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Abstract. Contrastive learning has emerged as a powerful tool for graph rep-
resentation learning. However, most contrastive learning methods learn features
of graphs with fixed coarse-grained scale, which might underestimate either lo-
cal or global information. To capture more hierarchical and richer representa-
tion, we propose a novel Hierarchical Contrastive Learning (HCL) framework
that explicitly learns graph representation in a hierarchical manner. Specifically,
HCL includes two key components: a novel adaptive Learning to Pool (L2Pool)
method to construct more reasonable multi-scale graph topology for more com-
prehensive contrastive objective, a novel multi-channel pseudo-siamese network
to further enable more expressive learning of mutual information within each
scale. Comprehensive experimental results show HCL achieves competitive per-
formance on 12 datasets involving node classification, node clustering and graph
classification. In addition, the visualization of learned representation reveals that
HCL successfully captures meaningful characteristics of graphs.
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1 Introduction

Graph representation learning has recently attracted increasing research attention, be-
cause of broader demands on exploiting ubiquitous non-Euclidean graph data across
various domains, including social networks, physics, and bioinformatics [13]. Along
with the rapid development of graph neural networks (GNNs) [18,13], GNNs have
been reported as a powerful tool for learning expressive representation for various
graph-related tasks. However, supervised training of GNNs usually requires faithful
and labour-intensive annotations and relies on domain expert knowledge, which hin-
ders GNNs from being adopted in practical applications.

Self-supervised learning has emerged as a powerful tool to alleviate the need for
large labelled data. Among them, contrastive learning has recently achieved promising
results [14]. Contrastive learning techniques are used to train an encoder that builds
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discriminative representations by comparing positive and negative samples to maximize
the mutual information (MI) [23].

Although the graph contrastive learning GCL methods have achieved significant
success, they suffer all or partially from the following limitations. First, most contrastive
learning methods like DGI [37], GCA [48], and GRACE [47], learn features of graphs
with fixed fine-grained scale, which might underestimate either local or global informa-
tion. However, each graph has multi-scale intrinsic structures, including the grouping
of nodes into motifs, the further grouping of motifs into sub-graphs as well as the spa-
tial layout of sub-graphs in the topology space. Such multi-scale intrinsic structures are
more flexible and informative, and can provide important clues for graph representation
learning. In most cases, a single level contrastive objective could merely capture lim-
ited characteristics of graphs [37,48,47]. Second, considering that existing GCL meth-
ods heavily rely on negative samples to avoid representation collapse, To alleviate this
limitation, Grill et al. [11] propose the Bootstrap Your Own Latent (BYOL) framework
to perform unsupervised representation learning on images by leveraging the bootstrap-
ping mechanism with Siamese networks[5]. However, Siamese networks have not been
well extended to graph domain yet. We argue that bootstrapping graphs with a multi-
channel scheme would enable graph encoders to capture more powerful representation.

To address the aforementioned limitations, we propose a novel Hierarchical Con-
trastive Learning (HCL) framework, HCL constructs a cross-scale contrastive learn-
ing mechanism to learn hierarchical graph representation in an unsupervised manner.
More specifically, the two key components of HCL including: (i) a Learning to Pool
(L2Pool) method with topology-enhanced self-attention to recursively construct a series
of coarser graphs during multi-scale contrastive learning and (ii) a contrastive objective
term that preserves the mutual information with expressive multi-channel networks. The
simple yet powerful framework can be optimized in an end-to-end manner to capture
more comprehensive graph features for downstream tasks. To summarize, this work
makes the following major contributions:

– We propose a novel Hierarchical Contrastive Learning (HCL) framework to learn
graph representation by taking advantage of hierarchical MI maximization across
scales and bootstrapping multi-channel contrastiveness across networks.

– We proposed a novel L2Pool method to form fine to coarse-grained graph and con-
trastive objective across scales, which explicitly preserves information concealed
in the hierarchical topology of the graph.

– Extensive experiments indicate that HCL achieves superior or comparable results
on various real-world 12 benchmarks involving both node-level and graph-level
tasks. Moreover, visualization of nodes representation further reveals that HCL can
capture more intrinsic patterns underlying the graph structures.

2 Related Works

2.1 Unsupervised Graph Learning

Traditional graph unsupervised learning methods are mainly based on graph kernel [25].
Compared to graph kernel, contrastive learning methods can learn explicit embedding,
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Fig. 1: Framework of the proposed Hierarchical Contrastive Learning (HCL) for graph
representation.

and achieve better performance, which are the current state-of-the-art for unsupervised
node and graph classification tasks [29,14]. Generally, current contrastive graph learn-
ing employs a node-node contrast [48,29] or node-graph contrast [37,14] to maximize
the mutual information at single level. For example, DGI [37] employs the idea of Deep
InfoMax [15] and consider both patch and global information during the discrimination.
MVGRL [14] introduces augmented views to graph contrastive learning and optimizes
the DGI-like objectives. Besides, GRACE [47], InfoGraph [35] and SUBG-CON [16],
further extend the idea of graph MI maximization and conduct the discrimination across
the node, sub-graph and graph. PHD [22] using graph-graph contrast reports impressive
performances on graph classification, but not for the node-level tasks. Nevertheless,
most of them contrast graphs with fixed scales, which might underestimate either local
or global information. To address these issues, our HCL explicitly formulates multi-
scale contrastive learning on graphs and enables capturing more comprehensive features
for downstream tasks.

2.2 Multi-scale Graph Pooling

Early graph pooling methods use naive summarization to pool all the nodes [9], and
usually fail to capture graph topology. Recently, multi-scale pooling methods have been
proposed to address the limitations. Among them, graph-coarsening pooling methods
like DiffPool [43] and StructPool [45] consider pooling as a node clustering problem,
but the high computational complexity of these methods prevents them from being
applied to large graphs. On the other hand, the node-selection pooling methods like
gPool [7] and SAGPool [21] preserve representative nodes based on their importance,
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but tend to lose the original graph structures. Compared to previous works, the pro-
posed HCL has two main differences: 1) Apart from the common late fusion of features,
HCL uses L2Pool and Pseudo-siamese network to intermediately aggregate richer con-
trastive objectives across scales, where the embeddings at various scales in each net-
work layer are fused to enable richer contrasting in a hierarchical manner. 2) The pro-
posed L2Pool module is trained given an explicit optimization for node selection with
topology-enhanced Transformer-style attention, hence effectively coarsen the original
graph structure.

3 Methodology

3.1 Overview

The goal of HCL is to provide a framework to construct a multi-scale contrastive
scheme that incorporate inherent hierarchical structures of the data to generate expres-
sive graph representation. In this section, we introduce HCL and its main components
in Figure 1. First, given an input graph G(X,A) with node features, X ∈ RN×d,
A is the adjacency matrix. We first generate positive (green) and negative (red) sam-
ples by attribute shuffling [37]. Specifically, We perform the row-wise shuffling on
the feature matrix X , so the negative graph consists of the same nodes as the origi-
nal graph, but they are located in different places in the graph, and therefore receive
different contextual information. Second, for the positive branch above and the neg-
ative branch below, we both learn graph representations at multiple scales. We first
employ a graph propagation layer on the input graph to initially embed the original
scale of graph as G0(X0,A0) with X0 = X, A0 = A, where the graph propagation
layer is implemented as a multi-channel pseudo-siamese network, with each channel
using a graph convolution layer of the same structure but different weights [18]. We
then recursively apply L2Pool for S times to obtain a series of coarser scales of graph
G1(X1,A1), . . . , GS(XS ,AS) where |Xs| > |Xs′ | for ∀ 1 ≤ s < s′ ≤ S. Thirdly,
we learn the parameters through optimizing the fused multi-scale and multi-channel
contrastive loss function. During the inference, we take the graph adjacency as inputs
for downstream tasks.

To train our model end-to-end and learn multi-scale representation for downstream
tasks, we jointly leverage cross-scale contrastive loss. Specifically, the overall objective
function is defined as:

L = L0 +

k∑
k′=1

((

k∏
k′=1

αpk′ ) ∗ Lpk′ ) , (1)

where L0 is the contrastive loss at the first scale with all nodes, k is the total number
of pool layers besides L0. The αpk′ is the pooling ratio of k′ − th pooling scale, e.g.,
0.9, etc. Then, Lpk′ is contrastive loss at k′ − th pooling scale.

3.2 Multi-Scale Contrasting with L2Pool

In this section, in order to create graph contrasting at multiple scales, we propose a
novel Learning to Pool method, namely L2Pool, to enable coarsening graph data and
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Fig. 2: An illustration of the proposed L2Pool using Transformer-style self-attention
and topology information to select representative nodes and to coarsen into a graph
hierarchy for cross-scale contrastive learning.

contrasting information interchange across scales explicitly. L2Pool adaptively creates
graph representations at multiple scales, by selecting a subset of nodes to form a new
but smaller graph with topology-enhanced attention.

As shown in Figure 2, we implement a Transformer-style multi-head (MH) attention
mechanism. While MH self-attention is superior to trivial pooling methods such as sum
or mean, as it considers global dependencies among nodes. Moreover, note that for each
node, the self-attention only calculates the semantic similarity between current node and
other nodes, without considering the structural information of a graph reflected on the
nodes and the relation between node pairs. To tackle this limitation, we define a novel
multi-head attention enhanced with topological structure from GCNII [4]. Specifically,
GCNII is a GCN model with two effective techniques: Initial residual and Identity map-
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ping, GCNII relieves the problem of over-smoothing thus enables deeper networks. The
input of the attention function (Att) consists of queryQ ∈ Rnq×dk , keyK ∈ Rn×dk and
value V ∈ Rn×dv , where nq is the number of query vectors, n is the number of input
nodes, dk is the dimension of the key vector, and dv is the dimension of the value vector.
Then we compute the dot product of the query with all keys, to put more weights on the
relevant values, namely nodes, as follows: Att(Q,K, V ) = σ(QKT )V , where σ is an
activation function. The output of the multi-head attention function can be formulated
as:

MH(Q,K, V ) = [O1, ..., Oh]W
o,

Oi = Att(QWQ
i ,KW

K
i , V WV

i ),

= Att(QWQ
i ,KW

K
i ,GCNIIVi (H,A)),

(2)

where the learning parameter matrices corresponding to Q, K and V are WQ
i ∈

Rdk×dk , WK
i ∈ Rdk×dk , and WV

i ∈ Rdv×dv respectively. Also, the output projection
matrix is WO ∈ Rdv×dmodel , where dmodel is the output dimension for the multi-head
attention function.

More specifically, we construct V using GCNII, to explicitly leverage the global
structure and capture the interaction between nodes according to their structural depen-
dencies. The multi-head self-attention enhanced by graph topology is defined as:

GCNII(H,A) = σ(((1− α)AH + αH0)((1− β)In + βW )),

Att(Q,K,GCNII(H,A)) = softmax(
QKT

√
dk

)GCNII(H,A),
(3)

where α and β are hyperparameters and In is the identity matrix. Formally, given
node embeddings H ∈ Rn×d with their adjacency information A, we construct the
value V using a 4-layer GCNII, to explicitly leverage the graph topology information
(the equation for a single layer GCNII is given in above equation 3).

Specifically, we named the learnable score function as L2Pool at layer l, and se-
lect the high scored nodes i(l+1) ∈ Rnl+1 , to drop the unnecessary nodes, denoted as
follows:

y(l) = L2Pool(Att, H(l), A(l)); i(l+1) = topk(y
(l)), (4)

where topk function samples the top k nodes by dropping nodes with low scores
y(l) ∈ Rnl . In this way, HCL could preserve as much information as possible from the
graph hierarchy and contrast in a multi-scale manner.

3.3 In-scale Bootstrapping Pseudo-Siamese Network

In HCL, we introduce a Pseudo-Siamese architecture to form the basic bootstrapping
contrastiveness with multi-channel. Generally, the siamese network contains two identi-
cal subnetworks has been proved to be a common structure in unsupervised visual repre-
sentation learning [5], but not been well extended to graph domain yet. Hence, we make
a Pseudo-Siamese network with non-weight-sharing branches for multi-channel con-
trastive learning, which provides more flexibility and capacity than a restricted siamese
network.
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Inspired by above contrastive scheme, we train the GNN-encoder fGNN to maxi-
mize the mutual information (MI) between node (fine-grain) representations, i.e., H =
fGNN (X,A), and a global representation (summary of all representations). This en-
courages the encoder to prefer the information that is shared across all nodes. Since
maximizing the precise value of mutual information is intractable, thus, a Jensen-Shannon
MI estimator is often used [15,26], which maximizes MI’s lower bound. The Jensen-
Shannon-based estimator acts like a standard binary cross-entropy (BCE) loss, whose
objective maximizes the expected log-ratio of the samples from the joint distribution
(positive examples) and the product of marginal distributions (negative examples). The
positive examples are pairings of s with hi of the real input graph G = (X,A),
but the negatives are pairings of s with h̃i, which are obtained from a fake/gener-
ated input graph G̃ = (X̃, Ã) with H̃ = fGNN (X̃, Ã). Then, a discriminator D1 :
RF ′ × RF ′ → R is used to assign higher scores to the positive examples than the neg-
atives, as in [15,26]. The Jensen-Shannon-based BCE objective with weighted sum of
multi-channels across networks in k − th pooling scale is expressed as:

Lpk =

N∑
u=1

E(X,A)

[
logDpk (h

(1)
u + h(2)

u ∗ δpk , s)
]

+

N∑
v=1

E(X̃,Ã)

[
log
(
1−Dpk (h̃

(1)
v + h̃(2)

v ∗ δpk , s)
)]
,

(5)

with A ∈ RN×N and X ∈ RN×F , for simplicity. h(1)
u and h

(2)
u represent the em-

bedding of the first channel and the second channel of the pseudo siamese network, re-
spectively. We use the average function over all node features to obtain the entire graph
representation, s = READOUT(Xpk

) is the summary vector represents the embed-
ding of k−th pooled graph. δpk

is the weighted sum parameter between multi-channels
in the k − th pooling scale. This approach effectively maximizes mutual information
between summary vector s and h

(1)
u + h

(2)
u ∗ δpk

in every pooling layer.

4 Experiments

In this section, we describe the experiments conducted to demonstrate the efficacy of
proposed HCL for graph representation tasks. The experiments aim to answer the fol-
lowing five research questions:

– RQ1. How does HCL perform in node-level graph representation tasks?
– RQ2. How does HCL perform in graph-level representation tasks?
– RQ3. How does the hierarchical mutual information maximization mechanism im-

prove the performance of HCL?
– RQ4. How do the difference parameter settings influence the performance of HCL?
– RQ5. Does HCL capture meaningful patterns and provide insightful representa-

tion?
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Dataset Graphs Nodes Edges Features Classes

N
od

e-
le

ve
l

Cora 1 2,708 5,429 1,433 7
Citeseer 1 3,327 4,732 3,703 6
Pubmed 1 19,717 44,338 500 3

Amazon-C 1 13,752 245,861 767 10
Amazon-P 1 7,650 119,081 745 8

Coauthor-CS 1 18,333 81,894 6,805 15
Coauthor-Phy 1 34,493 247,962 8,415 5

G
ra

ph
-l

ev
el IMDB-B 1,000 19.77 193.06 - 2

IMDB-M 1,500 13.00 65.93 - 3
PTC-MR 344 14.29 14.69 - 2
MUTAG 188 17.93 19.79 - 2
Reddit-B 2,000 508.52 497.75 - 2

Table 1: The statistics of the datasets.

4.1 Datasets and Experimental Setup

Datasets. We evaluate the quality of learned node and graph embeddings on down-
stream tasks. According to the tasks, seven of them are utilized for node-level tasks,
include node classification and clustering, while five of them are for graph-level classi-
fication task. Statistics of datasets used are shown in Table 1. For node classification,
we adopt 3 citation networks including Cora, Citeseer, Pubmed [31], and 4 co-purchase
and co-author networks including Amazon-Computers, Amazon-Photo, Coauthor-CS
and Coauthor-Phy [32]. For node clustering, we adopt three benchmark datasets: Cora,
Citeseer and Pubmed [31]. For graph classification, we use another five common
datasets: MUTAG, PTC-MR [3], IMDB-B, IMDB-M and REDDIT-B [41].

Experimental setup. We initialize the parameters using Xavier initialization [10] and
train the model using Adam optimizer with an initial learning rate of 0.001 and an
NVIDIA V100 GPU with 16G memory. For multi-channel configuration, the weight
sum parameter δ is learned between -1 and 1. To have fair comparisons, we set the size
of the hidden dimension of both node and graph representations to 512. Specifically,
HCL has set up a total of 3 recursive pooling scales of 0.9-0.8-0.7, which preserves
90%(0.9), 72%(0.9*0.8) to 50.4%(0.9*0.8*0.7) nodes from the original graph, respec-
tively. In the construction of multi-scale graphs, L2Pool is implemented with 4 attention
heads and a 4-layer GCNII. 1) For node classification tasks, we follow DGI [37] to
use same GCN encoder for all methods, and report the mean classification accuracy
with standard deviation on the test nodes after 50 runs of training followed by a linear
model. On citation networks, we use the same training/validation/testing splits as [42]
for training the classifier according to the node representations. Specifically, we use 20
labelled nodes per class as the training set, 20 nodes per class as the validation set,
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and the rest as the testing set. On co-purchase and co-author networks, we use 30 la-
belled nodes per class as the training set, 30 nodes per class as the validation set, and
the rest as the testing set. For a fair comparison, the performances of all the methods
are obtained on the same splits. The mean classification accuracy with standard devi-
ation on the test nodes after 50 runs of training is reported. 2) For node clustering
tasks, we employ k-means on the obtained node representations, the clustering results
averaged over 50 runs in terms of NMI and ARI are reported. 3) For graph classifica-
tion tasks, we follow InfoGraph [35] to fairly evaluate the performances of HCL. The
graph embedding was obtained by averaging all embedding of nodes in the graph. The
mean 10-fold cross validation accuracy with standard deviation after 5 runs followed
by a linear SVM is reported. We follow InfoGraph to choose the number of GCN lay-
ers, number of epochs, batch size, and the C parameter of the SVM from [2, 4, 8, 12],
[10, 20, 40, 100], [32, 64, 128, 256], and [10−3, 10−2, ..., 102, 103], respectively. The pa-
rameters of classifiers are independently tuned using cross validation on training folds
of data, and the best average classification accuracy is reported for each method.

Method Input Cora Citeseer Pubmed Amazon-C Amazon-P Coauthor CS Coauthor Phy
MLP X,Y 58.2 ± 2.1 59.1 ± 2.3 70.0 ± 2.1 44.9 ± 5.8 69.6 ± 3.8 88.3 ± 0.7 88.9 ± 1.1
LogReg X,A,Y 57.1 ± 2.3 61.0 ± 2.2 64.1 ± 3.1 64.1 ± 5.7 73.0 ± 6.5 86.4 ± 0.9 86.7 ± 1.5
LP A,Y 68.0 45.3 63.0 70.8 ± 0.0 67.8 ± 0.0 74.3 ± 0.0 90.2 ± 0.5
Chebyshev X,A,Y 81.2 69.8 74.4 62.6 ± 0.0 74.3 ± 0.0 91.5 ± 0.0 92.1 ± 0.3
GCN X,A,Y 81.5 70.3 79.0 76.3 ± 0.5 87.3 ± 1.0 91.8 ± 0.1 92.6 ± 0.7
GAT X,A,Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 79.3 ± 1.1 86.2 ± 1.5 90.5 ± 0.7 91.3 ± 0.6
SGC X,A,Y 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0 74.4 ± 0.1 86.4 ± 0.0 91.0 ± 0.0 90.2 ± 0.4
MoNet X,A,Y 81.3 ± 1.3 71.2 ± 2.0 78.6 ± 2.3 83.5 ± 2.2 91.2 ± 1.3 90.8 ± 0.6 92.5 ± 0.9
DGI X,A 81.7 ± 0.6 71.5 ± 0.7 76.9 ± 0.5 75.9 ± 0.6 83.1 ± 0.5 90.0 ± 0.3 91.3 ± 0.4
GMI X,A 80.9 ± 0.7 71.1 ± 0.2 78.0 ± 1.0 76.8 ± 0.1 85.1 ± 0.1 91.0 ± 0.0 OOM
GRACE X,A 80.0 ± 0.4 71.7 ± 0.6 79.5 ± 1.1 71.8 ± 0.4 81.8 ± 1.0 90.1 ± 0.8 92.3 ± 0.6
SUBG-CON X,A 82.5 ± 0.3 70.9 ± 0.3 73.13 ± 0.5 OOM OOM OOM OOM
GCA X,A 80.5 ± 0.5 71.3 ± 0.4 78.6 ± 0.6 80.8 ± 0.4 87.1 ± 1.0 91.3 ± 0.4 93.1 ± 0.3
MVGRL X,A 82.0 ± 0.7 70.7 ± 0.7 74.0 ± 0.3 76.2 ± 0.6 84.1 ± 0.3 83.6 ± 0.3 87.1 ± 0.2
HCL(Ours) X,A 82.5 ± 0.6 72.0 ± 0.5 79.2 ± 0.6 84.0 ± 0.7 87.5 ± 0.4 91.1 ± 0.4 93.3 ± 0.5
GCA* X,D 81.8 ± 0.8 72.0 ± 0.5 81.2 ± 0.7 81.5 ± 0.9 87.0 ± 1.2 91.6 ± 0.7 93.0 ± 0.5
MVGRL* X,D 82.8 ± 1.0 72.7 ± 0.5 79.6 ± 0.8 82.9 ± 0.9 86.9 ± 0.5 91.0 ± 0.6 93.2 ± 1.0
HCL(Ours)* X,D 83.7 ± 0.7 73.3 ± 0.4 81.8 ± 0.7 83.4 ± 0.5 87.3 ± 0.4 91.7 ± 0.3 93.5 ± 0.4

Table 2: Node classification accuracies (%) for supervised and unsupervised methods on
different datasets. The best performance is highlighted in bold. The previous best per-
formance is underlined. The Input column highlights the data available to each model
during the model training process (X:features, A:adjacency matrix, D:diffusion matrix,
Y:labels). * denotes model using Diffusion instead of Adjacency matrix as input. OOM
indicates Out-Of-Memory on a 16GB GPU. Some results without standard deviations
are directly taken from [14].
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4.2 Evaluation on node-level tasks (RQ1)

Node Classification. To evaluate node classification under the linear evaluation pro-
tocol, we compare results of our HCL with recent unsupervised models in Table 2,
including DGI [37], GMI [29], MVGRL [14], GRACE [47], GCA [48]and SubG-
CON [16].Moreover, we also compare our results with supervised models including
MLP, Logistic Regression(LogReg), label propagation (LP) [46], Chebyshev [6], GCN,
GAT [36], SGC [39] and mixture model networks (MoNet) [24]. The results show
that our HCL achieves superior performances with respect to previous unsupervised
models. For example, on Amazon-C dataset, we achieve 84.0% accuracy, which is
a 3.1% relative improvement over previous state-of-the-art. Furthermore, inspired by
MVGRL [14], employing Diffusion matrices other than Adjacency matrices has been
shown to improve GNNs performance [19]. We also conducted experiments of HCL
with Diffusion matrices D as input. Noting that, HCL with X and diffusion matrix
D as input further yields even better performances than that of (X,A). HCL also out-
performs both GCA and MVGRL using diffusion matrix in the same settings, which
further denotes the superiority of HCL.

Node Clustering. To evaluate performance on node clustering task, we compare our
HCL with models reported including: variational GAE (VGAE) [17], marginalized
GAE (MGAE) [38], adversarially regularized GAE (ARGA) and VGAE (ARVGA)
[27], GALA [28] and MVGRL [14]. The results in Table 3 suggest that our model
achieves superior or comparable performance on NMI and ARI scores across most of
the benchmarks. Besides, the improvements are more significant in terms of ARI com-
pared to those of NMI. The results encourage that unsupervised clustering task prefers
the representation containing the important and semantic feature due to the lack of
supervised information. Meanwhile, HCL boosts the supervised classification with a
larger margin, by adequately exploiting the labels and graph inherent characteristics.
Thus, HCL tends to capture faithful and comprehensive information of the graph by
enhancing the scheme of message passing.

4.3 Evaluation on graph-level tasks (RQ2)

Besides node-level tasks, we further evaluate the performances of HCL and other base-
lines on graph classification under the linear evaluation protocol and answer the re-
search question RQ2.
Graph Classifications. (1) We compare our results with five graph kernel methods
including shortest path kernel (SP) [2], Graphlet kernel (GK) [34], Weisfeiler-Lehman
sub-tree kernel (WL) [33], deep graph kernel (DGK) [41], and multi-scale Laplacian
kernel (MLG) [20] reported in [35]. (2) We also compare with five supervised GNNs
reported in [40] including GraphSAGE [13], GCN, GAT, and two variants of GIN: GIN-
0 and GIN-ε. (3) Moreover, We compare the results with other unsupervised methods
including random walk [8], node2vec [12], sub2vec [1], graph2vec [25], InfoGraph[35]
, GCC[30], GraphCL[44] and MVGRL [14]. The results shown in Table 4 suggest that
HCL achieves superior results with respect to unsupervised models. For example, on
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Method Cora Citeseer Pubmed
NMI ARI NMI ARI NMI ARI

K-means 0.321 0.230 0.305 0.279 0.001 0.002
Spectral 0.127 0.031 0.056 0.010 0.042 0.002
BigClam 0.007 0.001 0.036 0.007 0.006 0.003
GraphEncoder 0.109 0.006 0.033 0.010 0.209 0.184
DeepWalk 0.327 0.243 0.088 0.092 0.279 0.299
GAE 0.429 0.347 0.176 0.124 0.277 0.279
VGAE 0.436 0.346 0.156 0.093 0.229 0.213
MGAE 0.511 0.445 0.412 0.414 0.282 0.248
ARGA 0.449 0.352 0.350 0.341 0.276 0.291
ARVGA 0.450 0.374 0.261 0.245 0.117 0.078
GALA 0.577 0.531 0.441 0.446 0.327 0.321
MVGRL 0.572 0.495 0.469 0.449 0.322 0.296
HCL(Ours) 0.586 0.536 0.472 0.447 0.332 0.329

Table 3: Performance on node clustering task reported in normalized MI (NMI) and
adjusted rand index (ARI) measures. The best performance is highlighted in bold.

REDDIT-B, HCL achieves 91.9% accuracy, i.e., a 2.7% relative improvement over pre-
vious state-of-the-art. When compared to supervised baselines individually, our model
outperforms GCN and GAT models in 3 out of 5 datasets, e.g., a 10.0% relative im-
provement over GAT on IMDB-M dataset.

Noting that HCL achieve superior and competitive performance on both node-level
and graph-level tasks using a unified framework, unlike previous unsupervised models
[37,35], we do not devise a specialized encoder for each task.

4.4 Components Analysis and Ablation of HCL (RQ3 & RQ4)

Due to computation complexity, we conduct the ablation studies of proposed HCL on
node classification of Cora and Citeseer datasets. All the experiment details are the
same as mentioned in section 4.1. for fair comparison.
Effect of Multi-scale and Multi-channel Contrastiveness (RQ3). To validate the
effectiveness of the two contrastive components (Multi-scale, Multi-channel), We use
HCL with/without multi-channel and multi-scale to denote the ablated model with one
of the key components removed. The experiments on Cora and Citeseer presented in
Table 5 show that HCL with both components yielded best performance, which demon-
strates the effectiveness of our two contrastive schemes. Specifically, the relative im-
provements are fair to be prominent as: multi-scale & multi-channel, multi-scale, multi-
channel are 2.2%, 1.8% and 1.3% on Cora, 2.1%, 1.5% and 0.8% on Citeseer, respec-
tively ( HCL without multi-scale and multi-channel can be considered as DGI with
Diffusion matrices as input, it yielded only 81.9 on Cora and 71.8 on Citeseer). These
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Method MUTAG PTC-MR IMDB-B IMDB-M REDDIT-B

K
E

R
N

E
L

SP 85.2 ± 2.4 58.2 ± 2.4 55.6 ± 0.2 38.0 ± 0.3 64.1 ± 0.1
GK 81.7 ± 2.1 57.3 ± 1.4 65.9 ± 1.0 43.9 ± 0.4 77.3 ± 0.2
WL 80.7 ± 3.0 58.0 ± 0.5 72.3 ± 3.4 47.0 ± 0.5 68.8 ± 0.4

DGK 87.4 ± 2.7 60.1 ± 2.6 67.0 ± 0.6 44.6 ± 0.5 78.0 ± 0.4
MLG 87.9 ± 1.6 63.3 ± 1.5 66.6 ± 0.3 41.2 ± 0.0 −

SU
PE

RV
IS

E
D GraphSAGE 85.1 ± 7.6 63.9 ± 7.7 72.3 ± 5.3 50.9 ± 2.2 OOM

GCN 85.6 ± 5.8 64.2 ± 4.3 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0
GIN-0 89.4 ± 5.6 64.6 ± 7.0 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5
GIN-ε 89.0 ± 6.0 63.7 ± 8.2 74.3 ± 5.1 52.1 ± 3.6 92.2 ± 2.3
GAT 89.4 ± 6.1 66.7 ± 5.1 70.5 ± 2.3 47.8 ± 3.1 85.2 ± 3.3

U
N

SU
PE

RV
IS

E
D

random walk 83.7 ± 1.5 57.9 ± 1.3 50.7 ± 0.3 34.7 ± 0.2 OOM
node2vec 72.6 ± 10.2 58.6 ± 8.0 OOM OOM OOM
sub2vec 61.1 ± 15.8 60.0 ± 6.4 55.3 ± 1.5 36.7 ± 0.8 71.5 ± 0.4

graph2vec 83.2 ± 9.6 60.2 ± 6.9 71.1 ± 0.5 50.4 ± 0.9 75.8 ± 1.0
Infograph 89.0 ± 1.1 61.7 ± 1.4 73.0 ± 0.9 49.7 ± 0.5 82.5 ± 1.4

GCC 86.4 ± 0.5 58.4 ± 1.2 – – 88.4 ± 0.3
GraphCL 86.8 ± 1.3 OOM 71.1 ± 0.4 OOM 89.5 ± 0.8
MVGRL 89.7 ± 1.1 62.5 ± 1.7 74.2 ± 0.7 51.2 ± 0.5 84.5 ± 0.6

HCL(Ours) 89.2 ± 1.2 63.1 ± 1.4 74.3 ± 0.6 52.0 ± 0.6 91.9 ± 0.7

Table 4: Mean 10-fold cross validation accuracies (%) on graph classification task. The
best performance is highlighted in bold.

Multi-Scale Multi-Channel Cora Citeseer
HCL X X 83.7 ± 0.6 73.3 ± 0.4
HCL X - 83.4 ± 0.7 72.9 ± 0.5
HCL - X 83.0 ± 0.9 72.4 ± 0.7

Table 5: Ablation study of main components in HCL on Cora and Citeseer.

improvements can be attributed to the comprehensive multi-scale and multi-channel
contrastive learning scheme, which takes the advantage of more flexible contrastive-
ness and more sufficient feature exploration.
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Effect of Pooling Settings (RQ4). To validate whether the multi-scale representation is
useful at each of its scales in HCL, we conduct experiments on different scale settings.
In the above part of Table 6, the experimental results suggested that removing scales
decreased the graph learning performances. Each scale benefits from more multiplex
self-supervision signals and empowered them to regularize each other. Moreover, we
validate the advantages of the proposed L2Pool method on node classification task.
We investigate three implementations for graph pooling methods: the proposed L2Pool,
previous methods gPool [7] and SAGPool [21]. As shown in the below part of Table
6, the experiments indicate that L2Pool yields superior performance, demonstrating
more effective and proper scoring functions of adaptive L2Pool enables constructing
more reasonable multi-scale graphs, via reducing the size of a graph while maintaining
essential properties.

Pooling-settings Cora Citeseer
HCL (4 scales: 1.0-0.9-0.8-0.7) 83.7 ± 0.6 73.3 ± 0.4
HCL (3 scales: 1.0-0.9-0.8) 83.5 ± 0.8 73.0 ± 0.6
HCL (2 scales: 1.0-0.9) 83.2 ± 0.7 72.8 ± 0.5
HCL (1 scales: 1.0) 83.0 ± 0.9 72.4 ± 0.7
HCLL2Pool 83.7 ± 0.6 73.3 ± 0.4
HCLgPool 83.1 ± 0.7 72.5 ± 0.3
HCLSAGPool 82.6 ± 0.8 72.2 ± 0.5

Table 6: Ablation study of pooling scales and methods in HCL.

4.5 Further Analysis of Explainable Representation Visualization (RQ5)

In this subsection, we further investigate the power of HCL to provide insightful inter-
pretations and produce representation with prominent patterns in different graphs and
answer research question RQ5. As shown in Figure 3, we visualize the node embed-
dings of Cora, Citeseer and Pubmed calculated by different baselines via the t-SNE
algorithm. Our HCL exhibits a relatively more compact and discernible clustering than
other baselines, like DGI[37], MVGRL[44] and GraphCL[44]. It suggests that the hi-
erarchical contrastive learning scheme of HCL captures more meaningful and inter-
pretable clusters, which provides high-quality representations for the downstream tasks.
To our knowledge, most previous methods neglected to capture the hierarchical struc-
ture, hindered by operating on a fixed-size scale. HCL is the first to explicitly integrate
the hierarchical node-graph contrastive objectives in multiple-granularity, demonstrat-
ing superiority over previous methods.
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DGI 

MVGRL 

GraphCL

HCL (Ours)

Cora Citeseer Pubmed 

Fig. 3: t-SNE visualization of representation learned from different methods on Cora,
Citeseer and Pubmed datasets.

5 Conclusions

In this work, we proposed a novel Hierarchical Contrastive Learning (HCL) framework
for graph to explore more multiplex self-supervision signals and empowered them to
regularize each other. Extensive experiments suggest that (i) HCL outperforms most
state-of-the-art unsupervised learning methods on node classification, node clustering
and graph classification tasks; (ii) the proposed L2Pool methods yield more reasonable
graph hierarchy with learnable topology-enhanced multi-head attention scores; (iii) the
nested contrastive objective across multi-scale and multi-channel leads to better perfor-
mances. Therefore, HCL paves the way to a potential direction for unsupervised graph
learning objective and superior architecture design. In particular, the composite multi-
scale and multi-channel contrastive objective bridges the gap between prior contrasting
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and hierarchical representation learning objectives, hence introduces a more sufficient
and effective graph mining. In the future, the proposed HCL framework could be effec-
tively integrated with more GNN models and applied on more graph learning tasks, to
explore richer feature interaction for intrinsic informative pattern capturing.
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11. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your own latent-a new ap-
proach to self-supervised learning. Advances in Neural Information Processing Systems 33,
21271–21284 (2020)

12. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: International
Conference on Knowledge Discovery and Data Mining. pp. 855–864 (2016)

13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems. pp. 1024–1034 (2017)

14. Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In:
International Conference on Machine Learning. pp. 4116–4126 (2020)

15. Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A.,
Bengio, Y.: Learning deep representations by mutual information estimation and maximiza-
tion. In: International Conference on Learning Representations (2019)

16. Jiao, Y., Xiong, Y., Zhang, J., Zhang, Y., Zhang, T., Zhu, Y.: Sub-graph contrast for scalable
self-supervised graph representation learning. In: IEEE International Conference on Data
Mining. pp. 222–231 (2020)

17. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308
(2016)



16

18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: International Conference on Learning Representations (2017)
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