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Abstract. Due to the drawbacks of Federated Learning (FL) such as
vulnerability of a single central server, centralized federated learning
is shifting to decentralized federated learning, a paradigm which takes
the advantages of blockchain. A key enabler for adoption of blockchain-
based federated learning is how to select suitable participants to train
models collaboratively. Selecting participants by storing and querying
the metadata of data owners on blockchain could ensure the reliability
of selected data owners, which is helpful to obtain high-quality mod-
els in FL. However, querying multi-dimensional metadata on blockchain
needs to traverse every transaction in each block, making the query time-
consuming. An efficient query method for multi-dimensional metadata in
the blockchain for selecting participants in FL is absent and challenging.
In this paper, we propose a novel data structure to improve the query
efficiency within each block named MerkleRB-Tree. In detail, we lever-
age Minimal Bounding Rectangle(MBR) and bloom-filters for the query
process of multi-dimensional continuous-valued attributes and discrete-
valued attributes respectively. Furthermore, we migrate the idea of the
skip list along with an MBR and a bloom filter at the head of each block
to enhance the query efficiency for inter-blocks. The performance analysis
and extensive evaluation results on the benchmark dataset demonstrate
the superiority of our method in blockchain-based FL.
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1 Introduction

As a special distrbuted machine learning framework, FL, in which allows multiple
data owners to train machine learning models collaboratively with their data
stored locally, is much popular in the present age [1]. However, centralized FL
still faces some challenges such as the failure of a single central server, etc. With
the overwhelming development of blockchain technology, it is possible to leverage
some advantages of blockchain to FL and construct a decentralized FL paradigm
named blockchain-based FL [2,3]. In blockchain-based FL, blockchain is able to
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enhance the robustness, trust, security of FL, as well as providing a credible
cooperation mechanism among participants.

When the aggregation server initializes a FL task, it need to select a set of
data owners to participate. Selecting participating nodes according to their data
type without knowing the metadata information of data owners is challengeable.
Through providing secure data storage platform in blockchain-based FL, data
owners can announce the description of their data called metadata in the com-
munity via blockchain [4]. When the metadata is queried on the blockchain, the
aggregation server can abtain the candidate participants list from nearest proxy
server and invite these nodes to participate in FL [5]. And we will introduce the
process in section 3.

However, on the one hand, the query efficiency on the existing blockchain
is extremely low [6]. With the increasing number of data owners registering,
it cannot meet the large query requirements of the aggregation server when
selecting nodes. On the other hand, in the real scenario of choosing data own-
ers in FL, the query condition may usually be composed by multi-dimensional
continuous-valued attributes and discrete-valued attributes [4]. Existing query
methods on the blockchain can only cater for single-dimensional hash value.
It is inefficient to store multi-dimensional attributes in the single dimensional
data structures, since it needs to do intersectional operation when we need to
query for multi-dimensional attributes [7]. For multi-dimensional query condi-
tion with both continuous-valued attributes and discrete-valued attributes on
the blockchain, yet there is no appropriate query method to satisfy this kind of
query demand [8]. In this paper, we propose a method for the query process of
both inter-block and intra-block. Our contributions are listed in the following
points:

– We formulate the selection of participating nodes in blockchain-based FL as
the metadata query problem on blockchain. We divide this query problem
into intra-block query and inter-block query and put forward schemes for
them respectively.

– For intra-block query, we modify the structure of the block and construct
an MerkleRB-Tree in each block. Query schemes for both discrete-valued
attributes and continuous-valued attributes are proposed.

– For inter-block query, we apply the skip list and implement an inter-block
query scheme with bloom-filters and MBR for discrete-valued attributes and
continuous-valued attributes respectively.

– We analysis the performance of the query schemes we propose. The results
of the comparative experiments with the baseline method show our schemes
are more efficient.

2 Related Work

2.1 Blockchain Empowered Federated Learning

Since tranditional centralized FL faces a number of challenges [9] such as lack of a
secure and credible cooperation mechanism etc, an increasing number of studies
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Fig. 1. Blockchain-based FL Framework

focus on empowering FL with blockchain [10]. Being empowered with blockchain,
FL owns a credible incentive and contribution measurement mechanism as well
as strengths its security [11].

Besides, blockchain provides a trusted storage mechanism for FL, allowing
data to be shared securely. Data owners can leverage blockchain to publish
their metadata information and then aggregation servers can select participat-
ing nodes by querying the metadata on the blockchain according to the data
type [5]. Zhang et al. propose a FL protocol based on blockchain in which the
nearest proxy server can help to query metadata on blockchain and return the
set of selected participating nodes [4]. However, these studies do not focus on
the query efficiency of metadata in blockchain-based FL, nor did they change
the original block structure.

2.2 Query on the blockchain

For query on the blockchain, traversing every transaction of each block can be re-
garded as time-consuming. Current studies show that using external databases
can improve the query efficiency of blockchain query [12, 13]. By establishing
an efficient query layer, EtherQL, Li et al. propose a quick query method that
imports block data into an off-chain database using the Ethereum listening in-
terface [14]. Peng et al. propose a three-tier blockchain query architecture, which
saves the time to traverse unnecessary blocks [6]. Zhang et al. design new data
structures named Gem2Tree which can be effectively maintained by blockchain,
significantly reducing the storage and computing cost of smart contract [8]. How-
ever, these schemes are hardcoded and cannot be well adapted to different query
conditions and do not consider the problem of the inter-block query.
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3 Problem Formulation

3.1 System Framework

In the training process of blockchain-based FL, the data owners register the FL
community and publish the metadata to the blockchain. It is noticeable that
the metadata generally refer to the description of the data type of the data
owners. When the metadata is queried by the aggregation server, it can get
the candidates list according to the task requirements. Then the aggregation
server initializes the machine learning model and allocates it to participants for
local training. Finally, after getting the updated models from participants, the
aggregation server aggregates them to update the global model. The system
paradigm is detailed in Fig. 1.

3.2 Query Metadata on the Blockchain

In our system framework, the aggregation are responsible for querying the meta-
data on the blockchain. Moreover, when the aggregation servers select parties
to participate in the FL task, they usually select different parties to join in
based their type of data sets according to the requirements of machine learn-
ing model training task. In the metadata, there are discrete-valued attributes
and also continuous-valued attributes. Each query condition may contain multi-
dimensional discrete-valued attributes and continuous-valued attributes. There-
fore, we can regard the problem as the mixed multi-dimensional query of continuous-
valued attributes and discrete-valued attributes.

However, it is inefficient to use existing methods to solve this problem. In
the traditional way, in order to find the data owners who have this type of data
set, they may need to traverse all the transactions in every block and check
whether each query condition is satisfied. It is time-consuming if we traverse all
the transactions in the blockchain. If the query condition of continuous-valued
attributes is multi-dimensional, it will increase the difficulty and cost of querying
to a greater extent [7]. Therefore, the problem is how to design a data structure
in the blockchain to query both discrete-valued attributes and multi-dimensional
continuous-valued attributes more efficiently. In the next two sections, we divide
this problem into the intra-block query and inter-block query and describe the
solution we propose for this problem respectively.

4 Intra-block Query Scheme

4.1 The structure of MerkleRB-Tree

In order to make the intra-block query quicker, we apply the idea of MR-Tree [15]
and bloom filter together to construct a new structure named MerkleRB-Tree.
MerkleRB-Tree extends the advantages of MR-Tree and bloom filter. We use
it for multi-dimensional query of both continuous-valued and discrete-valued
attributes. As shown in Figure 2, MerkleRB-Tree verifies the integrity of the
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Fig. 2. The query structure for both discrete-valued and continuous-valued attributes
on blockchain

whole tree based on Merkle Hash Tree. Each internal node contains a hash value,
a bloom filter, and an MBR [16]. The bloom filter in each node can be used to
check whether there are existing transactions in the current subtree that satisfy
the discrete-value query condition. MBR covers the range of continuous-valued
attributes of all transactions of every dimensions in its subtree.

4.2 Intra-block Query of Continuous-valued Attributes

For querying multi-dimensional continuous-valued attributes, it is inefficient to
take the intersection after querying the multiple dimensions separately for query-
ing multi-dimensional continuous-valued attributes. In this section, we focus on
the query of multi-dimensional continuous-value. In the MerkleRB-Tree, the spa-
tial range of the MBR at the root node of the whole tree. In the query process,
we use the recursion method to traverse all the child nodes of the current node.
If there is an intersection between the spatial scope of the multi-dimensional
query condition and the child node, then we continue to search down the cur-
rent subtree. The specific algorithm is shown in Algorithm 1. Using the above
method for multi-dimensional range query, we can save the time cost of travers-
ing unnecessary nodes in MerkleRB-Tree and improve the efficiency of the query
process.

4.3 Intra-block Query of Discrete-valued Attributes

For querying discrete-valued attributes, we add a bloom filter [17] in each node
of MerkleRB-Tree. A Bloom filter is a long binary vector and a series of random
mapping functions that can be used to check whether an element is not in a set.
In MerkleRB-Tree, the bloom filter of each node can determine whether all the
transactions in the subtree do not satisfy the query condition of discrete-valued
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attributes. In other words, the non-leaf node’s bloom filter is the sum of all its
child nodes’ bloom-filters, which we represent in formula (1).

BFparent = BF 1
child +BF 2

child + ...BFn
child (1)

For each discrete-valued query condition, we start it from the root node of
MerkleRB-tree. For all the transactions in the left and right subtrees that do not
satisfy the discrete-valued query condition, bloom-filters in each node are used
to find these subtrees and not query them.

5 Inter-block Query scheme

5.1 Inter-block Index structure

In figure 2, an MBR and a bloom filter are added to the block header. For
querying discrete-valued attributes, we use the bloom filter at the head of the
block to verify whether the block contains any transactions that satisfies the
query condition. If no transaction satisfies the query condition, we do not need
to query within the block. Similarly, for the inter-block query of the multi-
dimensional continuous-valued attributes, we also need to check whether the
range space of query condition has an intersection with the MBR at the head of
each block.

However, traversing all the blocks in the blockchain is time-consuming. In
order to solve this problem, inspired by the idea of dichotomy, we apply a skip
list and put forward an efficient inter-block query method. The architecture
of the inter-block query is shown in Figure 2, and each level of the skip list
includes a bloom filter and an MBR denoted as SkipListiBF and SkipListiMBR.
For SkipListiBF which is used to query discrete-valued attributes, the ith level’s
bloom filter in the skip list can be used to check whether there are satisfied
transactions in the next αi blocks. We can use formula (2) to represent it.

BF i
SkipList = BF current

block + ...+BF current+αi

block (2)

Algorithm 1 IntraQuery(Node,MBRquery)

Input: Query condition q =< Qdiscrete,MBRquery >, query tree Tree
Output: result Ω

1: if Node.isLeaf()=False then
2: for MBRi

child for Node do
3: if MBRi

child intersects MBRquery AND
BF i

child.isContain(Qdiscrete) then
4: IntraQuery(Node.Child(i),MBRquery)
5: end if
6: end for
7: else
8: Add this to the result set Ω
9: end if
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Similar to BF i
SkipList, the ith MBR in MBRi

SkipList is the minimum bound
rectangle of all the MBRs at each block’s head which we represent in formula
(3).

MBRi
SkipList = MBRcurrent

block + ...+MBRcurrent+αi

block (3)

Therefore, the first level’s MBR in the skip list can be used to determine
whether there are existing transactions that satisfy the query condition in the
next αi blocks.

5.2 Inter-block Query of Discrete-valued Attributes

For the inter-block query of discrete-valued attributes, we can use bloom-filters
in the skip list to help us query quicker. In this way, we also save the time
of traversing unnecessary bloom-filters at the head of each block. The specific
query algorithm is shown in algorithm 2. This can be illustrated by the fact
that if α = 2, we will set the first block of the blockchain as the current block
and query the first level’s bloom filter in the skip list of the current block. If
the return result is true, we will query the bloom-filters BF 2

block, BF 3
block at the

head of the next two blocks. If false is returned, the second level’s bloom filter
in the skip list of the current block is checked. Eventually, when the SkipListiBF

returns true, it proves that there are might existing blocks that satisfy the query
condition between the (2i−1)th block or (2i)th block. Then we need to set the
current block as the (2i−1)th block and follow the steps above to continue the
query process.

5.3 Inter-block Query of Continuous-valued Attributes

Similar to the inter-block query of discrete-valued attributes, we use MBR at
the head of each block to generate the SkipListMBR and propose an efficient
scheme for the inter-block query of continuous-valued attributes. We set the
current block as the first one which denotes as blockcurrent. Querying process
is started from the first level in the skip list of the first block. If the returned

Algorithm 2 InterQuery(blockcurrent, Q)

Input: Query condition q =< Qdiscrete,MBRquery >

1: for BFiandMBRi in Skiplist do
2: if BFi.isContain() AND MBRi.isIntersect() then
3: if i!=0 then
4: InterQuery(blockcurrent+αi , Q)
5: else
6: TraverseBlock(blockcurrent, blockcurrent+αi)
7: end if
8: end if
9: end for
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result is true, we need to check the MBRs of the next two blocks. If false is
returned, the second MBR and MBR behind in the skip list is queried. There

are some transactions in the blocks between (αi−1)
th

and (αi)
th

satisfying the
query conditions if the check result of the SkipListiMBR returns true. Then we

set the (αi−1)
th

block as the current block and continue to query the rest blocks
as described above.

6 Performance analysis

6.1 Analysis of the Efficiency

We analyze the efficiency of our proposed query schemes on the blockchain.
Firstly, the intra-block query cost for multi-dimensional continuous-valued at-
tributes is similar to R-tree [18]. We use df and dl to denote the average fan-out
of the leaf nodes and the internal nodes in each blocks’ R-Tree respectively. In
each block, if the number of transactions is Nblock, the number of leaf nodes
and internal nodes in this R-Tree is Nblock

df
and Nblock

dl
[19]. In the unit space

[0, 1]d which contains d dimensions, the probability of two rectangles R1 and R2

overlap is as follows in equation (4), where Ri
l express the rectangle R’s length

along the ith dimension [20] .

Poverlap =

d∏
i=1

(Ri
1,l +Ri

2,l) (4)

We assume that the total sample space is [0, s
1
d ]d and the size of each leaf

nodes are the same which we denote as S1 = S2 = ... = Sn, so the size of each leaf
node equals to

s·df

Nblock
. Similarly, the size of each internal node in level j is s

dj
n
. If

the length of query condition for continuous-valued attributes in each dimension
is Ql,i

r and the length for each node in MerkleRB-Tree in every dimension is the
same, then the number of nodes in each block’s MerkleRB-Tree that needs to be
accessed can be computed like in equation (5).

Nq =

d∏
i=1

( d

√
s · df
Nblock

+Ql,i
r ) · df +

h−2∑
j=0

djl ·
d∏

i=1

( d

√
s

djl
+Ql,i

r ) (5)

where the height of the MerkleRB-Tree is h = 1+logdl

s·df

Nblock
. Therefore, the

total average cost of continuous-valued attributes’ query in each block is Crange,
and the cost of querying continuous-valued attributes each node in MerkleRB-
Tree is Caccess. We illustrate it in equation (6).

Crange = Caccess ·Nq (6)

For discrete-valued attributes, we assume that the average probability of a
bloom filter contains the discrete query condition value Qdis in each block can
be shown in equation (7), where the notation θ expresses the number of times
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that Qdis appears in the current block. We represent the cost of querying for
discrete-valued attributes in equation (8).

PBF (BF,Qdis) =
θ

Nblock
(7)

Cdis = CBF · ( df
Nblock

+

h−2∑
j=0

djl ·
df · fh−2−j

n

Nblock
) (8)

When the query condition contains the continuous-valued attributes and
discrete-valued attributes together, it is obvious that total cost for query con-
dition contains both discrete-valued attributes and continuous-valued attributes
equals to the right hand of the equation (9), in which Caccess denotes the cost
of accessing a node in MBR-Tree.

Ctotal = Caccess ·
df

Nblock
·

d∏
i=1

( d

√
sdf

Nblock
+Ql,i

r )

+

h−2∑
j=0

djl ·
d∏

i=1

( d

√
s

djl
+Ql,i

r ) · df · fh−2−j
n

Nblock

(9)

For the inter-block query, we use a skip list to decrease the query cost for both
discrete-valued attributes and continuous-valued attributes. The time complex-
ity of the skip list query is O(log(n)) [21]. However, the cost of improving query
efficiency is increasing its spatial complexity. And the relationship between time
complexity and space complexity in the inter-block query scheme we propose is
a negative correlation according to the settings of α and this will be discussed
in the next section.

7 Experiments

In this part, we implement and test the performance of the inter-block query
and intra-block query respectively.

7.1 Experiment Setting

Dataset We use a public dataset from kaggle 4. In this dataset, it contains
different employees with multi-dimensional attributes including continuous value
attributes and discrete value attributes. For this experiment, we choose the year
of joining company and the age to do the multi-dimensional range query, and
choose city as the discrete value. So for each transaction, we can use Q =<
year, age, city > to represent the query condition.

EnvironmentsAll the experiments are running a computer which is equipped
with Intel Core i7 CPU with 6 cores, 3.2GHz for each core. The memory of the
computer is 16GB memory on Window 10 operating system. And the JDK ver-
sion we use is JDK 1.8.
4 https://www.kaggle.com/tejashvi14/employee-future-prediction
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7.2 Performance Evaluation

Query for Discrete-value Attributes: To verify the efficiency of the query
method we propose above, we test the inter-block and intra-block query perfor-
mance for the discrete-valued attributes. The results are shown in Figure 3(a)
and Figure 3(b).

In figure 3(a), we test our proposed inter-block query schemes on blockchain
with different numbers of transactions from 3400 to 4400. We also put the differ-
ent number of transactions 10, 20 and 40 in each block. We choose the scheme
without SkipListBF as the baseline. We can see that the query time of our
schemes are less than the baseline scheme when each block stores the same
amount of data. This is because the fact that the method we propose saves time
for querying unnecessary blocks when using SkipListBF . In addition, with the
increasing number of blocks, the efficiency of our plan is more obvious.
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Fig. 3. Query Performance

In figure 3(b), we put different amounts of data 10, 20 and 40 in each block.
As for the circumstance which does not have bloom-filters, we cannot quickly
exclude subtrees that do not need to be traversed in MBR-Tree through the
discrete-valued query condition. Thus, we need to traverse the nodes that only
satisfy the continuous-valued query condition and return the correct nodes. By
comparing our proposed intra-block query method for the discrete-value at-
tribute with the baseline scheme without bloom-filters, when the amount of
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data inside the block is the same, it can be seen that the performance of our
scheme is better than the baseline scheme. As the amount of data inside the
block increases, the query cost of our solution increases smoothly, whereas the
query cost of the baseline method increases apparently. The reason lies in that as
the number of nodes increases, the baseline method needs to query more useless
subtrees, and the method we propose can solve this type of problem effectively.

Query for Continuous-value Attributes: For query continuous-valued
attributes, it is obvious that the intra-block query performance of our scheme
using R-Tree is much better than non-index query scheme [7]. Moreover, the
performance results of continuous-valued inter-block query efficiency for multi-
dimensional data are shown in Figures 3(c). We choose the method without
SkipListMBR as the baseline method. We can see that our scheme performs
better than the Baseline scheme, since our proposed scheme for inter-block
queries saves the time cost to search unnecessary blocks in blockchain by us-
ing SkipListMBR.

In figure 3(d), we contrast the method without skip list for inter-block query
process to our scheme. It can demonstrate the advantages of generating and
applying skip list for the inter-block query process in blockchain-based FL.

8 Conclusion

In this paper, we optimize the query efficiency of selecting participants in blockchain-
based FL by modifying the blockchain’s structure. By analyzing and comparing
the existing query schemes, our scheme that contains intra-block query and inter-
block query has superority on query performance. In the future, we will further
do explorations in industrial platform of blockchain for varies fields.
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