Skip to main content

Optimal Task Offloading Strategy in Vehicular Edge Computing Based on Game Theory

  • Conference paper
  • First Online:
  • 1196 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13473))

Abstract

In vehicular edge computing, when there are many vehicles requesting offloading services at the same time, relying only on the resources of edge servers often cannot meet the needs of delay-sensitive tasks. Most existing task offloading studies tend to only consider pure offloading strategies for vehicles, which may not be the optimal strategy for some splittable tasks. In this paper, we jointly optimize the vehicle hybrid offloading strategy and the server resource pricing strategy. For a requesting task, it can be executed locally, be offloaded to the edge server, and be offloaded to the cloud center at the same time. We model the interaction between vehicles, the edge server and the cloud center as a game model. Based on the analysis of backward induction, we prove that the game has a unique Nash equilibrium. Meanwhile, an algorithm that can converge to the equilibrium point in polynomial time is proposed. Numerical experimental results show that the proposed algorithm has better performance in terms of delay and cost than existing algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kekki, S., et al.: MEC in 5G networks. ETSI white paper 28, 1–28 (2018)

    Google Scholar 

  2. Raza, S., Wang, S., Ahmed, M., Anwar, M.R.: A survey on vehicular edge computing: architecture, applications, technical issues, and future directions. Wirel. Commun. Mob. Comput. 2019(2), 1–19 (2019)

    Google Scholar 

  3. Liu, L., Chen, C., Pei, Q., Maharjan, S., Zhang, Y.: Vehicular edge computing and networking: a survey. Mob. Netw. Appl. 26(3), 1145–1168 (2021)

    Google Scholar 

  4. Liu, J., Wang, S., Wang, J., Liu, C., Yan, Y.: A task oriented computation offloading algorithm for intelligent vehicle network with mobile edge computing. IEEE Access 7, 180491–180502 (2019). https://doi.org/10.1109/ACCESS.2019.2958883

    Article  Google Scholar 

  5. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet Things J. 6(5), 7635–7647 (2019). https://doi.org/10.1109/JIOT.2019.2903191

    Article  Google Scholar 

  6. He, X., Lu, H., Du, M., Mao, Y., Wang, K.: QoE-based task offloading with deep reinforcement learning in edge-enabled internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(4), 2252–2261 (2021). https://doi.org/10.1109/TITS.2020.3016002

    Article  Google Scholar 

  7. Sun, Y., Guo, X., Zhou, S., Jiang, Z., Liu, X., Niu, Z.: Learning-based task offloading for vehicular cloud computing systems. In: IEEE International Conference on Communications (ICC), pp. 1–7 (2018). https://doi.org/10.1109/ICC.2018.8422661

  8. Zhao, J., Li, Q., Gong, Y., Zhang, K.: Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Trans. Veh. Technol. 68(8), 7944–7956 (2019). https://doi.org/10.1109/TVT.2019.2917890

    Article  Google Scholar 

  9. Pham, X.-Q., Nguyen, T.-D., Nguyen, V., Huh, E.-N.: Joint node selection and resource allocation for task offloading in scalable vehicle-assisted multi-access edge computing. Symmetry 11, 58 (2019). https://doi.org/10.3390/sym11010058

    Article  MATH  Google Scholar 

  10. Zeng, F., Chen, Q., Meng, L., Wu, J.: Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing. IEEE Trans. Intell. Transp. Syst. 22(6), 3247–3257 (2021). https://doi.org/10.1109/TITS.2020.2980422

    Article  Google Scholar 

  11. Yang, F., Yan, J., Guo, Y., Luo, X.: Stackelberg-game-based mechanism for opportunistic data offloading using moving vehicles. IEEE Access 7, 166435–166450 (2019). https://doi.org/10.1109/ACCESS.2019.2952664

    Article  Google Scholar 

  12. Liu, Y., Wang, S., Huang, J., Yang, F.: A computation offloading algorithm based on game theory for vehicular edge networks. In: IEEE International Conference on Communications (ICC) , pp. 1–6 (2018). https://doi.org/10.1109/ICC.2018.8422240

  13. Zhang, J., Guo, H., Liu, J., Zhang, Y.: Task offloading in vehicular edge computing networks: a load-balancing solution. IEEE Trans. Veh. Technol. 69(2), 2092–2104 (2020). https://doi.org/10.1109/TVT.2019.2959410

    Article  Google Scholar 

  14. Guo, H., Zhang, J., Liu, J.: FiWi-enhanced vehicular edge computing networks: collaborative task offloading. IEEE Veh. Technol. Mag. 14(1), 45–53 (2019). https://doi.org/10.1109/MVT.2018.2879537

    Article  Google Scholar 

  15. Shannon, C. E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Google Scholar 

  16. Weber, E.H.: Tastsinn und gemeingefühl (No. 149). W. Engelmann, Leipzig (1905)

    Google Scholar 

  17. Fechner, G.T.: Elemente der psychophysik, Vol. 2. Breitkopf u. Härtel, Leipzig (1860)

    Google Scholar 

  18. Chen, Z.H.: The discrimination method of the concavity and convexity of the binary function and the discussion on the optimum value. Normal Univ. Sci. J. 30(05), 25–28 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Science Foundation of China (Grant No. 62172450), the Key R &D Plan of Hunan Province (Grant No. 2022GK2008) and the Nature Science Foundation of Hunan Province (Grant No. 2020JJ4756). The authors would like to thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Wu, L., Zeng, F. (2022). Optimal Task Offloading Strategy in Vehicular Edge Computing Based on Game Theory. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13473. Springer, Cham. https://doi.org/10.1007/978-3-031-19211-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19211-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19210-4

  • Online ISBN: 978-3-031-19211-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics