Skip to main content

Subcarrier Index Modulation Aided Non-Coherent Chaotic Communication System for Underwater Acoustic Communications

  • Conference paper
  • First Online:
  • 1212 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13472))

Abstract

In this paper, a subcarrier index modulation aided code-shifted differential chaos shift keying (SIM-CS-DCSK) system based on orthogonal frequency division multiplexing (OFDM) is proposed. In the proposed system, the transmitted bits are divided into two parts, where one part is used for conventional CS-DCSK modulation and the other part, served as subcarrier mapping bits, is used for the subcarrier index modulation. Benefiting from index modulation, SIM-CS-DCSK can achieve higher data rate compared to conventional multicarrier CS-DCSK system. Numerical simulations indicate that SIM-CS-DCSK has good BER performance over the time and frequency selective fading channels. Specifically, the proposed system outperforms the multicarrier spread-spectrum system (MCSS) by 0.5 dB to 2 dB. Real-field experiments in water pool and lake also confirm the superiority of the proposed system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When the subcarrier index modulation is applied in MCSS [24], the resultant system is referred to as SIM-MCSS.

References

  1. Jahanbakht, M., Xiang, W., Hanzo, L., Rahimi, A.M.: Internet of underwater things and big marine data analytics: a comprehensive survey. IEEE Commun. Surv. Tut. 23(2), 904–956 (2021)

    Article  Google Scholar 

  2. Diamant, R., Lampe, L.: Low probability of detection for underwater acoustic communication: a review. IEEE Access 6, 19099–19112 (2018)

    Article  Google Scholar 

  3. Qarabaqi, P., Stojanovic, M.: Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. IEEE J. Ocean. Eng. 38(4), 701–717 (2013)

    Article  Google Scholar 

  4. Huang, J., Wang, H., He, C., Zhang, Q., Jing, L.: Underwater acoustic communication and the general performance evaluation criteria. Front. Inf. Technol. Electron. Eng. 19(8), 951–971 (2018). https://doi.org/10.1631/FITEE.1700775

    Article  Google Scholar 

  5. Hu, X., Wang, D., Lin, Y., Su, W., Xie, Y., Liu, L.: Multi-channel time frequency shift keying in underwater acoustic communication. Appl. Acoust. Part A 103, 54–63 (2016)

    Article  Google Scholar 

  6. Yang, T.C.: Properties of underwater acoustic communication channels in shallow water. J. Acoust. Soc. Am. 131(1), 129–145 (2012)

    Article  Google Scholar 

  7. Ling, J., He, H., Li, J., Roberts, W., Stoica, P.: Covert underwater acoustic communications. J. Acoust. Soc. Am. 128(5), 2898–2909 (2010)

    Article  Google Scholar 

  8. Xu, X., Zhou, S.: Per-survivor processing for underwater acoustic communications with direct-sequence spread spectrum. J. Acoust. Soc. Am. 133(5), 2746–2754 (2013)

    Article  MathSciNet  Google Scholar 

  9. Kuai, X., Zhou, S., Wang, Z., Cheng, E.: Receiver design for spread-spectrum communications with a small spread in underwater clustered multipath channels. J. Acoust. Soc. Am. 141(3), 1627–1642 (2017)

    Article  Google Scholar 

  10. Liu, Z., Yoo, K., Yang, T.C., Cho, S.E., Song, H.C., Ensberg, D.E.: Long-range double-differentially coded spread spectrum acoustic communications with a towed array. IEEE J. Ocean. Eng. 39(3), 482–490 (2014)

    Article  Google Scholar 

  11. Qu, F., Qin, X., Yang, L., Yang, T.C.: Spread-spectrum method Using multiple sequences for underwater acoustic communications. IEEE J. Ocean. Eng. 43(4), 1215–1226 (2018)

    Article  Google Scholar 

  12. Sherlock, B., Neasham, J.A., Tsimenidis, C.C.: Spread-spectrum techniques for bio-friendly underwater acoustic communications. IEEE Access 6, 4506–4520 (2018)

    Article  Google Scholar 

  13. Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. Analog. II Digit. Signal Process 40(10), 634–642 (1993)

    Article  Google Scholar 

  14. Fang, Y., Han, G., Chen, P., Lau, F.C.M., Chen, G., Wang, L.: A survey on DCSK-based communication systems and their application to UWB scenarios. IEEE Commun. Surv. Tut. 18(3), 1804–1837 (2016)

    Article  Google Scholar 

  15. Shu, X., Wang, J., Wang, H., Yang, X.: Chaotic direct sequence spread spectrum for secure underwater acoustic communication. Appl. Acoust. 104, 57–66 (2016)

    Article  Google Scholar 

  16. Bai, C., Ren, H.P., Li, J.: A differential chaos-shift keying scheme based on hybrid system for underwater acoustic communication. In: Proceedings IEEE/OES China Ocean Acoustics (COA), pp. 1–5. IEEE, Harbin, China (2016)

    Google Scholar 

  17. Bai, C., Ren, H.P., Grebogi, C., Baptista, M.S.: Chaos-based underwater communication with arbitrary transducers and bandwidth. Appl. Sci. 8(2), 1–11 (2018)

    Article  Google Scholar 

  18. Bai, C., Ren, H.P., Baptista, M.S., Grebogi, C.: Digital underwater communication with chaos. Commun. Nonlinear Sci. 73, 14–24 (2019)

    Article  MATH  Google Scholar 

  19. Xu, W., Wang, L., Kolumban, G.: A novel differential chaos shift keying modulation scheme. Int. J. Bifur. Chaos 21(3), 799–814 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, M., Xu, W., Wang, D., Wang, L.: A multi-carrier chaotic communication scheme for underwater acoustic communications. IET Commun. 13(14), 2097–2105 (2019)

    Article  Google Scholar 

  21. Xu, F., Zhan, C., Xie, Y., Wang, D.: Performance of CZT-assisted parallel combinatory multicarrier Frequency-Hopping Spread Spectrum over shallow underwater acoustic channels. Ocean Eng. 110, 116–125 (2015)

    Article  Google Scholar 

  22. Basar, E.: Index modulation techniques for 5G wireless networks. IEEE Commun. Mag. 54(7), 168–175 (2016)

    Article  Google Scholar 

  23. Wen, M., Cheng, X., Yang, L., Li, Y., Cheng, X., Ji, F.: Index modulated OFDM for underwater acoustic communications. IEEE Commun. Mag. 54(5), 132–137 (2015)

    Article  Google Scholar 

  24. van Walree, P.A.: Comparison between direct-sequence and multiuser spread-spectrum acoustic communications in time varying channels. J. Acoust. Soc. Am. 128(6), 3525–3534 (2010)

    Article  Google Scholar 

  25. Tu, K., Fertonani, D., Duman, T.M., Stojanovic, M., Proakis, J.G., Hursky, P.: Mitigation of intercarrier interference for OFDM over time-varying underwater acoustic channels. IEEE J. Ocean. Eng. 36(2), 156–171 (2011)

    Article  Google Scholar 

  26. Aval, Y.M., Stojanovic, M.: Differentially coherent multichannel detection of acoustic OFDM signals. IEEE J. Ocean. Eng. 40(2), 251–268 (2015)

    Article  Google Scholar 

  27. van Walree, P.A., Socheleau, F., Otnes, R., Jenserud, T.: The watermark benchmark for underwater acoustic modulation schemes. IEEE J. Ocean. Eng. 42(4), 1007–1018 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, D., You, M., Xu, W., Wang, L. (2022). Subcarrier Index Modulation Aided Non-Coherent Chaotic Communication System for Underwater Acoustic Communications. In: Wang, L., Segal, M., Chen, J., Qiu, T. (eds) Wireless Algorithms, Systems, and Applications. WASA 2022. Lecture Notes in Computer Science, vol 13472. Springer, Cham. https://doi.org/10.1007/978-3-031-19214-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19214-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19213-5

  • Online ISBN: 978-3-031-19214-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics