Skip to main content

Each Snapshot to Each Space: Space Adaptation for Temporal Knowledge Graph Completion

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13489))

Abstract

Temporal knowledge graphs (TKGs) organize and manage the dynamic relations between entities over time. Inferring missing knowledge in TKGs, known as temporal knowledge graph completion (TKGC), has become an important research topic. Previous models handle all facts with different timestamps in an identical latent space, even though the semantic space of the TKG changes over time. Therefore, they are not effective to reflect the temporality of knowledge. To effectively learn the time-aware information of TKGs, different latent spaces are adapted for temporal snapshots at different timestamps, which yields a novel model, i.e., Space Adaptation Network (SANe). Specifically, we extend convolutional neural networks (CNN) to map the facts with different timestamps into different latent spaces, which can effectively reflect the dynamic variation of knowledge. Meanwhile, a time-aware parameter generator is designed to explore the overlap of latent spaces, which endows CNN with specific parameters in term of the context of timestamps. Therefore, knowledge in adjacent time intervals is efficiently shared to boost the performance of TKGC, which can learn the validity of knowledge over a period of time. Extensive experiments demonstrate that SANe achieves state-of-the-art performance on four well-established benchmark datasets for temporal knowledge graph completion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Our code will be publicly available at https://github.com/codeofpaper/SANe.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Balažević, I., Allen, C., Hospedales, T.: Tucker: tensor factorization for knowledge graph completion. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5185–5194 (2019)

    Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2, pp. 2787–2795 (2013)

    Google Scholar 

  5. Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S., Starz, J., Ward, M.: Icews coded event data. Harvard Dataverse 12 (2015)

    Google Scholar 

  6. Che, F., Zhang, D., Tao, J., Niu, M., Zhao, B.: Parame: regarding neural network parameters as relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 2774–2781 (2020)

    Google Scholar 

  7. Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)

    Google Scholar 

  8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  9. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing wikidata to the linked data web. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_4

    Chapter  Google Scholar 

  10. Garcia-Duran, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4816–4821 (2018)

    Google Scholar 

  11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  12. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  13. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3988–3995 (2020)

    Google Scholar 

  14. Guo, Q., et al.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  15. Jain, P., Rathi, S., Chakrabarti, S., et al.: Temporal knowledge base completion: New algorithms and evaluation protocols. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3733–3747 (2020)

    Google Scholar 

  16. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long papers), pp. 687–696 (2015)

    Google Scholar 

  17. Jin, T., Liu, Z., Yan, S., Eichenberger, A., Morency, L.P.: Language to network: Conditional parameter adaptation with natural language descriptions. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (2020)

    Google Scholar 

  18. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inferenceover temporal knowledge graphs. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6669–6683 (2020)

    Google Scholar 

  19. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 4289–4300 (2018)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  21. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. In: International Conference on Learning Representations (2020)

    Google Scholar 

  22. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: International Conference on Machine Learning, pp. 2863–2872. PMLR (2018)

    Google Scholar 

  23. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Companion Proceedings of the The Web Conference 2018, pp. 1771–1776 (2018)

    Google Scholar 

  24. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  25. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  26. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: a knowledge base from multilingual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Conference (2014)

    Google Scholar 

  27. Messner, J., Abboud, R., Ceylan, I.I.: Temporal knowledge graph completion using box embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  28. Nekvinda, T., Dušek, O.: One model, many languages: meta-learning for multilingual text-to-speech. Proc. Interspeech 2020, 2972–2976 (2020)

    Google Scholar 

  29. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 809–816 (2011)

    Google Scholar 

  30. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  31. Platanios, E.A., Sachan, M., Neubig, G., Mitchell, T.: Contextual parameter generation for universal neural machine translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 425–435 (2018)

    Google Scholar 

  32. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: Chronor: rotation based temporal knowledge graph embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6471–6479 (2021)

    Google Scholar 

  33. Saxena, A., Tripathi, A., Talukdar, P.: Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4498–4507 (2020)

    Google Scholar 

  34. Shao, P., Zhang, D., Yang, G., Tao, J., Che, F., Liu, T.: Tucker decomposition-based temporal knowledge graph completion. Knowl.-Based Syst. 238, 107841 (2022)

    Article  Google Scholar 

  35. Stoica, G., Stretcu, O., Platanios, E.A., Mitchell, T., Póczos, B.: Contextual parameter generation for knowledge graph link prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3000–3008 (2020)

    Google Scholar 

  36. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2019)

    Google Scholar 

  37. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48, pp. 2071–2080 (2016)

    Google Scholar 

  38. Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., Talukdar, P.: Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3009–3016 (2020)

    Google Scholar 

  39. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  40. Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: Temp: temporal message passing for temporal knowledge graph completion. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5730–5746 (2020)

    Google Scholar 

  41. Wu, J., Xu, Y., Zhang, Y., Ma, C., Coates, M., Cheung, J.C.K.: Tie: a framework for embedding-based incremental temporal knowledge graph completion. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 428–437 (2021)

    Google Scholar 

  42. Xu, C., Chen, Y.Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph completion using a linear temporal regularizer and multivector embeddings. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2569–2578 (2021)

    Google Scholar 

  43. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Tero: a time-aware knowledge graph embedding via temporal rotation. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 1583–1593 (2020)

    Google Scholar 

  44. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H., Lehmann, J.: Temporal knowledge graph completion based on time series gaussian embedding. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12506, pp. 654–671. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_37

    Chapter  Google Scholar 

  45. Xu, Y., et al.: Rtfe: a recursive temporal fact embedding framework for temporal knowledge graph completion. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 5671–5681 (2021)

    Google Scholar 

  46. Yang, B., Yih, S.W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (ICLR) 2015 (2015)

    Google Scholar 

  47. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 2735–2745 (2019)

    Google Scholar 

  48. Zhang, Z., Zhuang, F., Zhu, H., Shi, Z., Xiong, H., He, Q.: Relational graph neural network with hierarchical attention for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 9612–9619 (2020)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Fund of the State Key Laboratory of Software Development Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhang, X., Zhang, B., Ren, H. (2022). Each Snapshot to Each Space: Space Adaptation for Temporal Knowledge Graph Completion. In: Sattler, U., et al. The Semantic Web – ISWC 2022. ISWC 2022. Lecture Notes in Computer Science, vol 13489. Springer, Cham. https://doi.org/10.1007/978-3-031-19433-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19433-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19432-0

  • Online ISBN: 978-3-031-19433-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics