Skip to main content

RF-Line: RFID-Based Line Crossing Detection

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13472))

Abstract

Line crossing detection is to check whether people or objects go across a given barrier line, which is quite common and important in our daily life, such as the EAS checkpoint in a retail store or the finish line in track and field. Although existing solutions to line crossing detection have achieved great advancement, they do not function well when multiple objects or people cross the line at the same time. In this paper, we propose a new RFID-based solution called RF-Line to the problem of line crossing detection, especially for multi-object scenarios. The biggest challenge is that the RFID reader’s coverage zone is invisible and irregular; we cannot roughly take the time when a tag is seen by the reader for the first time as the time when line crossing occurs. In RF-Line, we deploy two antennas opposite each other and collect the RF phase profiles of two antennas at the same time. By a series of geometric transformations and mathematical derivations, we find that summing up the two phase profiles will get a new phase curve, in which the inflection point of the curve is the time of line crossing. We implement RF-Line with commodity RFID systems. Extensive experiments show that RF-Line can achieve accurate line crossing detection with a small error of 6.1 cm, with no need for any system calibration or complicated deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, E.P.: Product tags, systems, and methods for crowdsourcing and electronic article surveillance in retail inventory management, March 12 2019. US Patent 10,229,386

    Google Scholar 

  2. Abbott, J.J., Okamura, A.M.: Effects of position quantization and sampling rate on virtual-wall passivity. IEEE Trans. Rob. 21(5), 952–964 (2005)

    Article  Google Scholar 

  3. Ordonez, C., Collins, E.G., Jr., Selekwa, M.F., Dunlap, D.D.: The virtual wall approach to limit cycle avoidance for unmanned ground vehicles. Robot. Auton. Syst. 56(8), 645–657 (2008)

    Article  Google Scholar 

  4. Norman, T.L.: Integrated security systems design: concepts, specifications, and implementation. Elsevier (2011)

    Google Scholar 

  5. Tan, S.: Intelligent entrance guard lock system based on remote control, 2016. US Patent CN106355724A (2016)

    Google Scholar 

  6. Curry, G.: Camera-based tracking and position determination for sporting events using event information and intelligence data extracted in real-time from position information, November 10 2015. US Patent 9,185,361

    Google Scholar 

  7. Newcombe, R., et al.: Real-time camera tracking using depth maps, March 19 2013. US Patent 8,401,242 (2013)

    Google Scholar 

  8. Yang, L., Chen, Y., Li, X.-Y., Xiao, C., Li, M., Liu, Y.: Tagoram: real-time Tracking of mobile RFID tags to high precision using COTS devices. In: Proceedings of ACM MobiCom, pp. 237–248 (2014)

    Google Scholar 

  9. Wang, C., Xie, L., Wang, W., Chen, Y., Xue, T., Sanglu, L.: Probing into the physical layer: moving tag detection for large-scale RFID systems. IEEE Trans. Mob. Comput. 19(5), 1200–1215 (2020)

    Article  Google Scholar 

  10. Wang, J., Katabi, D.: Dude, where’s my card? RFID positioning that works with multipath and non-Line of sight. In: Proceedings of ACM SIGCOMM, pp. 51–62 (2013)

    Google Scholar 

  11. Shangguan, L., Yang, Z., Liu, A.X., Zhou, Z., Liu, Y.: Relative localization of RFID tags using spatial-temporal phase profiling. In: Proceedings of USENIX NSDI, pp. 251–263 (2015)

    Google Scholar 

  12. Wang, G., et al.: HMRL: relative localization of RFID tags with static devices. In: Proceedings of IEEE SECON, pp. 1–9 (2017)

    Google Scholar 

  13. Liu, J., Chen, M., Chen, S., Pan, Q., Che, L.: Tag-compass: determining the spatial direction of an object with small dimensions. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2017)

    Google Scholar 

  14. Chen, X., Liu, J., Wang, X., Liu, H., Jiang, D., Chen, L.: Eingerprint: robust energy-related fingerprinting for passive RFID tags. In: Proceedings of USENIX NSDI, pp. 1101–1113 (2020)

    Google Scholar 

  15. Liu, J., Chen, X., Chen, S., Wang, W., Jiang, D., Chen, L.: Retwork: exploring reader network with COTS RFID systems. In: Proceedings of USENIX ATC, pp. 889–896 (2020)

    Google Scholar 

  16. Qian, C., Liu, Y., Ngan, R.H., Ni, L.M.: ASAP: scalable collision arbitration for large RFID systems. IEEE Trans. Parallel Distrib. Syst. 24(7), 1277–1288 (2013)

    Article  Google Scholar 

  17. Qi, S., Zheng, Y., Li, M., Liu, Y., Qiu, J.: Scalable industry data access control in RFID-enabled supply chain. IEEE/ACM Trans. Networking 24(6), 3551–3564 (2016)

    Article  Google Scholar 

  18. Liu, J., Zhu, F., Wang, Y., Wang, X., Pan, Q., Chen, L.: Rf-scanner: shelf scanning with robot-assisted RFID systems. In: Proceedings of IEEE INFOCOM, pp. 1–9 (2017)

    Google Scholar 

  19. Liu, T., Liu, Y., Yang, L., Guo, Y., Wang, C.: Backpos: high accuracy backscatter positioning system. IEEE Trans. Mob. Comput. 15(3), 586–598 (2016)

    Article  Google Scholar 

  20. Inc Impinj. http://www.impinj.com/

  21. Inc Laird. https://www.lairdconnect.com/rf-antennas/rfid-antennas/s902-series-rfid-antenna

  22. Inc TurtleBot. https://www.turtlebot.com/turtlebot2/

  23. Pupilli, M., Calway, A.: Real-time camera tracking using a particle filter. In: BMVC (2005)

    Google Scholar 

  24. Chiu, T.-Y.: Virtual wall system, November 16 2006. US Patent App. 11/176,244 (2006)

    Google Scholar 

  25. Caccami, M.C., Amendola, S., Occhiuzzi, C.: Method and system for reading RFID tags embedded into tires on conveyors. In: Proceedings of IEEE RFID-TA, pp. 141–144 (2019)

    Google Scholar 

  26. Buffi, A., Nepa, P., Lombardini, F.: A phase-based technique for localization of UHF-RFID tags moving on a conveyor belt: performance analysis and test-case measurements. IEEE Sens. J. 15(1), 387–396 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This research is financially supported by the National Natural Science Foundation of China under Grant 62072231, the Open Project of State Key Laboratory for Novel Software Technology under Grant KFKT2021B15, and the Collaborative Innovation Center of Novel Software Technology and Industrialization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Liu or Zhihong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Xun, K., Chen, X., Wang, X., Liu, J., Zhao, Z. (2022). RF-Line: RFID-Based Line Crossing Detection. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13472. Springer, Cham. https://doi.org/10.1007/978-3-031-19214-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19214-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19213-5

  • Online ISBN: 978-3-031-19214-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics