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Abstract. In recent years, we saw the emergence of several approaches
for producing machine-readable, semantically rich, interlinked descrip-
tions of the content of research publications, typically encoded as knowl-
edge graphs. A common limitation of these solutions is that they address
a low number of articles, either because they rely on human experts to
summarize information from the literature or because they focus on spe-
cific research areas. In this paper, we introduce the Computer Science
Knowledge Graph (CS-KG), a large-scale knowledge graph composed by
over 350M RDF triples describing 41M statements from 6.7M articles
about 10M entities linked by 179 semantic relations. It was automatically
generated and will be periodically updated by applying an information
extraction pipeline on a large repository of research papers. CS-KG is
much larger than all comparable solutions and offers a very comprehen-
sive representation of tasks, methods, materials, and metrics in Com-
puter Science. It can support a variety of intelligent services, such as
advanced literature search, document classification, article recommenda-
tion, trend forecasting, hypothesis generation, and many others. CS-KG
was evaluated against a benchmark of manually annotated statements,
yielding excellent results.

Keywords: Knowledge Graph, Scholarly Data, Information Extraction,
Natural Language Processing, Semantic Web, Artificial Intelligence

Resource Type: Knowledge Graph - Resource URI: http://w3id.org/cskg

1 Introduction

In the last few years, we have witnessed a paradigm shift towards Open Sci-
ence, greatly increasing the availability of scientific articles, datasets, software,
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and other research outcomes. This represents an historical opportunity to sup-
port researchers with new tools enabling more sophisticated search, exploration,
and analytical services than the ones currently available. However, the current
document-centric scholarly communication paradigm does not enable scholars to
efficiently explore, categorize, and reason on this knowledge [17]. Scientists need
instead to find and manually analyze large number of static PDF files in order to
gain a (often incomplete) understanding about recent research advancements [9].

In recent years, we saw the emergence of several solutions for producing
machine-readable, semantically rich, interlinked descriptions of the content of
research publications, typically encoded as knowledge graphs [22,40,12,36,46].
For instance, the Open Research Knowledge Graph5 [22] offers an infrastructure
for describing articles in a structured manner, making it easy to find and compare
them. The resulting knowledge graph includes about 10K articles, 4.5K research
problems, and 3.3K datasets. Similarly, Nanopublications6 [19] allow users to
represent scientific facts as knowledge graphs and have recently been used to
support “living literature reviews”, which can be continuously amended with new
findings [46]. A common drawback of these solutions is that they are limited to
a relatively low number of articles, either because they rely on human experts to
summarize information from the literature [24,22] or because they focus on very
specific domains (e.g., computational linguistics [16], intrusion detection [48]).

In order to address this issue, in 2020 we released the Artificial Intelligence
Knowledge Graph (AI-KG) [15], the first automatically generated large-scale
knowledge graph of AI, which included 1.2M statements about 820K research
entities. This resource was an important first step in the large-scale generation
of scientific knowledge graphs, inspiring further work in this direction [6,31]
and supporting several methods for classifying and recommend scientific pa-
pers [21,25,8]. However, AI-KG still suffers from a number of significant lim-
itations, which emerged clearly during discussions with its users. First and
most important, it only covers about 330K articles in AI: sizable compared
to alternative solutions, but not quite representative of the millions of articles
published in Computer Science. Second, the methodology for integrating dif-
ferent lexical variations of entities did not always work, resulting in multiple
versions of the same entity (e.g., recommendation_system and recommenda-
tion_framework). Finally, the mapping schema used for recognizing a relations
(e.g., aikg-ont:supportsMethod) from verbal predicates in the articles (e.g., sup-
port, enable, foster) was quite limited. As a result, sentences using less frequent
predicates were not considered.

In this paper, we introduce the Computer Science Knowledge Graph (CS-
KG), a large-scale knowledge graph composed by over 350M RDF triples de-
scribing 41M statements from 6.7M articles about 10M entities (e.g., tasks,
methods, materials, metrics) linked by 179 semantic relations. Our objective is
to make available and maintain a comprehensive representation of all the signif-
icant concepts in this field, in order to support a variety of intelligent services,

5 https://www.orkg.org/
6 https://nanopub.org/

https://www.orkg.org/
https://nanopub.org/
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such as advanced search, article recommendation, trend forecasting, hypothesis
generation, and many others.

CS-KG is an order of magnitude larger than AI-KG. Specifically, it is 34
times larger in terms of number of statements and 20 times larger in terms of
number of articles. It was generated by applying an improved version of the AI-
KG pipeline [14] which includes the following advancements: 1) a novel module
to merge different lexical representations of the same entity based on trans-
formers [32], 2) a new methodology to map verbal predicates to relations which
exploits VerbNet [38], and 3) a richer domain ontology describing 179 semantic
relations. CS-KG was evaluated on a benchmark of 1, 200 manually annotated
statements, yielding excellent results in comparison with alternative solutions.

CS-KG is licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). It available as a dump7 or via a SPARQL endpoint8.

In summary, the main contributions of this resource paper are:

– The CS-KG knowledge graph, which includes 41M statements about 10M
entities in Computer Science.

– An improved pipeline for knowledge graph generation from research articles.
– An analysis of the entities and statements extracted from 6.7M articles.
– A ground truth9 of 1200 manually annotated statements, which can be used

as a benchmark for statements validation.

The remainder of this paper is organized as follows. Section 2 discusses the
related work, pointing out the existing gaps. Section 3 describes CS-KG and
its user cases. The pipeline used for its generation is discussed in Section 4.
Section 5 reports several statistics about CS-KG and Section 6 describes the
evaluation. Finally, Section 7 concludes the paper, discusses the limitations, and
defines future directions of research.

2 Related Work

Knowledge extraction from scientific and academic texts is a relatively recent
task in which structured information is mined from research publications, patents,
and similar texts [39,35]. The interest in this task has been also fostered by the
continuous growth of the number of scientific articles available online; in some
fields the growth is such that researchers trying to perform assessment of scien-
tific literature are overwhelmed [33].

Existing scientific knowledge graphs (sometimes also named scholarly knowl-
edge graphs) can be categorized into two main types: i) knowledge graphs based
only on meta-information such as authors, titles, organizations and citations

7 CS-KG dump - http://w3id.org/cskg/downloads/cskg.zip
8 CS-KG SPARQL endpoint - http://w3id.org/cskg/sparql. It contains about
740M RDF triples because, for the sake of performance, we materialize some state-
ments entailed by the ontology (e.g., inverse relations).

9 http://w3id.org/cskg/downloads/ML1200.csv

http://w3id.org/cskg/downloads/cskg.zip
http://w3id.org/cskg/sparql
http://w3id.org/cskg/downloads/ML1200.csv
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(e.g., the Microsoft Academic Graph [44], ArnetMiner [49], OpenAlex10, AIDA [2])
and ii) knowledge graphs that also represent the content of papers at a fine-
grained level. In this paper, we focus on the second category. One of such knowl-
edge graphs is ORKG [22], where articles are associated with the relevant top-
ics, approaches, datasets, and evaluation methodologies. Nanopublications [19]
enable users to represent in a minimalistic way various facts from academic pub-
lications. One of the drawbacks of both ORKG and Nanopub is that they are
manually curated resources, where the representations of research articles are
filled by crowdsourcing. Therefore, they cover a limited number of articles and
require an important manual effort.

Biology is the only field offering some sizable and high-quality knowledge
bases of relevant entities, such as UMLS11. Other research areas, including Com-
puter Science, are very lacking in this respect. Some recent efforts focused on
producing methods and tools able to automatically extract fine-grained seman-
tic information from the content of the papers. For instance, Luan at al. [27]
implemented a deep architecture that carries out multitask learning on top of
shared span representations to build a knowledge graph on a dataset of 110K
papers. Jiang et al. [23] used instead a recurrent neural network model to carry
out joint entity and relation extraction. In their work, they extract also “condi-
tional” tuples that represent constraints on other statements: they assume that
some facts are not universally valid but depend on the context of application.
Their final resource contains 756 fact tuples and 654 condition tuples. Wang
at al. [45] targeted specifically articles on Covid-19. Specifically, they adapted
an entity recognition tool to extract 75 different types of entities, using distant
supervision. The advantage of distant supervision is that it does not require ex-
pensive human annotation. However, relations are not extracted from text, but
are defined in a handcrafted ontology. Overall, there is still a significant lack of
large-scale resources that offer a granular representation of claims and entities
in research literature.

3 The Computer Science Knowledge Graph

The Computer Science Knowledge Graph (CS-KG) includes over 350M RDF
triples that describe 41M statements and 10M entities extracted from a col-
lection of 6.7M scientific papers in the period 2010-2021. These articles were
selected by considering all papers from 2010 to 2019 with at least 1 citation
(as of December 2021) and all the papers in 2020-2021 period from the set of
articles from MAG [44] associated with the Field of Study “Computer Science”.
Since MAG has been decommissioned in 2021, the following versions will adopt
OpenAlex, which offers a comparable publication coverage.

10 OpenAlex - https://openalex.org/
11 UMLS - https://www.nlm.nih.gov/research/umls/index.html

https://openalex.org/
https://www.nlm.nih.gov/research/umls/index.html
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The CS-KG ontology is available at https://scholkg.kmi.open.ac.uk/
cskg/ontology and builds on top of SKOS12 and PROV-O13. Its documentation
is available at https://scholkg.kmi.open.ac.uk/cskg/ontology.html. The
current schema in CS-KG uses the namespaces http://scholkg.kmi.open.ac.
uk/cskg/ontology# to refer to elements that belong to the ontology (prefix cskg-
ont), and http://scholkg.kmi.open.ac.uk/cskg/resource/ for the instances
(prefix cskg). The ontology defines 179 relations (e.g., cskg-ont:usesMethod, cskg-
ont:solvesTask) between five entity types: cskg-ont:Task, cskg-ont:Method, cskg-
ont:Material, cskg-ont:Metric, cskg-ont:OtherEntity.

In order to design the object properties, we started from a set of 39 high level
predicates (e.g., uses, analyzes, includes) produced by the knowledge graph
generation pipeline (see Section 4.2). We then associate specific domain and
range constraints to them, which are used to drive and correct the automatic
extraction process. For example, since a Method or a Task can use a Material,
the predicate uses was used to create the object property cskg-ont:usesMaterial
which has cskg:Method and cskg:Task in its domain as well as cskg:Material as
its range. We instead considered incorrect to claim that a cskg:Material uses
a cskg:Method, and therefore, the domain of the property cskg-ont:usesMethod
does not include the class cskg:Material.

A statement in CS-KG refers to a specific claim extracted from a research arti-
cle, defining a relationship between two entities, e.g., <cskg:web_ontology_lan-
guage, skos:broader, cskg:semantic_web_standard_technology>. Naturally,
it is not possible to verify the objective truth of every claim. As a consequence,
within CS-KG and its potential use cases, a claim should be considered cor-
rect only in the context of the research papers linked to it. We also associate
the statement with metadata about the original articles and other provenance
information. Each statement in CS-KG includes:

– rdf:subject, rdf:predicate, and rdf:object, which provide the reification of triples
within a rdf:Statement ;

– cskg-ont:hasSupport, which reports the number of articles that contributed
to create the statement (support);

– provo:wasDerivedFrom, which provides provenance information and lists the
MAG IDs (now OpenAlex IDs) of the articles from which the statement was
extracted;

– provo:wasGeneratedBy, which provides provenance and versioning informa-
tion of the tools used to detect the statement.

The support score can be used to select subsets of statements that are supported
by a good number of articles, and thus are typically more reliable (see evaluation
in Section 6).

12 SKOS - https://www.w3.org/2004/02/skos/
13 PROV-O - https://www.w3.org/TR/prov-o/

https://scholkg.kmi.open.ac.uk/cskg/ontology
https://scholkg.kmi.open.ac.uk/cskg/ontology
https://scholkg.kmi.open.ac.uk/cskg/ontology.html
http://scholkg.kmi.open.ac.uk/cskg/ontology#
http://scholkg.kmi.open.ac.uk/cskg/ontology#
http://scholkg.kmi.open.ac.uk/cskg/resource/
https://www.w3.org/2004/02/skos/
https://www.w3.org/TR/prov-o/
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In the following we report an exemplary statement:

cskg:statement_4508242 a cskg-ont:Statement, provo:Entity;
rdf:subject cskg:web_ontology_language;
rdf:predicate skos:broader;
rdf:object cskg:semantic_web_standard_technology;
cskg-ont:hasSupport 6;
provo:wasDerivedFrom cskg:2913757079,

cskg:2145844448,
...,
cskg: 1551604567;

provo:wasGeneratedBy cskg:DyGIEpp.

This statement describes a claim which is extracted from 6 papers (MAG
IDs 2913757079, 2145844448, etc.), by the tool DyGIEpp.

Following the best practices of Linked Data, entities in CS-KG are associ-
ated with a set of alternative labels that are used to refer them in the scientific
literature. For example, the entity cskg:recurrent_neural_network is associated
with the labels recurrent neural network, recurrent trainable neural network, and
recurrent neural network paradigm. CS-KG also provides 31K owl:sameAs links
to DBPedia [4], 27K links to Wikidata14, and 6K to the Computer Science On-
tology (CSO) [37]. For instance the entity cskg:feedforward_neural_network is
linked to the CSO topic cso:feedforward_neural_network, to the DBpedia entity
dbpedia:Feedforward_neural_network, and to the Wikidata entity wd:Q5441227.

CS-KG can support several intelligent services that require a high quality
representation of research concepts and currently rely on alternative knowledge
bases which cover a smaller number of publications (e.g., AI-KG, ORKG, Nanop-
ublications) or offer a less granular conceptualization of the domain (Seman-
ticScholar, OpenAlex, AIDA). These include systems for supporting machine-
readable surveys [46,30], tools for generating research hypothesis [20] and de-
tecting contradictory research claims [3], ontology-driven topic models (e.g.,
CoCoNoW [5]), recommender systems for articles (e.g., SBR [41]) and video
lessons [7], visualisation frameworks (e.g., ScholarLensViz [26], ConceptScope [47]),
scholarly knowledge graph embeddings (e.g., Trans4E [29]), tools for identifying
domain experts (e.g., VeTo [42]), and systems for predicting research impact
(e.g., ArtSim [13]).

We plan to keep maintaining and updating CS-KG in the following several
years. We thus created a fully automatic pipeline that we will run every six
months to produce new versions of CS-KG that will include recent papers from
OpenAlex. Indeed, one of the advantage of our solution is that it does not re-
quire heavy workload for the maintainers. In order to cope with the ever increas-
ing number of papers, we are also embedding big data technologies within the
pipeline. We also plan to keep evolving the ontology by including new predicates
according to patterns emerging from the data and the community feedback.

14 https://www.wikidata.org/wiki/Wikidata:Main_Page

https://www.wikidata.org/wiki/Wikidata:Main_Page
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Fig. 1. Architecture of the automatic generation pipeline.

4 Automatic Generation of CS-KG

This section briefly describes the methodology that we applied to build the CS-
KG. It builds on top of the pipeline introduced in [14], which has already been
successfully employed to build the Artificial Intelligence Knowledge Graph (AI-
KG) [15]. Our new approach is more scalable, allowing to efficiently compute
the much larger set of articles used for CS-KG. It also extends significantly the
range of semantic relations extracted from the literature by using VerbNet [38] to
semi-automatically enrich the domain ontology. Finally, it can extract multiple
relationships between a pair of entities, while the previous solution was limited
to one. Figure 1 shows an overview of the automatic extraction pipeline.

4.1 Extraction Modules

The proposed methodology employs four complementary tools to extract enti-
ties and relationships from plain text (typically the titles and abstracts of the
articles). These tools are:

– DyGIEpp [43]. This tool extracts a set of entities EDy of six pre-defined
types (Method, Task, Material, Metric, Other-Scientific-Term, and Generic)
and seven kinds of relationship (Used-for, Hyponym-Of, Compare, Part-of,
Conjunction, Feature-of , Evaluate-for). It is used to yield a set of entities
EDy and a set of triples among them, TDy.

– Computer Science Ontology Classifier (CSO-C) [34]. CSO-C is a clas-
sifier which exploits syntactic and semantic similarity to map text spans to
topics in CSO. It extracts the set of entities ECSO.

– OpenIE of the Stanford Core NLP suite [1]. This tool is used to extract
open domain relationships from plain texts of the input dataset among the
entities in the sets EDy and ECSO. The module considers only triples whose
relations are composed by only one verb and yields the set of triples TOIE .
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– PoS Tagger (PoST). This module is built on top of the Stanford Core
NLP suite [28]. It uses part-of-speech (PoS) tags to find all verbs that exist
in sentences between pairs of entities. For example, given a sentence s and
two entities in it ei and ej where ei, ej ∈ EDy ∪ ECSO, this module builds
triples <ei, v, ej>, where v is a verb in s between ei and ej . This module
uses a window of size 15 as the maximum number of tokens that can occur
between two entities to extract verb relations. It returns the set of triples
TPoS .

The sets TDy, TOIE , and TPoS are given as an input to the Entities and
Relations Handler Module.

4.2 Entities and Relations Handler Module

This module has been developed to integrate and clean up entities and relation-
ships from the different tools, in order to reduce noise and redundancies.

Entities handler. This module: (i) lemmatizes all entities to group singulars
and plurals forms of the same entities; (ii) solves acronyms by exploiting the fact
that they are usually placed in brackets near entities in the text; (iii) removes
entities which appear in a handcrafted blacklist; (iv) removes generic entities
which have an information content provided by WordNet equal to or lower than
an empirically defined threshold of 5. In order to not discard key entities for the
this domain, the module uses a whitelist of research entities which includes the
‘Fields of Study’ from MAG.

Next, a sentence transformer model is used to detect and merge entities with
the same meaning.

Given the set of all entities, let us say E, the module creates an index based
on the tokens contained by the entities. The index links each token to all the
entities that include it. Then, it compares two entities ei, ej ∈ E if they share at
least one token. The comparison is performed by using the state-of-the-art frame-
work SentenceTransformers [32] and encoding the entities with the paraphrase-
distilroberta-base-v2 15 transformer model. Entities which have a cosine similarity
equal to or greater than a threshold thmerge = 0.9 (empirically calculated) are
merged together. For example, if the entity ei and ej have a cosine similarity
greater than 0.9, then the module chooses ei as representative entity for both ei
and ej , and uses ej as an alternative label of ei.

Relationships handler. The sets TDy, TOIE , and TPoS may contain several
redundant triples that use different predicates (e.g., includes, embeds, contains)
to convey the same meaning. We address this issue by mapping similar verbs
to the same predicate. The mapping schema has been built by enriching our
previous handcrafted mapping [15] with VerbNet [38], which offers a complete
and coherent semantic representations of verbs [10]. Verbnet is a taxonomy of
15 https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2

https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2
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English verbs organized in classes whose verbs share syntactic and semantic
coherence. It enables to build new taxonomies with domain-specific jargon while
holding as a core the most common use of verbs based on their semantics in
more general contexts. Specifically, we associated the extracted verbs with the
high-level predicates of the previous mapping as well as relevant VerbNet classes.
We then manually refined this schema to produce a final set of 39 representative
predicates mapped to 464 verbs from the articles16. These same predicates were
also used to produce the relevant relations in the CS-KG ontology.

All verbs of sets TOIE , and TPoS are mapped using this schema. The relations
generated by DyGIEpp in the set TDy are also mapped to the same representative
predicates17. For example, two triples which share the same entities such as <a,
embeds, b> and <a, contains, b> will be merged in a single triple <a, includes,
b>, given that embeds and contains are mapped to includes. After mapping
all the relations of the sets TDy, TOIE , and TPoS , the module yields the set of
triples T .

4.3 Ontology-based Checker Module

In this phase, the CS-KG ontology is used to integrate entities from different
tools and discard triples that do not comply with domain and range of the re-
lations. All triples of the set T are then represented according to the CS-KG
ontology. The types of entities returned by the DyGIEpp tool are mapped to
the relevant classes in the ontology. Specifically, methods, tasks, materials, and
metrics are mapped to the homonymous classes in the ontology (e.g., material is
mapped to the class cskg-ont:Material), while other-scientific-terms and generic
entities are mapped to cskg-ont:OtherEntity. The predicates are mapped to the
ontology object properties. For instance, <cskg:semantic_interoperability,
uses, cskg:ontology_matching>, considering that <cskg:ontology_matching,
rdf:type, cskg-ont:Task>, becomes <cskg:semantic_interoperability, cskg-
ont:usesTask, cskg:ontology_matching>.

In this phase, triples which do not comply with the semantics of the on-
tology are discarded. For example the triple <cskg:utk_face_dataset, uses,
cskg:deep_learning>, where cskg:utk_face_dataset is a cskg-ont:Material and
cskg:deep_learning is a cskg-ont:Method, is discarded because the class cskg-
ont:Material is not in the domain of the property cskg-ont:usesMethod.

4.4 Machine Learning-based Checker Module

Triples obtained from several articles are typically of good quality, since the
probability of extracting the same incorrect claim from multiple papers is fairly
low. On the other hand, triples which appear in one or very few papers are more
noisy and less reliable. We can thus use the number of papers associated with
16 http://w3id.org/cskg/downloads/SKG-predicates-new-VerbNet-equivCSKG.

csv
17 http://w3id.org/cskg/downloads/SKG-dygiepp-Mapping.csv

http://w3id.org/cskg/downloads/SKG-predicates-new-VerbNet-equivCSKG.csv
http://w3id.org/cskg/downloads/SKG-predicates-new-VerbNet-equivCSKG.csv
http://w3id.org/cskg/downloads/SKG-dygiepp-Mapping.csv
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Fig. 2. Distribution of the research areas in terms of relevant papers.

a triple, which we label support, to distinguish between reliable and uncertain
triples. However, we do not want to automatically discard all uncertain triples,
since many of them may be valid. Therefore, this module uses a classifier to
decide which triples need to be included in the knowledge graph. It first splits
T in two disjoint sets: Treliable (support ≥ 3) and Tuncertain (otherwise). The
set Treliable is employed to train a Multi-Layer Perceptron classifier which im-
plements a function θ : t → {0, 1} that, given an input triple t, predicts 1 if the
triple t is correct and can be included in the knowledge graph, and 0 if the triple t
should be discarded. In order to generate negative triples for the training phase,
each triple t ∈ Treliable is corrupted by a triple t′|t′ ̸∈ T by replacing the head or
the tail with a random chosen entity. The set of the triples {t′0, . . . , t′n} consti-
tutes the set of negative triples Tnegative. Therefore the set Treliable∪Tnegative is
actually used to train the model. The rationale behind this solution is to use the
classifier to identify high quality triples in the set Tuncertain which is consistent
with triples of the set Treliable. The set of triples for which the classifier predicts
1 is referred as Tconsistent. Finally, the triples in sets Treliable and Tconsistent as
well as all associated information (e.g., support, relevant articles, and so on) are
refied into statements and encoded as RDF in order to generate CS-KG.

5 Statistics About CS-KG

This section discusses several analytics about the current version of CS-KG. The
first two subsections report statistics about entities and statements, respectively.
The third one compares CS-KG to AI-KG according to several quantitative
metrics. A major novelty of CS-KG is that include a variety of fiends across all
Computer Science. Figure 2 shows the top 15 high-level topics (direct sub-topics
of Computer Science in CSO) associated with the articles within CS-KG.
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Fig. 3. Entities distribution over number of statements in logarithmic scale. For space
constraints, we show only entities appearing in less than 100 statements.

5.1 Entity Statistics

CS-KG contains 10M entities distributed among the five exclusive entity types.
About 3.9M entities are classified as Methods (e.g., cskg:spiking_neural_net-
work, cskg:latent_topical_skip_gram, cskg:secret_key_generation_
approach); this reflects the fact that a large number of articles in the Computer
Science literature present or reuse methods. CS-KG also includes 1.3M Tasks
(e.g., cskg:identity_authentication, cskg:face_recognition, cskg:natural_langua-
ge_generation), 450K Materials (e.g., cskg:freebase, cskg:dbpedia, cskg:image_-
data), and 215K Metrics (e.g., cskg:accuracy_rate, cskg:network_lifetime, cskg:sto-
rage_efficiency). Finally, 4M entities are associated with the type OtherEntity,
which includes all entities that were not assigned to the other classes. In future
work we plan to further investigate and characterize more accurately the entities
currently associated to this class.

Figure 3 shows the distribution of the entities according to the number of
statements in which they appear. For example, 79K entities appear in exactly
10 statements. CS-KG contains a large number entities associated with multiple
statements. For instance, a total of 820K entities appear in at least 10 statements
(i.e., the sum of the y values corresponding to x ≥ 10 in Figure 3). This allows
users to chose different compromises between the number of entities and the
richness of their description. For instance, in some use cases it may be advisable
to consider a smaller set of entities associated with a lot of information.

Very common entities are often associated to several CS subdomain, such as
cskg:quality_of_service (6, 141 statements), cskg:feedforward_neural_network
(1, 747 statements), cskg:cskg:simulation_based_environment (1, 711 statements),
cskg:computing_time (1, 228 statements). Conversely, entities that appear only
in a lower number of statements suggests are either very recent or only used for
specific purposes or CS sub-areas. For example, the entities cskg:fingerprint_-
image_encryption_scheme and cskg:gene_ontology_tool, that only appear 6
and 5 times, respectively, are specific to their sub-areas.
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Fig. 4. The distribution of the statements over the support in logarithmic scale.

5.2 Statement Statistics

Figure 4 reports the distribution of all statements over the number of articles
from which they were extracted. Most of the statements are associated to one
or few scientific papers. This indicates the importance of including a mechanism
to validate low supported statements such as the one described in Section 4.4.
The chart also suggests that CS-KG includes both broad knowledge, which is
supported by a large community consensus, and very fine-grained information,
appearing in few articles.

The distribution of high supported statements can be better observed in Fig-
ure 5, where each bar represents the number of statements supported by a mini-
mum amount of papers. For instance, 100K statements are supported by at least
5 articles. Some examples of this category are <cskg:ontology_engineering,
cskg:usesMethod, cskg:description_logic>, <cskg:web_ontology_langua-
ge, skos:broader, cskg:semantic_web_standard_technology>, and <cskg:-
sparql, cskg-ont:queriesMaterial, cskg:rdf_data> which represent general
knowledge about the Semantic Web domain.
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Fig. 5. The distribution of the statements over the minimum level of support in loga-
rithmic scale.
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Fig. 6. The number of statements produced by each extractor tool.

The tools used to extract statements from the articles contributed differ-
ently to CS-KG: PoST yielded 22M statements, DyGIEpp 14M , and OpenIE
10M . The Venn diagram in Figure 6 shows the number of statements extracted
from each tool, as well as their intersections. The relatively small size of the in-
tersections suggest that these solutions are highly complementary. Finally, Fig-
ure 7 shows the distribution of the 20 most frequent relations over the number
of relevant statements. We can appreciate the variety of significant relations
in CS-KG: 19 relations are associated with at least 500K statements and 64
with over 100K statements. The most common relations are cskg:usesMethod,
cskg:includesMethod, cskg:includesOtherEntity, and skos:broader which are as-
sociated respectively with 6.6M , 4.4M , 3.5M , and 2.0M statements.

5.3 Comparison between CS-KG and AI-KG

Table 1 compares CS-KG and AI-KG according to different characteristics. CS-
KG is a major improvement according to all metrics. Specifically, it is 34 times
larger in terms of number of statements, 20 times larger in terms of number of ar-
ticles, and 12 times bigger in terms of number of entities. The ontological schema
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Fig. 7. The number of statements of the 20 most frequent relationships.
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Table 1. Comparison between CS-KG and AI-KG.

Feature CS-KG AI-KG Difference

Number of Entities 10M 820K +1,119%
Number of Statements 41M 1.2M +3,316%

Number of covered Scientific Papers 6.7M 333K +1,930%
Multiple relationships between two Entities yes no N.A.

Number of Ontology Axioms 2,213 321 +901%
Number of Object Properties 179 27 +562%

Links to DBpedia 31K 0 N.A.
Links to Wikidata 27K 19K +42%

is also much more comprehensive, including a larger number of object proper-
ties and axioms such as cskg-onto:executesMethod, cskg-ont:based-onMethod, and
cskg-ont:producesMaterial. CS-KG is also better connected to external knowledge
graphs, including about 65K owl:sameAs links against the 25K of AI-KG.

6 Evaluation

In order to evaluate the automatic methodology used for producing CS-KG,
we measured its performance on a manually annotated gold standard. To this
purpose, we first selected 1200 statements which contain as subject or object one
of sub-topics of Machine Learning18 according to CSO. More specifically, the set
of statements was created by aggregating: 1) 200 statements whose support is
greater than 5, 2) 200 statements whose support is equal to or greater than 3, 3)
200 statements whose support is lower than 3, 4) 400 statements discarded by
the methodology, and 5) 200 randomly generated statements that are not part
of CS-KG. The latter were produced by replacing the subject or the object of a
statement from CS-KG.

This set was then manually annotated by 3 senior computer science re-
searchers. For each triple, the experts were asked to return 1 if a triple was
correct, i.e., it appeared in literature, and 0 otherwise. They were also allowed
to use online tools to check if a triple was consistent with the scientific lit-
erature. The Fleiss’ kappa agreement [18] between the annotators was 0.435,
indicating a moderate agreement. The majority vote schema was employed to
generate the gold standard. In order to show the advantage of our hybrid method
that builds on top of multiple tools, we compared our full methodology against
DyGIEpp [43], OpenIE [1], PoST [28], and against the union of their results (Dy-
GIEpp+OpenIE+PoST). Table 2 reports the results of the evaluation in terms of
precision, recall, and f-measure. The CS-KG pipeline outperforms all the other
tools yielding a overall f-measure of 0.76. This demonstrates how the checker
modules (described in Sections 4.3 and 4.4) are able to increase significantly the
accuracy of the statements (+21% in precision), paying a relatively low price in
recall. An inspection of the results shows also that 86% of the statements with
18 https://cso.kmi.open.ac.uk/topics/machine_learning

https://cso.kmi.open.ac.uk/topics/machine_learning
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Table 2. Precision (P) Recall (R) and F-measure (F1) over 1,200 annotated statements.

Extraction Tools P R F1

DyGIEpp 0.67 0.37 0.47
OpenIE 0.60 0.24 0.34
PoST 0.56 0.46 0.51

DyGIEpp + OpenIE + PoST 0.55 0.93 0.69
CS-KG pipeline 0.76 0.77 0.76

support greater than 5 are correct, consistently with the intuition that support
is an indicator of a triple correctness. The method which aggregates all the basic
tools (DyGIEpp+OpenIE+PoST) performs second best (0.69), highlighting the
value of an hybrid approach that combines both unsupervised and supervised
methods. Finally, DyGIEpp, OpenIE, and PoST obtain f-measures in the 0.47-
0.51 range. Among them, DyGIEpp has the highest precision (0.67), while PoST
has the highest recall (0.46).

In summary, the evaluation suggests that i) CS-KG offers good quality state-
ments, in particular when associated to a good support, ii) the performance of
each of the three tools is unsatisfactory and, therefore, it is worth to produce
a pipeline that is able to combine them, and iii) the components of the CS-KG
pipeline used to discriminate valid statements (i.e., the Machine Learning-based
Checker Module and the Ontology-based Checker Module) play an important role
in improving the overall quality and reducing noisy and incorrect statements.

7 Conclusions

In this paper, we introduce the Computer Science Knowledge Graph (CS-KG),
a new knowledge graph including over 350M RDF triples that describes 41M
statements about 10M entities automatically extracted from over 6.7M articles.
CS-KG offers a much more comprehensive representation of research concepts
in Computer Science than alternative knowledge bases and can support a wide
variety of intelligent services. CS-KG will replace AI-KG, now deprecated. We
plan to keep maintaining and updating it in the following years. To this purpose
we developed an automatic pipeline that we will run every six months.

The main limitation of CS-KG is that it was produced with a fully automatic
methodology, so the specific statements are not revised by humans, as in manu-
ally crafted knowledge graphs. We are thus investigating ways to allow users to
correct and give feedback on specific statements, either by supporting wiki-like
portals (e.g., the CSO Portal, Semantic Wikis [11]) or more complex platforms
for editing machine-readable representations of the literature (e.g., ORKG). We
are also working on developing an entity linking tool for automatically mapping
documents (e.g, articles, patents, educational material) to entities and state-
ments in CS-KG. Finally, we plan to further extend the ontology and the entity
typing process, in particular by providing a more granular categorization of en-
tity types.
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