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Abstract. Despite the large-scale uptake of semantic technologies in the biomed-
ical domain, little is known about common modelling practices in published
ontologies. OWL ontologies are often published only in the crude form of sets
of axioms leaving the underlying design opaque. However, a principled and sys-
tematic ontology development life cycle is likely to be reflected in regularities of
the ontology’s emergent syntactic structure. To develop an understanding of this
emergent structure, we propose to reverse-engineer ontologies taking a syntax-
directed approach for identifying and analysing regularities for axioms and sets of
axioms. We survey BioPortal in terms of syntactic modelling trends and common
practices for OWL axioms and class frames. Our findings suggest that biomedical
ontologies only share simple syntactic structures in which OWL constructors are
not deeply nested or combined in a complex manner. While such simple structures
often account for large proportions of axioms in a given ontology, many ontologies
also contain non-trivial amounts of more complex syntactic structures that are not
common across ontologies.

1 Introduction

The uptake of OWL in the biomedical domain has lead to the development of a large
number of ontologies as well as tools providing support for ontology construction and
maintenance. While some ontologies are documented to follow pattern-based design
principles, e.g., [19,21], little is known about what kind of design choices, principles, and
patterns are widely-used, how they impact ontology engineering in practice. Comparing
ontologies in terms of their design rationales is often challenging because different
ontology are developed and maintained using a wide range of methodologies, techniques,
and tools. Moreover, ontologies are often published as a single file with scarce to no
documentation. Yet, a principled and systematic ontology design is likely to be reflected
in regularities of the ontology’s emergent syntactic structure.

So, to develop an understanding of common practices in ontology engineering, we
propose to reverse-engineer ontologies in terms of syntactic regularities. Identified
regularities may then be analysed and compared to distil common modelling structures
both within and across ontologies. In this work, we focus on the syntactic structure
of logical expressions in OWL ontologies. In particular, we analyse the way they are
composed and combined. The contributions are as follows: (i) we adapt and simplify
the formal framework for identifying syntactic regularities originally proposed in [9,10],
(ii) we extend this framework by developing methods for analysing such regularities
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w.r.t. their underlying syntactic structures, and (iii) we conduct an empirical study to
characterise the syntactic structure of axioms and class frames in biomedical ontologies.

This paper is accompanied by a technical report [11] providing more detailed exam-
ples, an in-depth discussion about differences between this and prior work, and a more
elaborate presentation of both the motivation and potential impact of our work.

2 Preliminaries

We assume the reader to be familiar with Description Logics (DL) [1] and the Web
Ontology Language (OWL) [5]. We use DL notation for the sake of readability but
interpret logical constructors as specified by OWL. Furthermore, we use both infix and
prefix notation for presentational purposes, e.g., SubClassOf (A,B) may be written
as A v B or v(A,B). We disregard OWL annotations, i.e., axioms with and without
annotations are indistinguishable.

A directed labelled graph g is an ordered pair (N,E,L) where N is a set of nodes,
L is a set of labels, and E ⊆ N ×L×N is a set of edges. A graph s = (N ′, E′, L′) is a
subgraph of g, written s . g, ifN ′ ⊆ N anE′ ⊆ E. A graph isomorphism between two
graphs g1 = (N1, E1, L1) and g2 = (N2, E2, L2) is a bijection f : N1∪L1 → N2∪L2

s.t. (n, l, n′) ∈ E1 iff (f(n), f(l), f(n′)) ∈ E2. Two graphs are isomorphic if there
exists an isomorphism between them. A contraction of an edge e = (n1, l, n2) ∈ E
with n1 6= n2 is an operation that first removes e from E and replaces both n1 and n2
with a single node n′ and then makes any node (originally) adjacent to either n1 or n2
adjacent to n′. A minor of a graph is a graph obtained by (iteratively) contracting edges,
removing edges, or removing nodes without adjacent nodes.

3 Framework for Syntax-Directed Analysis of OWL Ontologies

3.1 Syntactic Regularities

We analyse structures in OWL ontologies using a syntax-directed approach based on
their abstract representation according to the structural specification for OWL 2 [16].
This abstract representation can be captured by abstract syntax trees (AST).

Definition 1 (OWL Abstract Syntax Tree). Let ϕ be an OWL expression. Then, the
abstract syntax tree for T (ϕ) is defined as follows:

– if ϕ is atomic, then T (ϕ) is a node labelled with ϕ,
– if ϕ = C(ψ1, . . . , ψn), where C is an OWL constructor and ψ1, . . . , ψn are OWL

expressions, then T (ϕ) = C

T (ψ1) . . . T (ψn)

`(ϕ, 1) `(ϕ, n)

where ` is a labelling function for branches s.t. `(ϕ, i) specifies how a subexpression
ψi at position i is used in relation to C.
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The labelling function ` is used to treat abstract syntax trees for OWL expressions
uniformly as unordered trees even in cases where the order of arguments for OWL
constructors matters. Consider for example the AST of SubClassOf (A,B). Here the
branches to A and B would be labelled with "Subclass" and "Superclass" respectively.
In the following, we will not distinguish between OWL axioms and their ASTs, i.e., an
axiom will be referred to simply as a tree (meaning its AST) and vice versa. Similarly,
an ontology can be understood as a set of trees.

Given the notion of OWL abstract syntax trees, we can formulate syntax-directed
transformations for OWL abstract syntax trees that highlight specific syntactic properties
of OWL expressions. In particular, we can highlight shared syntactic properties between
OWL axioms to identify recurring expressions. Consider the axioms α1 = A1 v ∃P.A2

and α2 = B1 v ∃Q.B2. While both axioms differ in terms of named classes and
properties, they coincide otherwise. This structural similarity can be highlighted via
a syntax-directed transformation that abstracts over syntactic properties in which two
axioms differ. For example, with a transformation G that replaces atomic entities with a
placeholder symbol, say ∗, we have G(α1) = G(α2) = ∗ v ∃ ∗ . ∗ . Put differently, α1

and α2 exhibit the same syntactic structure that is preserved under the abstraction G.
An abstraction is intuitively understood as an operation that hides some level of detail.
This intuition can be captured for transformations of ASTs by restricting them to the
removal of branches and nodes.

Definition 2 (Language Abstraction). An abstraction for a tree language L into a tree
language L′ is defined by a function A : L → L′ such that

1. there exist t, t′ ∈ L s.t. t 6= t′ with A(t) = A(t′),
2. for t ∈ L there exists a graph minor tm that is isomorphic to A(t).

The second condition formalises the idea of only allowing the removal of a tree’s
branches and nodes whereas the first condition requires that an abstraction hides some
kind of information so that two syntax trees become indistinguishable. Coming back to
the earlier observation that G(α1) = G(α2), we note that axiom equality under a given
abstraction gives rise to an equivalence relation w.r.t. the syntactic structure of axioms in
an ontology. We refer to corresponding equivalence classes as syntactic regularities.

Definition 3 (Syntactic Regularity for Axioms). A syntactic regularity for axioms in
an ontology O is an equivalence class [α]A = {αi ∈ O | A(αi) = A(α)}, where A is a
language abstraction.

While axioms are the primary building blocks in OWL ontologies, an entity is often
not represented by single axiom but by a set of axioms. So, in addition to regularities
for axioms, we are also interested in regularities for sets of axioms. We defer the
discussion of how to group related axioms into sets until Section 3.2. Here, we only
note that the notion of syntactic regularities for axioms can be lifted to sets of axioms
in a straightforward way. By abuse of notation, we write A(S) to denote a language
abstraction on forests of syntax trees S rather than syntax trees only.

Definition 4 (Syntactic Regularity for Sets of Axioms). Let S = {S1, . . . , Sn} be a
family of sets of axioms in an ontology O. A syntactic regularity for sets of axioms in
O w.r.t. S is an equivalence class [S]A = {Si ∈ S | A(S) = A(Si)} where A is a
language abstraction.
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O = { α1 = A v u(A1,A2),
α2 = B v u(B1,B2),
α3 = C v u(C1,C2,C3) }

[α1]G = {α1, α2}
[α3]G = {α3}
[α1]I = {α1, α2, α3}

v

∗ u

∗ ∗

v

∗ u

∗ ∗ ∗

v

u

(a) (b) (c)

Fig. 1: Example of the language abstractions G and I applied to a sample ontology, and their
associated modelling structures: (a) shows the sample ontology (of three axioms) and its syntactic
regularities under G and I , (b) displays the two modelling structures for O under G, while (c)
shows the single modelling structure for O under I . Branch labels are not shown.

3.2 Modelling Structures

A syntactic regularity w.r.t. a language abstraction is uniquely determined by an abstract
syntactic structure, namely the abstract syntax tree or forest that each of its elements are
mapped to under the used language abstraction. We will refer to these abstract structures
as modelling structures.

Definition 5 (Modelling Structure). Let O be an OWL ontology, α ∈ O, and S ⊆ O,
and A a language abstraction. Then A(α) and A(S) are modelling structures for α and
S under A respectively.

So, a language abstraction gives rise to syntactic regularities in an ontology and
each syntactic regularity is associated with a modellling structure. In the following,
we provide concrete examples for these notions. We already mentioned the language
abstraction G that highlights structural similarities between axioms by abstracting over
atomic entities. We will refer to this abstraction as the ground generalisation.

Definition 6 (Ground Generalisation). Let t be an OWL abstract syntax tree. The
Ground Generalisation G(t) of t is a language abstraction defined by a function G that
replaces the label of each leaf node in t with the label ∗ .

The example ontology in Figure 1(a) has two syntactic regularities w.r.t. G, namely
[α1]G = {α1, α2} and [α3]G = {α3}, which each give rise to a modelling structure
under G, shown in Figure 1(b): G(α1) = G(α2) = ∗ v u(∗, ∗) and G(α3) = ∗ v
u(∗, ∗, ∗). Note that we use prefix notation for the n-ary constructor u to avoid notational
ambiguity. However, all three axioms in the example can be characterised in terms of the
nesting of OWL constructors, i.e., all three are subsumption axioms with a conjunction
on the right-hand side. The nesting of constructors in OWL axioms can be distilled with
a transformation that removes all leaf nodes (and corresponding branches) from the
axiom’s associated abstract syntax tree. We will refer to the nesting structure of OWL
constructors as an axiom’s internal tree structure.

Definition 7 (Internal Tree Structure). Let t be an OWL abstract syntax tree. The
internal tree structure I(t) of t is a language abstraction defined by a function I that
removes all leaf nodes and corresponding branches from t.
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The example ontology in Figure 1(a) has only one syntactic regularity w.r.t. I , shown
in Figure 1(c), since I(α1) = I(α2) = I(α3). Intuitively, the abstraction I abstracts
over more syntactic properties compared to G which leads to fewer but larger syntactic
regularities (where the size of a regularity is the number of its elements, i.e., axioms).

As already mentioned in Section 3.1, conceptual models for domain-specific entities
are, more often than not, represented with a set of axioms rather than with a single axiom.
The notion of a class frame is widely used for grouping conceptually related axioms in
OWL ontologies [7,18].

Definition 8 (Class Frame). A class frame CF (C,O) for a class expression C in an on-
tologyO is defined as the set: CF (C,O) = {α ∈ O | α = SubClassOf (C,C′), or α =
EquivalentClasses(C,C1, . . . ,Cn)}, or α = DisjointClasses(C,C1, . . . ,Cn)}, or
α = DisjointUnion(C,C1, . . . ,Cn)}.

The abstractions I and G for abstract syntax trees of axioms can be lifted to forests of
abstract syntax trees in a straightforward manner.

Definition 9 (Multiset Lifting of Language Abstractions). Let F be a forest of OWL
abstract syntax trees and A a language abstraction for OWL abstract syntax trees. Then
the image A(F ) of F under A is defined as the multiset A(F ) = {A(t) | t ∈ F}.

We define A(F ) as a multiset to account for repetitions of axioms with the same mod-
elling structure. Consider the set F = {SubClassOf (C,B),SubClassOf (C,D)}. Us-
ing a set for the lifiting of G would yield {SubClassOf (∗, ∗)} instead of the desired
multiset. We write αx to denote the x-fold repetition of modelling structure α. So,
{SubClassOf (∗, ∗)2} denotes the multiset {SubClassOf (∗, ∗),SubClassOf (∗, ∗)}.

3.3 Relations between Modelling Structures

The intention of G with regards to syntactic regularities is to group OWL axioms
or sets of axioms based on the way OWL constructors are combined and nested. In
particular, any difference between axioms in terms of used OWL constructors will be
captured by different syntactic regularities. Consider the axioms α1 = A v ∃ R.B and
α2 = A v ∃ R.(∃ R.B). Clearly, G(α1) 6= G(α2). Note, however, that the nesting of
OWL constructors in α1, i.e., its internal tree structure I(α1), occurs as a substructure in
α2. We can formalise this substructure relationship via subgraphs in modelling structures.

Definition 10 (Structure Containment). Let t and t′ be two OWL abstract syntax trees.
Then, t structurally contains t′, written t .G

I t′, if

1. I(t) . I(t′) and I(t) 6= I(t′), or
2. G(t) . G(t′) and I(t) = I(t′).

The two cases in the definition for structure containment are owed to n-ary con-
structors. In the case of two OWL expressions e and e′ that only involve constructors
with a fixed arity we have that I(e) = I(e′) implies G(e) = G(e). However, this is not
the case for expressions involving n-ary constructors. Consider for example the axioms
α1 = A v u(C1,C2) and α2 = A v u(C1,C2,C3). Here, we have I(α1) = I(α2)
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but G(α1) 6= G(α2). So, defining the substructure containment between OWL abstract
syntax trees only in terms of their internal tree structures would ignore structural infor-
mation about n-ary constructors. The second case in Definition 10 rectifies this so that
α2 structurally contains α1. The structure containment relation defines a partial order on
OWL abstract syntax trees and thus induces a partial order on syntactic regularities for
axioms.

Lemma 1 (Partial Order on Ground Generalisations). Let [t1]G, . . . , [tn]G be syn-
tactic regularities for axioms w.r.t. G in an ontology O. Then the relation .G

I induces a
partial order on [t1]G, . . . , [tn]G.

Similarly, we can induce a partial order on syntactic regularities for class frames w.r.t.
G by defining a containment relation based on a notion of subsets for multisets. That
is, for each number of axioms with the same ground generalisation in one class frame
there needs to exist at least as many axioms with an identical ground generalisation in
the other class frame.

Definition 11 (Class Frame Containment). Let C and C ′ be class frames in an on-
tology O. If there exists an injective mapping m : C → C ′ s.t. t ∈ C implies that
G(t) = G(m(t)), then C ′ contains C, written C .G C ′.

Lemma 2 (Partial Order on Class Frames). Let [C1], . . . , [Cn] be syntactic regulari-
ties for class frames in an ontology O. Then the relation .G for class frames induces a
partial order on [C1], . . . , [Cn].

4 Methods

Research Questions. To develop a first understanding of syntactic structures in pub-
lished ontologies, we focus on properties related to OWL constructors for class ex-
pressions. In particular, we investigate to what extent such constructors are nested and
combined to give rise to more complex structures. Furthermore, we aim to identify and
characterise common structures within and across ontologies. Lastly, we investigate to
what extent distinct syntactic structures are related by shared substructures.

Experimental Design. Since we are interested in the way OWL constructors are
used in OWL ontologies, we will investigate syntactic regularities w.r.t. the language
abstraction G proposed in Section 3.2. So, we will refer to syntactic regularities based
on G (for axioms and class frames) simply as regularities (for axioms and class frame
respectively) unless stated otherwise. Likewise, we will not explicitly specify that
modelling structures for regularities are based on G unless the context is ambiguous. Our
investigation consists of five experiments. In the following, we give a brief description
for each of these experiments and describe the construction of the experimental corpus
of ontologies using BioPortal. We refer the interested reader to the technical report [11]
for a discussion of using BioPortal for the purposes of this study.

1. Number of Syntactic Regularities. We determine to what extent ontologies give
rise to different regularities, i.e., contain different syntactic structures.

2. Size of Syntactic Regularities. We give an account of the size of syntactic regulari-
ties. Since a regularity is a set, its size is defined by the number of its elements.
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3. Characteristics of Common Modelling Structures. We determine what kind of
modelling structures are common within and across ontologies. For this purpose, we
inspect the three largest syntactic regularities in each ontology and qualify their associ-
ated modelling structures in terms of the nesting and combination of OWL constructors.
Furthermore, we compare the modelling structures associated with large regularities
across ontologies to identify structures of a general nature.

4. Size and Depth of Modelling Structures. We determine to what extent OWL
constructors are nested and combined in modelling structures. For this purpose, we
report on the maximal size and depth of modelling structures in ontologies. Since a
modelling structure for axioms is a tree, its depth is defined as its tree depth, i.e., the
longest path from its root to a child. In the case of modelling structures for class frames,
their depth is defined as the maximal depth of its axioms.

5. Interrelations between Syntactic Regularities. We determine to what extent syntac-
tic regularities in ontologies are structurally related. So, we analyse the partially ordered
sets of syntactic regularities w.r.t. the notions of structural containment (cf. Section 3.3).
In particular, we construct the Hasse diagrams associated with said posets for each
ontology and report on their longest paths, i.e, their depth, as well as their maximal
branching factors.

Ontology Corpus. We work with a recent (February 2022) snapshot of BioPortal
created in the same way as described in [14]. The data set of ontologies encompasses a
total of 736 ontologies. We use the OWL API1 (v.5.1.15) to orchestrate all experiments.
Therefore, we restrict the experimental corpus to ontologies that can be loaded with the
OWL API. We load ontologies without their imports closure to avoid double counting
syntactic structures that are imported by different ontologies. Furthermore, we exclude
ontologies that do not contain class expression axioms because our experiments are
restricted to class expression axioms. Lastly, we exclude ontologies for which we could
not compute all syntactic regularities and their interrelations within one hour. This
procedure results in an experimental corpus of 657 ontologies.

In our experiments, we distinguish between three kinds of ontologies. First, on-
tologies that consist of atomic axioms only, i.e., SubClassOf and EquivalentClasses
axioms that have only named classes as arguments. Second, ontologies expressible in
EL++. And third, ontologies not expressible in EL++. We refer to these three kinds of
ontologies as atomic, EL++, and rich ontologies respectively. Figure 2 shows the size of
an ontology’s TBox as well as the size of its subset of class expression axioms. We order
ontologies within a category by size and assign each ontology an index in ascending
order starting with atomic ontologies as shown in Figure 2. The corpus contains 94
atomic ontologies, 90 EL++ ontologies, and 473 rich ontologies.

5 Results

We present results for the five experiments as specified in Section 4 in separate subsec-
tions. We remind the reader that our experimental design distinguishes between three
categories of ontologies (atomic, EL++, and rich) and that we have two experimental

1 http://owlcs.github.io/owlapi/

http://owlcs.github.io/owlapi/
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Fig. 2: Number of TBox axioms (a) and class expression axioms (b).

conditions for all three categories, namely, (a) regularities for axioms and (b) regularities
for class frames.

5.1 Experiment 1: Number of Syntactic Regularities

The number of different syntactic regularities for (a) axioms and (b) class frames are
shown in Figure 3 for all three categories of ontologies.

The data reveals that atomic and EL++ ontologies give rise to mostly only one or
two regularities for axioms whereas rich ontologies give rise to varying numbers of
regularities for axioms. While the largest number of regularities can be found in large
rich ontologies, it is not the case that all large ontologies give rise to many regularities.

Even though atomic and EL++ ontologies exhibit only a few regularities for axioms
and thus contain mostly axioms of the same syntactic structure, these axioms are com-
bined in many ontologies to give rise to a comparatively larger number of regularities
for class frames. For example, the EL++ ontology RH-MESH at index 183 has only
two regularities for axioms but 65 regularities for class frames. Similarly, most rich
ontologies, especially larger ones beyond index 351 (with about 350 axioms), often
give rise to considerably more regularities for class frames compared to regularities for
axioms. For example, the rich ontology FMA at index 652 gives rise to 99 regularities
for axioms and 3487 regularities for class frames.

5.2 Experiment 2: Size of Syntactic Regularities

The results of Experiment 1 show that many rich ontologies give rise to a fair number
of regularities for axioms. In [10], the same result was found for an older snapshot of
BioPortal and it was reported that only a few of these regularities for axioms are large. In
particular, in the case of regularities for axioms, it was determined that 90% of axioms
in many ontologies can be covered by one to three regularities in all three ontology
categories. However, the same could not be reported for regularities of class frames;
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Fig. 3: Number of regularities (with respect to G) for (a) axioms and (b) class frames in atomic,
EL++, and rich ontologies.

Table 1: Number of ontologies giving rise to a minimal number of regularities (both for axioms
and class frames) with a minimal size of 10, 100, and 1000.

Min. Regularities Min. Size
Number of Ontologies

Regularities for Axioms Regularities for Class Frames
Atomic EL++ Rich Atomic EL++ Rich

5
10 - - 127 1 37 189

100 - - 35 1 6 64
1000 - - 8 - 1 21

10
10 - - 45 - 9 108

100 - - 7 - 1 34
1000 - - - - - 5

especially for larger rich ontologies. In the case of class frames, it was reported that often
more than ten regularities are required to account for 90% of axioms in a given ontology.

While this finding gives some indication for the size of the three largest regularities
in ontologies, it is important to keep in mind that many ontologies in our experimental
corpus contain several thousands of axioms and that small relative proportions of an
ontology can still correspond to many axioms. So, to give an account of the size of
regularities in terms of absolute numbers, we report on the number of ontologies that
contain at least five or ten regularities with a minimal size of (i) ten, (ii) a hundred or
(iii) a thousand elements in Table 1.

It transpires that mostly rich ontologies give rise to multiple regularities of non-trivial
sizes within a given ontology. In the case of regularities for axioms, for example, there
are 35 rich ontologies with at least 5 regularities that have at least 100 elements. In the
case of regularities for class frames, there are even 34 rich ontologies with at least 10
regularities that have at least 100 elements. This confirms to some extent the hypothesis
that there exist ontologies with more than three regularities of non-trivial size. However,
increasing either the number of minimal regularities, e.g., to ten, or the number of
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minimal elements, e.g., to 1000, reveals that there are only a few ontologies with many
regularities of considerable size.

Lastly, we note that many rich ontologies do not give rise to at least 5 regularities with
a minimal size of ten. This is interesting in the context of the total number of ontologies
(cf. Section 5.1) that give rise to 5 or more regularities. In the case of regularities for
axioms, there are 285 such rich ontologies which means that 285−127 = 158 ontologies
contain only a few large regularities despite giving rise to 5 or more. Similarly, in the
case of regularities for class frames, there are 364− 189 = 175 such ontologies.

5.3 Experiment 3: Characteristics of Common Modelling Structures

We remind the reader that each syntactic regularity is associated with a unique mod-
elling structure. So, we can identify common syntactic structures within an ontology by
inspecting the modelling structures of the ontology’s largest regularities. Furthermore,
we can identify common syntactic structures across ontologies by comparing modelling
structures associated with the largest regularities within ontologies.

The three largest regularities for axioms across atomic, EL++, and rich ontologies
give rise to 2, 11, and 103 distinct modelling structures respectively. Table 2 lists those
modelling structures2 that occur across at least 20 different ontologies. The values in
the last three columns of Table 2 reveal the actual number of ontologies in which a
given modelling structure is associated with one of the three largest regularities, e.g., the
modelling structure EquivalentClasses(∗, ∗) is associated with one of the three largest
regularities in two atomic ontologies, two EL++ ontologies, and 24 rich ontologies.

Overall, it transpires that only a few modelling structures for axioms are common
both within and across ontologies. Furthermore, these modelling structures are fairly
simple in regards to the way OWL constructors are nested and combined. Nevertheless,
it is important to keep in mind that rich ontologies exhibit a large variety of modelling
structures that are associated with their respective largest regularities. It is also important
to mention that many such structures are more complex compared to the ones shown in
Table 2. For example, the second largest regularity in the ontology HOOM with 78738
elements is associated with the modelling structure

EquivalentClasses(*, ObjectIntersectionOf (ObjectSomeValuesFrom(*,*),
ObjectSomeValuesFrom(*,*), ObjectSomeValuesFrom(*,*),

ObjectSomeValuesFrom(*,*), DataHasValue(*,*))).

So, while common modelling structures for axioms across ontologies are mostly simple,
common modelling structures within ontologies can also be rather complex.

The three largest regularities for class frames across atomic, EL++, and rich on-
tologies give rise to 6, 28, and 209 distinct modelling structures respectively. Table 3
lists those modelling structures for class frames that occur across at least 20 different
ontologies in the same manner as Table 2 lists modelling structures for axioms. The
results are similar to the case for regularities for axioms in the sense that common
modelling structures for class frames across ontologies are mostly simple, i.e., the class

2 The prefix “Object” in some OWL expressions is abbreviated with the capital letter “O” for
presentational purposes.
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Table 2: Common modelling structures across ontologies. A modelling structure is considered
common in a given ontology if it associated with one of its three largest regularities. Ordered by
total number of ontologies.
Row Modelling Structure Atomic EL++ Rich

1 SubClassOf (∗, ∗) 94 88 466
2 SubClassOf (∗,OSomeValuesFrom(∗, ∗)) - 68 270
3 DisjointClasses(∗, ∗) - - 103
4 EquivalentClasses(∗,OIntersectionOf (∗,OSomeValuesFrom(∗, ∗))) - 1 70
5 SubClassOf (∗,OAllValuesFrom(∗, ∗)) - - 44
6 EquivalentClasses(∗, ∗) 2 2 24
7 SubClassOf (∗,OExactCardinality(∗, ∗, ∗)) - - 20

Table 3: Number of ontologies in which its the three largest regularities for class frames is
associated with a given modelling structure. Ordered by total number of ontologies.
Row Modelling Structure Atomic EL++ Rich

1 {SubClassOf (∗, ∗)1} 94 67 431
2 {SubClassOf (∗, ∗)2} 37 32 106
3 {SubClassOf (∗, ∗)3} 16 15 20
4 {SubClassOf (∗,OSomeValuesFrom(∗, ∗))1} - 22 12
5 {EquivalentClasses(∗, OIntersectionOf(∗,OSomeValuesFrom(∗, ∗)))1} - 1 62
6 {DisjointClasses(∗, ∗)1} - - 22
7 {SubClassOf (∗, ∗)1,SubClassOf (∗,OSomeValuesFrom(∗, ∗))1} - 35 157
8 {SubClassOf (∗, ∗)1,SubClassOf (∗,OSomeValuesFrom(∗, ∗))2} - 9 50
9 {SubClassOf (∗, ∗)1,SubClassOf (∗,OSomeValuesFrom(∗, ∗))3} - 15 8

10 {SubClassOf (∗, ∗)1,DisjointClasses(∗, ∗)1} - - 58
11 {SubClassOf (∗, ∗)1,EquivalentClasses(∗, ∗)1} 2 - 19

frames consist of only a few axioms and the axioms are not deeply nested. Likewise,
there are also many ontologies in which the largest three regularities for class frames
are associated with more complex modelling structures involving more axioms or more
deeply nested OWL constructors (see regularities in CLO for example). However, such
more complex modelling structures are only common within ontologies and not across.

5.4 Experiment 4: Size and Depth of Modelling Structures

In this section, we shed some light on the most complex modelling structures in ontolo-
gies. We start with the size of modelling structures, i.e., their number of nodes. Figure 4
shows the size of the largest modelling structures in ontologies for both (a) axioms
and (b) class frames. We will first highlight some details about the size of modelling
structures for axioms before we compare them to modelling structures for class frames.

The maximal size of modelling structures for axioms in atomic ontologies is three
because they only contain the modelling structures ∗ v ∗ and ∗ ≡ ∗ . Similarly, the
size of modelling structures in most EL++ontologies is three or five because they only
contain the modelling structures ∗ v ∗ and ∗ v ∃ ∗ . ∗ . There are only four ontologies
containing modelling structures with a size larger than five. The largest one is found
in the ontology CHIRO with size 11 and has the form ∗ ≡ ∗ u (∃ ∗ .(∗ u (∃ ∗ .∗))).
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Fig. 4: Number of nodes in the largest modelling structures associated with regularities for (a)
axioms and (b) class frames.

However, about half of rich ontologies (211 out of 473) contain modelling structures for
axioms with a size larger than ten. Interestingly, the maximal size of modelling structures
in ontologies appears be independent of the ontologies’ overall size, i.e., modelling
structures of different sizes occur in ontologies of different sizes.

The maximal size of modelling structures for class frames is often considerably
larger compared to the maximal size of modelling structures for axioms, especially for
EL++and rich ontologies that have more than about 350 axioms. This is to be expected
if class frames consist of combinations of many axioms. In this regard, it transpires
that class frames in many atomic ontologies and many rich ontologies of smaller size
consist of only single axioms. On the right-hand side of Table 4, we summarise how
many ontologies contain class frames up to a maximal number axioms. It appears that
EL++and rich ontologies contain class frames with more than three axioms whereas
many atomic ontologies only contain class frames with one or two axioms.

In addition to the size of modelling structures, we also investigate their depth. Note
that the depth of a class frame is defined in terms of the maximal depth of its axioms.
So, the maximal depth of modelling structures for both axioms and class frames is the
same and we will not distinguish between the two in the following. On the left-hand side
of Table 4, we summarise how many ontologies contain modelling structures up to a
maximal depth. There are 167 rich ontologies that contain modelling structures with a
depth of at least four. This shows that many rich ontologies not only contain fairly large
modelling structures but that modelling structures also involve non-trivial nestings of
OWL constructors.

5.5 Experiment 5: Interrelations between Syntactic Regularities

Table 5 shows the depth and maximal branching factor of Hasse diagrams corresponding
to partially ordered sets for syntactic regularities for axioms and class frames w.r.t.
.G

I and .G respectively. It transpires that more than half of the ontologies in our
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experimental corpus (365 out of 657) give rise to Hasse diagrams with a depth of at
least 4. Moreover, 110 ontologies even bring about Hasse diagrams with a depth of 10 or
more. The numbers for the maximal branching factor are comparable.

A long path in a Hasse diagram for regularities of class frames means that correspond-
ing modelling structures for class frames are based on the same constituent components
since .G is defined in terms of a subset relation for multisets. A large branching factor,
on the one hand, means that many class frames share a common substructure, namely
the modelling structure of their parent. But, on the other hand, it also means that siblings
of that parent vary in terms of the modelling structures.

Similarly, a long path in a Hasse diagram for regularities for axioms (as in the case
of many rich ontologies) means that many regularities are based on the same nesting of
OWL constructors. And a large branching factor signifies that there is a good amount of
variablitiy in term of the nesting of OWL constructors on some nesting level.

6 Related Work & Discussion

While there are many surveys of properties of existing ontologies, e.g., [4,13,23,24], there
is only little research on the topic of discovering ontology patterns or reverse-engineering
an ontology’s design. However, two approaches in this direction are motivated on similar
grounds to the ones put forward in this work.

The first approach is based on agglomerative clustering to identify commonalities
for named entities in an ontology based on similar syntactic representations [15]. Sim-
ilarities between these representations are distilled in the form of sets of axioms with
variables. While these representations bear some similarities to the notion of modelling
structures in the context of this work, there are subtle differences with regards to the
underlying notion of regularity. The approach using agglomerative clustering identifies
regularities for named entities, whereas the approach based on language abstractions
identifies regularities for axioms (or sets of axioms). So, the former approach is primarily
concerned with regularities for elements of an ontology’s domain-specific vocabulary,
whereas the latter focuses on regularities for syntactic structures based on an ontology’s
underlying formal language, e.g, OWL.

The second approach is based on frequent subtree mining over OWL axioms [12]. By
interpreting OWL axioms as syntax trees, well-known subtree mining algorithms can be
used to identify frequent tree structures. Furthermore, a notion for regularities for class

Table 4: Maximal nesting depth of modelling structures (left-hand side) and maximal number of
axioms in class frames (right-hand side).

Max Depth Atomic EL++ Rich
1 94 16 107
2 - 71 116
3 - 1 83
4 - 1 36

5–9 - 1 118
≥ 10 - - 13

Max CF Axioms Atomic EL++ Rich
1 54 7 43
2 21 14 46
3 6 11 49

4–9 13 35 174
10–19 - 5 73
≥ 20 - 18 88
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Table 5: Depth and maximal branching factor of Hasse diagrams for posets.

Depth Axioms Class Frames
Atomic EL++ Rich Atomic EL++ Rich

1 94 21 96 54 8 47
2 - 67 136 21 14 53
3 - 2 56 9 15 71

4–9 - - 139 10 33 212
10–19 - - 41 - 17 61
≥ 20 - - 5 - 3 29

Branching Axioms Class Frames
Atomic EL++ Rich Atomic EL++ Rich

0 94 21 96 54 8 47
1 - 66 123 40 34 64
2 - 2 55 - 43 51

3–9 - 1 174 - 5 179
10–19 - - 25 - - 70
≥ 20 - - - - - 62

frames is motivated that is based on identified regularities for syntax trees of axioms. For
example, regularities for subsumption axioms with the same and non-variable left-hand
side are grouped into a set to give rise to a new regularity for sets. In cases where the
left-hand side is a variable, frequent itemset mining is proposed to identify co-occurring
axioms as regularities for class frames. While the approach based on frequent subtree
mining bears a resemblance to the approach based language abstractions, there are both
technical differences as well as conceptual differences.

First and foremost, it is important to recognise that frequent subtree mining aims at
identify regularities based on some notion of frequency. A tree structure is considered
frequent if it satisfies some threshold criterion. However, regularities based on language
abstractions are independent of any notion of frequency; or any other notion depending
on a threshold for that matter. The importance of this needs to be emphasised because
regularities based on thresholds are generally not suitable for analysing an ontology’s
design as a whole. The simple reason for this is that such notions, by definition, do not
account for structures that do not satisfy the threshold criterion. For example, variations
in the reuse of a single pattern in an ontology’s design may give rise to many slightly
different syntactic structures. If none of the variant reuses of the pattern gives rise to
frequent structures, then no regularity (based on frequency) is identified.

In any case, any conclusion or claim about an ontology’s underlying design based on
syntactic regularities has to be made with due diligence regardless of the used approach.
Consider for example the case of a pattern-based ontology design. A pattern in the
context of ontology engineering often denotes a rather distinctive notion. An example of
this are Ontology Design Patterns (ODP) that are proposed as well-proven modelling
solution to common modelling problems and often provide a reusable component such
as a set of axioms [3,2]. While such a reusable component is often associated with
a syntactic structure, e.g., a set of axioms, the converse is not necessarily the case.
Meaning, a reusable component of a pattern cannot be equated with the pattern itself and
the presence of axioms associated with a pattern’s reusable component cannot be equated
with an actual reuse of the pattern. So, even though the discovery of regularities can
be helpful to detect structures that are indicative of an ODP’s reuse, a domain expert’s
assessment of an identified regularity in an ontology is required to gauge whether the
regularity is connected to an ODP.

Even though the idea of reusable components has been popularised by the ODP
community, there is no standard mechanism or de facto practice for reusing a given ODP.
Despite the development of frameworks and tool support for ODPs reuse [8,17,22,25],
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little is known about what kind of features are needed to facilitate pattern-based ontology
engineering in practice [6]. Developing an understanding of compositional aspects of
syntactic structures in ontologies w.r.t. syntactic abstractions may provide a way of
informing and evaluating the design of tools and frameworks in this direction.

As an example, consider the Galen Ontology [20] in which the classes Current-
BloodPressureLevel and RecentBloodPressureLevel are represented via almost identical
EquivalentClasses axioms. Both use the following expression (written in infix notation):

LevelState u (∃isSpecificAnswerOf.(InvestigationAct u (∃hasTimeOfOccurrence.
(TimeOfOccurrence u (∃hasAbsoluteState atT ime))) u (∃isToDetermine.BloodPressure)))

where the variable atT ime is set to Now and RecentPast respectively. Here, the use
of the variable atT ime can be seen as an abstraction over differences between the
representations of CurrentBloodPressureLevel and RecentBloodPressureLevel. In this
case, a simple templating mechanism allowing for the instantiation of parametrised
representations, e.g. CurrentBloodPressureLevel ≡ BloodPressureLevel(Now),
would be suitable to capture this abstract structure in an arguably meaningful way.
So, research into the discovery of meaningful abstractions as well as suitable ways of
encoding them promises to have a great impact on pattern-based ontology engineering.

7 Conclusion

In this paper, we adapted and extended a formal framework for analysing syntactic
regularities in ontologies originally proposed in [9,10]. The framework is based on
a syntax-directed approach that decomposes an ontology into equivalence classes of
syntactic structures, where two syntactic structures are considered equivalent if they
are indistinguishable under a formal notion of abstraction. We proposed the notion of a
modelling structure for the purpose of analysing and characterising syntactic regularities.
Furthermore, we proposed formal relations between such modelling structures so that
they can be organised in terms of a partial order that captures a notion of substructure con-
tainment. Finally, we used these notions to conduct a large-scale empirical investigation
of syntactic modelling structures in biomedical ontologies.

We find that most ontologies contain primarily axioms of a simple syntactic structure.
However, such axioms seem to be combined in various ways to give rise to comparatively
many modelling structures for class frames. This suggests that class frames play a crucial
role in the representation of many entities in the biomedical domain.

Our findings on common modelling structures across biomedical ontologies reveal
that only comparatively simple syntactic structures for both axioms and class frames
reoccur. However, the results obtained on the maximal size and depth of modelling
structures indicate that many rich ontologies also contain highly complex modelling
structures in which OWL constructors are deeply nested and combined. Moreover, such
complex structures are also highly interrelated w.r.t. shared substructures in many on-
tologies. While our investigation provides proof of structural complexities in ontologies,
further research is needed to qualify underlying design rationales.

Supplemental Material Statement: Source code is available at https://github.
com/ckindermann/iswc-2022.

https://github.com/ckindermann/iswc-2022
https://github.com/ckindermann/iswc-2022
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