Skip to main content

Privacy-preserving WiFi Fingerprint Localization Based on Spatial Linear Correlation

  • Conference paper
  • First Online:
Book cover Wireless Algorithms, Systems, and Applications (WASA 2022)

Abstract

With the widespread deployment of IoT (Internet of Things) devices, WiFi fingerprint-based localization is becoming one of the most promising techniques for indoor localization. A client is able to obtain its location by providing its measured fingerprint (vector of WiFi signal strengths) to the service provider who maps the fingerprint against the database and returns the result back to the client. However, traditional applications of WiFi fingerprint-based localization may disclose the client’s location privacy and often incur high consumption of communication and computing resources. In this paper, we focus on implementing a privacy-preserving framework with high efficiency and accuracy for WiFi fingerprint-based localization. Firstly, to reduce computational overhead at the server side, we introduce a clustering algorithm called k-means++ in offline phase. Besides, we explore the correlation of the fingerprint and propose a Pearson correlation based distance computation method, which achieves better accuracy than traditional Euclidean distance. Finally, we secure the overall computation by adapting a series of secure multi-party computing primitives. Theoretical analysis is carried out to prove the security of our scheme. Experiments on real-world datasets indicate that our scheme achieves better practicality and efficiency compared with existing methods. Compared to existing work PriWFL and PPWFL, our scheme reduces the average distance error by approximately \(4.5\%\) and \(2.9\%\) under a query time of less than 0.2s.

This work was supported in part by the National Nature Science Foundation of China (No. 62102429, 62102422, 62072466, 61872372), and the NUDT Grants (No. ZK19-38).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lui, G., Gallagher, T., Li, B., Dempster, A.G., Rizos, C.: Differences in RSSI readings made by different Wi-Fi chipsets: a limitation of WLAN localization. In: 2011 International Conference on Localization and GNSS (ICL-GNSS), pp. 53–57 (2011). https://doi.org/10.1109/ICL-GNSS.2011.5955283

  2. Sun, Y.L., Xu, Y.B.: Error estimation method for matrix correlation-based Wi-Fi indoor localization. KSII Trans. Internet Inf. Syst. 7(11), 2657–2675 (2013). https://doi.org/10.3837/tiis.2013.11.006

    Article  Google Scholar 

  3. Chang, N., Rashidzadeh, R., Ahmadi, M.: Robust indoor positioning using differential Wi-Fi access points. IEEE Trans. Consum. Electron. 56(3), 1860–1867 (2010). https://doi.org/10.1109/TCE.2010.5606338

    Article  Google Scholar 

  4. Shokri, R., Theodorakopoulos, G., Le Boudec, J.Y., Hubaux, J.P.: Quantifying location privacy. In: 2011 IEEE Symposium on Security and Privacy, pp. 247–262 (2011). https://doi.org/10.1109/SP.2011.18

  5. Yang, Z., Järvinen, K.: The death and rebirth of privacy-preserving WiFi fingerprint localization with Paillier encryption. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. pp. 1223–1231 (2018). https://doi.org/10.1109/INFOCOM.2018.8486221

  6. Yang, D., Fang, X., Xue, G.: Truthful incentive mechanisms for k-anonymity location privacy. In: 2013 Proceedings IEEE INFOCOM, pp. 2994–3002 (2013). https://doi.org/10.1109/INFCOM.2013.6567111

  7. Zheng, X., Cai, Z.: Privacy-preserved data sharing towards multiple parties in industrial IoTs. IEEE J. Sel. Areas Commun. 38(5), 968–979 (2020)

    Article  Google Scholar 

  8. Li, H., Sun, L., Zhu, H., Lu, X., Cheng, X.: Achieving privacy preservation in WiFi fingerprint-based localization. In: IEEE INFOCOM 2014 - IEEE Conference on Computer Communications. pp. 2337–2345 (2014). https://doi.org/10.1109/INFOCOM.2014.6848178

  9. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  10. Xia, Z., Gu, Q., Xiong, L., Zhou, W., Weng, J.: Privacy-preserving image retrieval based on additive secret sharing. ArXiv abs/2009.06893 (2020)

    Google Scholar 

  11. Zheng, Z., Chen, Y., He, T., Li, F., Chen, D.: Weight-RSS: a calibration-free and robust method for WLAN-based indoor positioning. Int. J. Distrib. Sens. Netw. 11(4), 573582 (2015)

    Article  Google Scholar 

  12. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: SODA ’07 (2007)

    Google Scholar 

  13. Biber, D.: Pearson correlation coefficients for all linguistic features, p. 270–279. Cambridge University Press (1988). https://doi.org/10.1017/CBO9780511621024.013

  14. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_13

    Chapter  Google Scholar 

  15. Huang, K., Liu, X., Fu, S., Guo, D., Xu, M.: A lightweight privacy-preserving CNN feature extraction framework for mobile sensing. IEEE Trans. Dependable Secure Comput. 18(3), 1441–1455 (2021). https://doi.org/10.1109/TDSC.2019.2913362

    Article  Google Scholar 

  16. Wu, W., Fu, S., Luo, Y.: Practical privacy protection scheme in WiFi fingerprint-based localization. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 699–708 (2020). https://doi.org/10.1109/DSAA49011.2020.00080

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchuan Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Luo, Y., Xu, M., fu, S., Chen, Y. (2022). Privacy-preserving WiFi Fingerprint Localization Based on Spatial Linear Correlation. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13471. Springer, Cham. https://doi.org/10.1007/978-3-031-19208-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19208-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19207-4

  • Online ISBN: 978-3-031-19208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics