Skip to main content

An Asynchronous Federated Learning Optimization Scheme Based on Model Partition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13473))

Abstract

Federated learning based on edge computing environment has great potential to facilitate the implementation of artificial intelligence at the edge of the network. However, because of the limited resource at the edge, place the complete Deep Neural Networks (DNN) model on the edge for training may not a good choice. In this paper, we study the time optimization for asynchronous federated learning based on model partition. That is, the DNN model is divided into two parts and deployed separately on the device and the edge server for the model training. First, we give the metric of the relationship between learning accuracy and iteration frequency, and then we build a mathematical model based on this. Because the solution space of mathematical model is too large to be solved directly, we propose an algorithm to minimize the total time by dynamically adjusting the model partition point and bandwidth allocation. Simulation results show that our algorithm can reduce the time by 32% to 60% compared with the other three methods.

The work is supported by the Major science and technology projects in Anhui Province, No. 202003a05020009.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics vol. 54, pp. 1273–1282 (2017)

    Google Scholar 

  2. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private information using embedded sensors in smart devices. IEEE Network 32(4), 8–14 (2018). https://doi.org/10.1109/MNET.2018.1700349

    Article  Google Scholar 

  3. Cai, Z., Xiong, Z., Xu, H., Wang, P., Li, W., Pan, Y.L.: Generative adversarial networks: a survey towards private and secure applications. ACM Comput. Surv. (CSUR) 54(6), 1–38 (2021)

    Article  Google Scholar 

  4. Mills, J., Hu, J., Min, G.: Communication-efficient federated learning for wireless edge intelligence in IoT. IEEE Internet Things J. 7(7), 5986–5994 (2020)

    Article  Google Scholar 

  5. Zhang, W., Gupta, S., Lian, X., Liu, J.: Staleness-aware Async-SGD for distributed deep learning. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 2350–2356 (2016)

    Google Scholar 

  6. Pang, J., Huang, Y., Xie, Z., Han, Q., Cai, Z.: Realizing the heterogeneity: a self-organized federated learning framework for IoT. IEEE Internet Things J. 8(5), 3088–3098 (2021)

    Article  Google Scholar 

  7. Xiong, Z., Cai, Z., Takabi, D., Li, W.: Privacy threat and defense for federated learning with non-i.i.d. data in AloT. IEEE Trans. Industr. Inform. 18(2), 1310–1321 (2022)

    Google Scholar 

  8. Luo, S., Chen, X., Wu, Q., Zhou, Z., Yu, S.: HFEL: joint edge association and resource allocation for cost-efficient hierarchical federated edge learning. IEEE Trans. Wireless Commun. 19(10), 6535–6548 (2020). https://doi.org/10.1109/TWC.2020.3003744

    Article  Google Scholar 

  9. Yang, Z., Chen, M., Saad, W., Hong, C.S., Shikh-Bahaei, M.: Energy efficient federated learning over wireless communication networks. IEEE Trans. Wireless Commun. 20(3), 1935–1949 (2021)

    Article  Google Scholar 

  10. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on non-IId data. In: International Conference on Learning Representations (2020)

    Google Scholar 

  11. Chen, M., Poor, H.V., Saad, W., Cui, S.: Convergence time optimization for federated learning over wireless networks. IEEE Trans. Wireless Commun. 20(4), 2457–2471 (2021)

    Article  Google Scholar 

  12. Xu, J., Wang, H.: Client selection and bandwidth allocation in wireless federated learning networks: a long-term perspective. IEEE Trans. Wireless Commun. 20(2), 1188–1200 (2021)

    Article  Google Scholar 

  13. Amiri, M.M., Gündüz, D., Kulkarni, S.R., Poor, H.V.: Convergence of update aware device scheduling for federated learning at the wireless edge. IEEE Trans. Wireless Commun. 20(6), 3643–3658 (2021)

    Article  Google Scholar 

  14. Chen, M., Mao, B., Ma, T.: FedSA: a staleness-aware asynchronous federated learning algorithm with non-IID data. Futur. Gener. Comput. Syst. 120, 1–12 (2021)

    Article  Google Scholar 

  15. Lee, H.S., Lee, J.W.: Adaptive transmission scheduling in wireless networks for asynchronous federated learning. IEEE J. Sel. Areas Commun. 39(12), 3673–3687 (2021)

    Article  Google Scholar 

  16. Cai, Z., Shi, T.: Distributed query processing in the edge-assisted IoT data monitoring system. IEEE Internet Things J. 8(16), 12679–12693 (2021)

    Article  Google Scholar 

  17. Zhu, T., Shi, T., Li, J., Cai, Z., Zhou, X.: Task scheduling in deadline-aware mobile edge computing systems. IEEE Internet Things J. 6(3), 4854–4866 (2019)

    Article  Google Scholar 

  18. Zhu, G., Liu, D., Du, Y., You, C., Zhang, J., Huang, K.: Toward an intelligent edge: wireless communication meets machine learning. IEEE Commun. Mag. 58(1), 19–25 (2020)

    Article  Google Scholar 

  19. Chen, M., Semiari, O., Saad, W., Liu, X., Yin, C.: Federated echo state learning for minimizing breaks in presence in wireless virtual reality networks. IEEE Trans. Wireless Commun. 19(1), 177–191 (2020)

    Article  Google Scholar 

  20. Kang, Y., et al.: Neurosurgeon: collaborative intelligence between the cloud and mobile edge. SIGPLAN Not. 52(4), 615–629 (2017)

    Google Scholar 

  21. Zhang, L., Xu, J.: Learning the optimal partition for collaborative DNN training with privacy requirements. IEEE Internet Things J. 8, 1–11 (2021)

    Google Scholar 

  22. Shi, L., Xu, Z., Sun, Y., Shi, Y., Fan, Y., Ding, X.: A DNN inference acceleration algorithm combining model partition and task allocation in heterogeneous edge computing system. Peer-to-Peer Netw. Appl. 14, 4031–4045 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Shi, L., Shi, Y., Fang, C., Xu, J. (2022). An Asynchronous Federated Learning Optimization Scheme Based on Model Partition. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13473. Springer, Cham. https://doi.org/10.1007/978-3-031-19211-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19211-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19210-4

  • Online ISBN: 978-3-031-19211-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics