i =D′ ψ′
i. The proof proceeds

by induction on ϕ′.
Let ϕ′ be of the form E[ϕ′′] where ϕ′′ is a redex of −→D. The case where E 6= [ ] can

be easily proved by using induction hypothesis. So we consider only the case where E = [ ].
Then we perform case analysis on ϕ′ −→D ψ′, but we focus only on the non-trivial case
where we use the substitution lemmas.

• Case where ϕ′ −→D ψ′ is of the form

F α1 · · · αh′ −→D {ξ̃/x̃′′}[ẽ′′/z̃′′][ϕ̃′′/ỹ′′]ϕ

with the following conditions:

(F w̃′ = ϕ) ∈ D

decomp(Θ(F )) = (κ̃′′1,...,h′′ ,m, p)

decompArg(α̃,Θ(F )) = (ϕ̃′′, ξ̃, ẽ′′)

decomparg(w̃′,Θ(F )) = (ỹ′′ : κ̃′′, x̃′′, z̃′′)

x̃′′ do not occur in F α1 · · · αm.

By the last condition above, we can assume {xi}i ∩ {x′′i }i = ∅.

Now there exist q, r1, . . . , rq+m+1, ψ̃1,...,q, ẽ1,...,rq+m+1
that satisfy the following conditions,

where we write ẽ(i) (or simply ẽ if i is clear) for ẽri−1+1,...,ri (i = 1, . . . , q+m+1) and r0 := 0:

r1 ≤ · · · ≤ rq+m+1

(α1, . . . , αh′′) = (ẽ(1), ψ1, . . . , ẽ(q), ψq)

(αh′′+1, . . . , αh′) = (ẽ(q+1), ξ1, . . . , ẽ(q+m), ξm, ẽ(q+m+1))

p = rq+m+1 − rq .

Let κi be the type of ψi (i.e., κi := κ′′ri+i). Then we also have

Θ(F ) = Intr1 → κ1 → · · · Intrq−rq−1 → κq →

Intrq+1−rq → (IntM → ⋆) →

· · · Intrq+m−rq+m−1 → (IntM → ⋆) →

Intrq+m+1−rq+m → ⋆.

In the derivation tree of

x̃1,...,k ⊢Θ (ϕ′ =) F α1 · · · αh′ : ⋆ (ϕ′
∗, ϕ

′
0, . . . , ϕ

′
k),
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the leftmost path from the head position F consists of: (i) Tr-VarF at the leaf, then (ii)
repeated applications of either Tr-App or Tr-AppI, and then (iii) repeated applications of
either Tr-AppG or Tr-AppI. More specifically, at the leaf of Tr-VarF we have

x̃1,...,k ⊢Θ F : Θ(F ) (F0, F0, (F0)
k, F1, . . . , Fm)

where (F0)
k denotes the sequence of length k whose all components are F0. Then byTr-AppI

we have

x̃1,...,k ⊢Θ F ẽ(1) : Θ(F )
@r0
 

(F0 ẽ(1), F0 ẽ(1), (F0 ẽ(1))
k, F1 ẽ(1), . . . , Fm ẽ(1)).

Then by Tr-App (and Tr-AppI) we have

x̃1,...,k ⊢Θ ψi : κi  (ψi,∗, ψi,0, . . . , ψi,k+m′

i
) (i = 1, . . . , q)

x̃1,...,k ⊢Θ F ẽ(1) ψ1 · · · ẽ(q) ψq : Θ(F )
@rq−1+q

 

(
F0 ẽ(1) (ψ1,∗, ψ̃1

m′

1

\k ) · · · ẽ(q) (ψq,∗, ψ̃q

m′

q

\k ),

F0 ẽ(1) (ψ1,0, ψ̃1

m′

1

\k ) · · · ẽ(q) (ψq,0, ψ̃q

m′

q

\k ),

F0 ẽ(1) (ψ1,1, ψ̃1

m′

1

\k ) · · · ẽ(q) (ψq,1, ψ̃q

m′

q

\k ),

. . . , F0 ẽ(1) (ψ1,k, ψ̃1

m′

1

\k ) · · · ẽ(q) (ψq,k, ψ̃q

m′

q

\k ),

F1 ẽ(1) (ψ̃1

m′

1

\k ) · · · ẽ(q) (ψ̃q

m′

q

\k ),

. . . , Fm ẽ(1) (ψ̃1

m′

1

\k ) · · · ẽ(q) (ψ̃q

m′

q

\k )
)

m′
i := gar(κi) (i = 1, . . . , q)

decomp(κi) = (κ̃i,m
′
i, pi) (i = 1, . . . , q).

And then by Tr-AppG (and Tr-AppI) we have

p◦i := rq+m − rq−1+i (i = 1, . . . ,m)

ϕ◦
1 := F ẽ(1) ψ1 · · · ẽ(q) ψq ẽ(q+1)

ϕ◦
i+1 := ϕ◦

i ξi ẽ(q+i+1) (i = 1, . . . ,m)

τi := Θ(F )
@rq+i+q+i

(i = 1, . . . ,m)

x̃1,...,k ⊢Θ ϕ◦
i : (IntM→⋆)→ τi  (ϕ◦

i,∗, ϕ
◦
i,0, . . . , ϕ

◦
i,k+m+1−i)

(i = 1, . . . ,m+ 1)

x̃1,...,k ⊢Θ ξi : Int
M→⋆ (ξi,∗, ξi,0, . . . , ξi,k) (i = 1, . . . ,m)

ξi,j := λz̃1,...,p◦

i
.λw̃1,...,M .

ϕ◦
i,j z̃ w̃ ∨ ∃ũ1,...,M .(ϕ

◦
i,k+1 z̃ ũ ∧ ξi,j ũ w̃)

(i = 1, . . . ,m, j = ∗, 0, 1, . . . , k)

x̃1,...,k ⊢Θ ϕ◦
i+1(= ϕ◦

i ξi ẽ(q+i+1)) : (Int
M→⋆)→ τi+1  

(ξi,∗ ẽ, ξi,0 ẽ, . . . , ξi,k ẽ, ϕ
◦
i,k+2 ẽ, . . . , ϕ

◦
i,k+m+1−i ẽ)

(i = 1, . . . ,m).
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Then, for each i = 2, . . . ,m+ 1, we have

(ϕ◦
i,∗ , ϕ◦

i,0 , . . . , ϕ◦
i,k , ϕ◦

i,k+1 , . . . , ϕ◦
i,k+m+1−i )

= (ξi−1,∗ ẽ , ξi−1,0 ẽ , . . . , ξi−1,k ẽ , ϕ
◦
i−1,k+2 ẽ , . . . , ϕ

◦
i−1,k+m+2−i ẽ )

where ẽ = ẽ(q+i). Hence, for each i = 1, . . . ,m,

ϕ◦
i,k+1 = ϕ◦

i−1,k+2 ẽ(q+i) = ϕ◦
i−2,k+3 ẽ(q+i−1) ẽ(q+i) = . . .

= ϕ◦
1,k+i ẽ(q+2) · · · ẽ(q+i)

= Fi ẽ(1) (ψ̃1

m′

1

\k ) · · · ẽ(q) (ψ̃q

m′

q

\k ) ẽ(q+1) · · · ẽ(q+i)

where the last equality follows from the calculation result of Tr-App above. Also, for each
i = 2, . . . ,m and j = ∗, 0, . . . , k, we have

ξi,j z̃1,...,p◦

i
w̃1,...,M

=D′ ξi−1,j ẽ(q+i) z̃ w̃ ∨ ∃ũ1,...,M .(ϕ
◦
i,k+1 z̃ ũ ∧ ξi,j ũ w̃)

Now, since ϕ′ = ϕ◦
m+1, for each j = ∗, 0, . . . , k, we have

ϕ′
j w̃1,...,M = ϕ◦

m+1,j w̃ = ξm,j ẽ(q+m+1) w̃

=D′ ξm−1,j ẽ(q+m) ẽ(q+m+1) w̃

∨ ∃ũ1,...,M .(ϕ
◦
m,k+1 ẽ(q+m+1) ũ ∧ ξm,j ũ w̃)

=D′ ξm−2,j ẽ(q+m−1) ẽ(q+m) ẽ(q+m+1) w̃

∨ ∃ũ1,...,M .(ϕ
◦
m−1,k+1 ẽ(q+m) ẽ(q+m+1) ũ ∧ ξm−1,j ũ w̃)

∨ ∃ũ1,...,M .(ϕ
◦
m,k+1 ẽ(q+m+1) ũ ∧ ξm,j ũ w̃)

=D′ · · ·

=D′ ξ1,j ẽ(q+2) · · · ẽ(q+m+1) w̃

∨ ∃ũ1,...,M .(ϕ
◦
2,k+1 ẽ(q+3) · · · ẽ(q+m+1) ũ ∧ ξ2,j ũ w̃)

∨ · · ·

∨ ∃ũ1,...,M .(ϕ
◦
m,k+1 ẽ(q+m+1) ũ ∧ ξm,j ũ w̃)

=D′ ϕ◦
1,j ẽ(q+2) · · · ẽ(q+m+1) w̃

∨ ∃ũ1,...,M .(ϕ
◦
1,k+1 ẽ(q+2) · · · ẽ(q+m+1) ũ ∧ ξ1,j ũ w̃)

∨ ∃ũ1,...,M .(ϕ
◦
2,k+1 ẽ(q+3) · · · ẽ(q+m+1) ũ ∧ ξ2,j ũ w̃)

∨ · · ·

∨ ∃ũ1,...,M .(ϕ
◦
m,k+1 ẽ(q+m+1) ũ ∧ ξm,j ũ w̃)

=D′ ϕ◦
1,j ẽ(q+2) · · · ẽ(q+m+1) w̃

∨
∨m

i=1 ∃ũ1,...,M .(ϕ
◦
i,k+1 ẽ(q+i+1) · · · ẽ(q+m+1) ũ ∧ ξi,j ũ w̃)

=D′ ϕ◦
1,j ẽ(q+2) · · · ẽ(q+m+1) w̃

∨
∨m

i=1 ∃ũ1,...,M .(Fi ẽ(1) (ψ̃1

m′

1

\k ) · · · ẽ(q) (ψ̃q

m′

q

\k )

ẽ(q+1) · · · ẽ(q+m+1) ũ

∧ ξi,j ũ w̃).

(4)
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To calculate ϕ◦
1,j and Fi above, let us consider the rules of F0, . . . , Fm, which are given

by Tr-Def as follows. Recall

decomparg(w̃′,Θ(F )) = (ỹ′′ : κ̃′′, x̃′′, z̃′′)

and let

ỹ′′ : κ̃′′, z̃′′ : Ĩnt; x̃′′1,...,m ⊢Θ ϕ : ⋆ (ϕ∗, ϕ0, . . . , ϕm)

ỹ′′i := (y′′i,∗, y
′′
i,0, . . . , y

′′
i,gar(κ′′

i
)) ỹ′′

◦

i := (y′′i,0, . . . , y
′′
i,gar(κ′′

i
))

(i ∈ {1, . . . , h′′} and κ′′i 6= Int)

ỹ′′i := y′′i ỹ′′
◦

i := y′′i (i ∈ {1, . . . , h′′} and κ′′i = Int).

Then we obtain

⊢Θ (F w̃′ = ϕ) {F0 ỹ′′1 · · · ỹ′′h′′ z̃′′ = ϕ∗}

∪{Fi ỹ′′
◦

1 · · · ỹ′′
◦

h′′ z̃′′ = ϕi | i ∈ {1, . . . ,m}}.

Recall that κi := κ′′ri+i (i = 1, . . . , q), and let

yi := y′′ri+i (i = 1, . . . , q)

yi,j := y′′ri+i,j (i = 1, . . . , q, j = ∗, 0, . . . , gar(κi))

ỹi := ỹ′′ri+i = (yi,∗, yi,0, . . . , yi,gar(κi))

ỹ◦i := ỹ′′
◦

ri+i = (yi,0, . . . , yi,gar(κi)).

Then let z̃1,...,rq+m+1
be a sequence of variables of type Int that satisfies the following equa-

tions, where we write z̃(i) (or simply z̃ if i is clear) for z̃ri−1+1,...,ri (i = 1, . . . , q +m+ 1):

(w′
1, . . . , w

′
h′′ ) = (y′′1 , . . . , y

′′
h′′) = (z̃(1), y1, . . . , z̃(q), yq)

(w′
h′′+1, . . . , w

′
h′) = (z̃(q+1), x

′′
1 , . . . , z̃(q+m), x

′′
m, z̃(q+m+1))

(ỹ′′1, . . . , ỹ
′′
h′′ , z̃′′) = (z̃(1), ỹ1, . . . , z̃(q), ỹq, z̃rq+1,...,rq+m+1

)

(ỹ′′
◦

1, . . . , ỹ
′′
◦

h′′ , z̃′′) = (z̃(1), ỹ
◦
1 , . . . , z̃(q), ỹ

◦
q , z̃rq+1,...,rq+m+1

).

Now, for j = ∗, 0, . . . , k, we have

ϕ◦
1,j ẽ(q+2) · · · ẽ(q+m+1) w̃1,...,M

=D′ F0 ẽ(1)(ψ1,j , ψ̃1

m′

1

\k ) · · · ẽ(q)(ψq,j , ψ̃q

m′

q

\k )ẽ(q+1) · · · ẽ(q+m+1)w̃

=D′

([
(ψi′,j , ψ̃i′

m′

i′

\k )/ỹi′
]q
i′=1

[
ej′/zj′

]rq+m+1

j′=1
ϕ∗

)
w̃. (5)

Also for each i = 1, . . . ,m, we have

Fi ẽ(1) (ψ̃1

m′

1

\k ) · · · ẽ(q) (ψ̃q

m′

q

\k ) ẽ(q+1) · · · ẽ(q+m+1) ũ

=D′

([
ψ̃i′

m′

i′

\k /ỹ◦i′
]q
i′=1

[
ej′/zj′

]rq+m+1

j′=1
ϕi

)
ũ. (6)

Next, let us consider ψ′. Now we have

ψ′ = {ξ̃/x̃′′}[ẽ′′/z̃′′][ϕ̃′′/ỹ′′]ϕ
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= {ξ̃/x̃′′}[ψi′/yi′ ]
q
i′=1[ej′/zj′ ]

rq+m+1

j′=1 ϕ.

Recall

ỹ′′ : κ̃′′, z̃′′ : Ĩnt; x̃′′1,...,m ⊢Θ ϕ : ⋆ (ϕ∗, ϕ0, . . . , ϕm),

(ỹ′′, z̃′′) = (z̃(1), y1, . . . , z̃(q), yq, z̃(q+1), . . . , z̃(q+m+1)),

and let

ỹ : κ̃; x̃′′1,...,m ⊢Θ [ej′/zj′ ]
rq+m+1

j′=1 ϕ : ⋆ 

(ψ′′′
∗ , ψ

′′′
0 , . . . , ψ

′′′
m),

x̃1,...,k, x̃′′1,...,m ⊢Θ [ψi′/yi′ ]
q
i′=1[ej′/zj′ ]

rq+m+1

j′=1 ϕ : ⋆ 

(ψ′′
∗ , ψ

′′
0 , . . . , ψ

′′
k+m).

Then, by applying Lemma 15 Item 2, and then by applying Lemma 13, we obtain:

ψ′′
j =D′

[
(ψi′,j , ψ̃i′

m′

i′

\k )/ỹi′
]q
i′=1

ψ′′′
∗

=
[
(ψi′,j , ψ̃i′

m′

i′

\k )/ỹi′
]q
i′=1

[
ej′/zj′

]rq+m+1

j′=1
ϕ∗ (j = ∗, 0, . . . , k),

ψ′′
k+i =D′

[
ψ̃i′

m′

i′

\k /ỹ◦i′
]q
i′=1

ψ′′′
i

=
[
ψ̃i′

m′

i′

\k /ỹ◦i′
]q
i′=1

[
ej′/zj′

]rq+m+1

j′=1
ϕi (i = 1, . . . ,m).

(7)

Now, for j = ∗, 0, . . . , k, let

ψ′
j = λw̃1,...,M .ψ

′′
j w̃

∨
∨m

i=1 ∃ũ1,...,M .
(
ψ′′
k+i ũ

∧ ξi,j ũ w̃
)
.

(8)

Then by Tr-ESub, we have

x̃1,...,k ⊢Θ (ψ′ =){ξ̃/x̃′′}[ψi′/yi′ ]
q
i′=1[ej′/zj′ ]

rq+m+1

j′=1 ϕ : ⋆ 

(ψ′
∗, ψ

′
0, . . . , ψ

′
k).

Also, by Equations (4) to (8), we have ϕ′
j =D′ ψ′

j for j = ∗, 0, . . . , k, as required.

Now we show the correctness in the recursion-free case. As explained in Appendix A.1,
Theorem 10 follows from the following:

Lemma 17. Suppose that (D,S λz̃1,...,M .true) is a recursion-free equation system. If
(D,S λz̃1,...,M .true) (D′, ∃z̃. S1 z̃), then [[(D,S λz̃1,...,M .true) ]] = [[(D′, ∃z̃. S1 z̃) ]].

Proof. Let the rule of S be S x = ϕ; then D′ has the rule S1 = ϕ1 where S1 and ϕ1 has type
IntM → ⋆. Since [[(D,S λz̃1,...,M .true) ]] = [[(D, [λz̃1,...,M .true/x]ϕ) ]], it suffices to show

[[(D, [λz̃1,...,M .true/x]ϕ) ]] = [[(D′, ∃z̃. ϕ1 z̃) ]] .

Since (D,S λz̃1,...,M .true) is recursion-free, ϕ has a normal form ζ with respect to
−→D. We have ϕ −→∗

D ζ and let x ⊢Θ ϕ : ⋆  (ϕ∗, ϕ0, ϕ1); then by subject reduction
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(Lemma 16), we have x ⊢Θ ζ : ⋆  (ζ∗, ζ0, ζ1) and [[(D′, ϕi) ]] = [[(D′, ζi) ]] (i = ∗, 0, 1).
Also, we have [[(D,ϕ) ]] = [[(D, ζ) ]] by Lemma 12, and hence [[(D, [λz̃1,...,M .true/x]ϕ) ]] =
[[(D, [λz̃1,...,M .true/x]ζ) ]]. Therefore we can assume that ϕ is a normal form without loss of
generality.

Then we can directly check [[(D, [λz̃1,...,M .true/x]ζ) ]] = [[(D′, ∃z̃. ζ1 z̃) ]] by induction on
the structure of normal forms (3) in Appendix A.2.
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