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Abstract. Prostate cancer is the second-most frequently diagnosed cancer and
the sixth leading cause of cancer death in males worldwide. The main problem
that specialists face during the diagnosis of prostate cancer is the localization
of Regions of Interest (ROI) containing a tumor tissue. Currently, the segmen-
tation of this ROI in most cases is carried out manually by expert doctors, but
the procedure is plagued with low detection rates (of about 27-44%) or over-
diagnosis in some patients. Therefore, several research works have tackled the
challenge of automatically segmenting and extracting features of the ROI from
magnetic resonance images, as this process can greatly facilitate many diagnostic
and therapeutic applications. However, the lack of clear prostate boundaries, the
heterogeneity inherent to the prostate tissue, and the variety of prostate shapes
makes this process very difficult to automate.In this work, six deep learning mod-
els were trained and analyzed with a dataset of MRI images obtained from the
Centre Hospitalaire de Dijon and Universitat Politecnica de Catalunya. We car-
ried out a comparison of multiple deep learning models (i.e. U-Net, Attention
U-Net, Dense-UNet, Attention Dense-UNet, R2U-Net, and Attention R2U-Net)
using categorical cross-entropy loss function. The analysis was performed using
three metrics commonly used for image segmentation: Dice score, Jaccard index,
and mean squared error. The model that give us the best result segmenting all the
zones was R2U-Net, which achieved 0.869, 0.782, and 0.00013 for Dice, Jaccard
and mean squared error, respectively.
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1 Introduction

Prostate cancer (PCa) is the second leading cause of cancer deaths in the world and
nowadays one of eight men are diagnosed with this disease in their lifetime [1]]. There
are some risk factors, such as the age above 50 years, family history, obesity, ethnic-
ity that must be considered during the diagnosis process, and it is noteworthy that the
survival rate for regional PCa is almost 100% when detected in early stages. In stark
contrast, the survival rate when the cancer is spread to other parts of the body is of only
30% [2].
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Magnetic Resonance Imaging (MRI) has been established as the best medical image
tool for the detection, localization and staging of PCa, due to their high resolution,
excellent spontaneous contrast of soft tissues, and the possibility of multi-planar and
multi-parametric scanning [3]]. Although MRI has been traditionally used for staging
PCa, we will focus on PCa detection trough ROI segmented from MR images.

The use of image segmentation of MR images for PCa detection and characterisa-
tion can in fact help in determining the tissue volume, aiding as well in the localization
the cancerous tissue in the ROI [4]. Thus, an accurate and consistent segmentation is
crucial in PCa. Although prostate segmentation is a relatively old problem and some
methods have been proposed in the past using conventional image processing pipelines,
nowadays, the most common and traditional method to identify and delimit prostate
gland and prostate regions of interest (central zone, peripheral zone, transition zone) is
performed manually by radiologists [S]].

This non-automated process has been proven to be time-consuming and, due to the
subjectivity of the task and different interpretations from multiple specialists, it is highly
operator dependant and difficult to reproduce [6]]. Therefore, automating this process for
the segmentation of prostate gland and regions of interest, in addition to saving time for
radiologists, can be used as a learning tool for others and have consistency in contouring

[7].

In recent years, the automatic segmentation of the prostate has been promoted with
the use of deep learning techniques. These methods, called convolutional neural net-
works (CNNs) have generated results that outperform traditional methods due to their
ability to learn complex features and perform an accurate classification of pixels, re-
sulting in segmentation [§8]. Several works have addressed the problem of prostate seg-
mentation using deep learning, such is the case of the popular U-Net [9] model, which
is the base of many recent works in literature: MultiResU-Net [10], Dense-UNet [11],
Attention U-Net [12], among others. Although good results have been obtained by the
authors of these models, there is a lack of datasets with enough information to segment
the prostate and all of its ROI correctly.

In this paper, we explore six recent deep learning methods (i.e. U-Net, Attention
U-Net, Dense-UNet, Attention Dense-UNet, Recurrent Residual Convolutional Neural
Network based on U-Net (R2U-Net), and Attention R2U-Net architectures.) to segment
the prostate and evaluate their performance in this task. Even though a comparison of
metrics to evaluate the performance between these models have been performed in other
works, most of them only evaluate between the whole prostate gland or two principal
zones: CZ, and PZ.

The dataset we used to perform our experiments the Centre Hospitalaire de Dijon
and consists of 16 patients, with a total of 205 images with their corresponding annota-
tions that were validated by a collaboration of experts using a dedicated software tool
[[L3]]. The deep learning models studied and compared were trained in the same condi-
tions, using categorical cross-entropy loss function and three metrics to measure their
performance. In this work, we make a thorough comparison between six models, in-
cluding five U-Net based models and original U-Net, using multiple loss functions and
the same metrics for evaluation. The pipeline of our experiments is shown in Figure
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Fig. 1: Pipeline of experiments. Six models were trained with 16 patients (205 images)
using four loss functions. As a result, an image with four segmented zones was obtained
for each test image on all models. The resulting images were evaluated using three
segmentation metrics.

This paper has five sections including this introduction. Section [2]is divided in two
subsections where we mentioned the motivation of doing this study, and also, discuss
previous works related to prostate segmentation, focusing on deep learning methods.
Section@is divided in four subsections, where we described the dataset, deep learning
architectures, metrics, loss functions, and details for training and testing. In section El
the results of the experiments are discussed in detail. The conclusion and future work
are in Section [

2 Motivation and State of the art

2.1 Motivation for segmenting prostate zones

In accordance with Sun et al. [14]], analyzing multiparametric MRI (mpMRI) images is
a technique used in patients with possible PCa, which can be performed before a tran-
srectal ultrasound (TRUS) or after a negative TRUS. In the case of a potential cancerous
tissue, it can also be analyzed by MRI guided biopsy or MRI-US guided biopsy, which
both of them have shown higher accuracy than only using TRUS [[14]]. For patients who
have been correctly diagnosed with PCa, morphology and localization are features that
can be extracted from mpMRI images. An accurate localization of tumor can be carried
out by mpMRI, chiefly those in anterior zone that TRUS may miss [15]. Also, mpMRI
has shown a high accuracy defining tumor volume, which is a risk factor [14].

Therefore, segmentation of MRI images is crucial to define the prostate boundaries
(including zones) and exclude other nearby organs that are not of interest at the moment
[14]. As commented before, there are manual and automated methods to do it and the
most common used is manual.
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This manual method has several limitations that can affect in the analysis of PCa
detection, such as time consumption, subjective results, variability, etc., and, for that
reason, automated techniques are currently the main discussion in research [S)]. The dif-
ficulty in the segmentation process is due to the complex nature of medical images and
the presence of non-linear features in most of them [16].

More precisely, the segmentation output can be affected by: intensity inhomogene-
ity, closeness in gray level of different soft tissue, partial volume effect, or presence of
artifacts [[16], which are not easy to fix or homogenize between acquisition or among
patients and are highly operator dependant as well.

Another issue in image segmentation pertains validation fot the results by several
specialists following a reproducible method. New automated methods have tried to
overcome these limitations, and there are some examples such as U-net [9] network
architecture which is dedicated to segment biomedical images, but it has some draw-
backs [15]].

2.2 Related Work

Machine Learning methods Several traditional methods in the literature for prostate
zones segmentation have been proposed. They can be classified as atlas-based models,
deformable models, and feature-based ML methods [17]]. Atlas-based models consist
in a collection of multiple images segmented manually by experts, which are used as
a reference for new segmentation in images of other patients [[17]. A study of Klein et
al. [18] in 2007, proposed a model based in MR atlas images, they registered the target
image in a non-rigidly way using a similarity measure, to use the same measure to select
the best ones, and obtain the segmentation by averaging the selected deformed segmen-
tation. They obtained a median Dice similarity coefficient (DSC) of 0.82 evaluating
their model in 22 images [18].

Deformable models is another technique that has been used in the literature to get
an accurate prostate segmentation, this models are based in mathematical, geometrical,
and physical theories to constrain and guide a curve to delineate an object’s border
[19]. Liu et al. [20] in 200 proposed a deformable model using level set in MRI data,
the model was tested in images from 10 patients and they obtained a DSC score of 0.81.

Another methods were introduced in order to get a more precise results of segmenta-
tion in medical devices such as: k-means clustering, thresholding, active contour meth-
ods, among others. Those techniques have shown good results in image segmentation.
However, in the last years, the field of Deep Learning (DL) has growth exponentially in
medical imaging, particularly in the segmentation process [21].

Deep Learning based methods In medical imaging, deep-learning techniques have
been improving the analysis, such as image segmentation, image registration, image
fusion, image annotation, CADX, lesion detection, and microscopic image analysis [22].
In recent years, new DL models for image segmentation have been developed, specially
focused on the biomedical area.

One of the best known models in the literature is U-Net, which is a CNN composed
of a series of four convolution and max-pooling operations which reduce the dimension
of the input image, followed by four convolution and up-sampling operations [9].
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There are some works that use U-Net to get an automatic segmentation of the
prostate. Zhu et al. [23] proposed a deeply-supervised CNN to segment the whole
prostate gland, based on the structure of U-Net getting a mean DSC of 0.885. Also,
Zabihollahy et al. [24]] designed a model composed by two U-Net architectures to seg-
ment the prostate gland, as well as, its CZ and PZ in MRI T2-weighted images and
ADC maps, obtaining a mean DSC score of 0.92, 0.91, 0.86, respectively. Also, Clark
et al. [25] presented a new architecture based on U-Net and inception model to segment
the prostate and transition zones using diffusion-weighted MR images, they obtained
a mean DSC of 0.93 and 0.88, respectively. Rundo et al. [26] proposed a novel archi-
tecture called USE-Net, which incorporates Squeeze-and-Excitation into U-Net; they
achieved a segmentation of the prostate zones outperforming most of the state-of-the-
art results in peripheral zone segmentation. In another work, Runo et al. [27] analyzed
some CNN models with datasets from different institutions using only T2-weighted
MR images and concluded that U-Net outperforms other methods in the state of the art.
More recently, Aldoj et al. [5] proposed a novel model based on U-Net and DenseNet
and did a segmentation of prostate zones in 3D MR images with three variations of their
architecture, they obtained a mean DSC for the whole gland, CZ, and PZ of 0.92, 0.89,
and 0.78, respectively.

In 2018, Oktay et al. [12] proposed a novel attention gates to incorporate it into the
existing U-Net model. The intention of using attention blocks is that, in an automatic
way, the model learns to focus on the specific target structures, and ignore the rest of
them on the image. In Attention U-Net model, the attention gates highlight the salient
features from the skip connections between the encoder and decoder [12]. These at-
tention gates modules have been implemented in other architectures such as Attention
Dense-UNet [28]], Spatial Attention U-Net [29], Attention R2U-Net, among others.

Although automatic prostate segmentation has improved during the last years, there
is still work to do in segmentation of specific prostate zones such as CZ, PZ, and TZ.
An accurate segmentation of these zones, as well as, of tumor (TUM) of different sizes
and shapes, could lead in early detection of prostate cancer. Therefore in this work,
we compared some models from the literature using categorical cross-entropy as loss
function with a dataset of only T2-weighted images. We analyzed the segmentation of
the prostate zones using different metrics to choose the best DL architecture.

3 Data and methods

The technical contribution of this work is the evaluation of the impact of four loss
functions with three metrics on the prostate segmentation using U-Net, Attention U-
Net, Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net),
Attention R2U-Net, , Dense-UNet, and Attention Dense-UNet architectures. A total of
6 segmentation processes with a maximum of four zones per image are compared in
this work. A visual summary of the experiments carried out is shown in Figure [T} In
this section the data and methodology followed is described and explained.
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3.1 Dataset

The dataset of images used in this work were provided by PhD. Christian Mata from
UPC in Barcelona in collaboration with DIJON hospital in France. The examinations
used in our study contained three-dimensional T2-weighted fast spin-echo (TR/TE/ETL:
3600 ms/143 ms/109, slice thickness: 1.25 mm) images acquired with sub-millimetric
pixel resolution in an oblique axial plane..The institutional committee on human re-
search approved the study, with a waiver for the requirement for written consent, be-
cause MRI was included in the workup procedure for all patients referred for brachyther-
apy or radiotherapy.

In addition to the images, a manual segmentation of each with four regions of inter-
est (CZ, PZ, TZ, and TUMOR) was provided and this process was cautiously validated
by multiple professional radiologists and experts using a dedicated software tool [13].
The format of the T2-weighted scans from the dataset are DICOM, with their corre-
spondent annotations in format CSV of the prostate zones.

The ground truth masks were created from the CSV data files in a resolution of
256x256 pixels. Also, DICOM files were transformed to images of the same resolu-
tion after a data augmentation process was carried out. As is common with medical
images, due to the difficulty of obtaining good images to work with them, a biomedical
image augmentation algorithm [30] was performed. This process help us to increase
the number of training images, and consisted of 16 geometrical transformations such
as: rotations, zoom, translations, among others variations. At the end, the total number
of images with their corresponding masks were 3485. An example from the dataset is
shown in Figure [2} in the image there is an original T2-MRI image of the prostate and
the mask of the zones generated from the data file provided.

3.2 Deep Learning Architectures

As mentioned in Section 2] there are several deep learning architectures used for image
segmentation in the literature. In this work, we focused on five models based in the U-
Net architecture originally proposed by Ronnerberget et al. [9]], and this one was also
considered for comparison.

(a) Original T2-MRI prostate image (b) Masks of prostate zones

Fig.2: Sample image and mask of the dataset.
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One of the architectures used in this work is Attention U-Net by Oktay et al. [12]],
which incorporates Attention Gates (AGs) into the standard U-Net architecture to high-
light salient features that are passed through the skip connections. This is performed
right before the concatenation operation to merge only relevant activations [12]. AGs
progressively suppress feature responses in irrelevant background regions without the
requirement to crop a regions of interest between networks [12].

Also, Dense-UNet proposed by Wu et al. [11] was selected for the comparison in
this work, which consists of a network that combines the U-Net architecture with dense
concatenation to reduce resolution loss. The network consists of a right side of the
architecture with a dense downsampling path, and the left side with a dense upsampling
path, also, it incorporates some skip connection channels to connect the paths.

Other model tested was R2U-Net presented by Zahangir et al. [31] consists of a
recurrent residual convolutional neural network which has been demonstrated that out-
performs classical U-Net due to the benefit of feature accumulation inside the model in
training and testing processes, among other novel features proposed.

Attention Dense-Unet proposed by Li et al. [28]], is an integration of Attention mod-
ules and the model Dense-UNet, and has been demonstrated in the literature to outper-
forms Dense-UNet, thus we decided to include it in the comparison. Finally, we did
an integration of Attention U-Net [32] and R2U-Net [31] architectures called Attention
R2U-Net to get a combination of the benefits of both models and compare the perfor-
mance of the segmentation tasks.

3.3 Segmentation metrics

There are several metrics used for image segmentation in the literature [33]] and the se-
lection of metrics for evaluation depends on the data and segmentation task. Therefore,
the metrics we have selected to be used on this work aiming to get a robust comparison
between the segmentation architectures and loss functions are Dice Similarity Coeffi-
cient (DSC), Jaccard Index (JAC), and Mean Square Error (MSE).

As are trying to segment multiple prostate zones, it is necessary to use the appro-
priate metrics, as mentioned by Taha et al. [33], the use of Jaccard index and DSC
is appropriate in this case. The Jaccard Index, also known as Intersection Over Union
(IOU), is a segmentation metric based on overlap and it is defined as the intersection
between ground-truths and predictions divided by their union (see Equation [T). DSC
is the most used metric based for calculating the overlap between the ground-truth and
predicted images divided by the common pixels between them, and it can be defined as
shown in equation [2] The last metric is Mean Square Error (MSE), which averages the
difference between the ground-truths and predicted segmentation.

|Prediction N Ground Truth|

JAC = —
|Prediction U Ground Truth|

e))

2|Prediction N Ground Truth|
|Prediction| + |Ground Truth|

DSC = ()
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3.4 Loss functions

The choice of a loss function is extremely important for any deep learning architecture,
due to the fact that it guides the learning process of the algorithm. That is to say, it
makes the algorithm to be more accurate, faster and reproducible during the training
process. Also, a correct selection of loss function can reduce or mitigate the problem
of overfitting in the model. Herein, we evaluated the models with Categorical Cross-
Entropy (CCE), which is a common loss function used in multi-class segmentation, and
it is designed to quantify the difference between two probability distributions [34].

3.5 Training

All the models in this work were trained using equal parameters and settings; the five
tested models were implemented using Keras. The U-Net model was implemented us-
ing an adapted code for multiclass segmentation provided by Sha, Y. [35]. The im-
plementation of Dense-UNet made by Wu et al. [[11] was used in this work. For the
Attention U-Net, R2U-Net, and Attention R2U-Net, the codes implementations were
taken from a Github repository [36] and transformed to be used with Keras. Finally, At-
tention Dense-UNet architecture was designed combining Dense-UNet and Attention
U-Net implementation.

The training process for each model was performed using 90% of images, 100
epochs, a batch size of 6, and a learning rate of 0.0001. All the training was done using
a NVIDIA DGX workstation, using two V100 GPUs for each model. At the end, the
trained weights were saved for future testing and prediction.

4 Results

As mentioned above, previous works in the literature that have shown great promise in
prostate segmentation. However, most of them have focused solely on specific zones.
Segmenting the gland or only CZ and PZ, is a more common task due to its bound-
aries are more delimited than zones such as TZ and Tumor, where the size and shape
presents more variability between patients and images. Therefore, comparing multiple
deep learning architectures dedicated for medical image segmentation with a dataset
with images and masks of all the zones of the prostate represents an interesting contri-
bution.

In what follows, we will perform a comparison of the obtained results both quanti-
tatively (through the selected metrics) and qualitatively (by comparing various sample
images and their corresponding GT) to assess the performance of studied models.

4.1 Quantitative Results

In Table[I]shows a summary of the five models performance measured under the metrics
mentioned before. A (1) or lower () symbol indicates whether this metrics has to be
maximized or minimized for obtaining a better model, whereas the values correspond to
the mean metric between the prostate zones and test images. The bold values represents
the model that achieved the best metric score within all of them.
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Table 1: Results using multiple deep learning models and metrics (average) for Cate-
gorical Cross-Entropy Loss.

Metrics
Model DSCT JACT MSE |
U-Net 0.731 0.635 0.0021
Attention U-Net 0.839 0.741 0.0016
Dense-UNet 0.830 0.725 0.0018
Attention Dense-UNet 0.844 0.747 0.0016
R2U-Net 0.869 0.782 0.0013
Attention R2U-Net 0.864 0.775 0.0014

Although all the models analyzed in this work are U-Net based, with our dataset
this base architecture had the worst results in metrics performance. After incorporating
attention modules to U-Net, the performance increased in 0.108, 0.106, and 0.05 for
the DSC, JAC, and MSE metrics, respectively. On the other hand, Dense-UNet model
achieved lower metric values before integrating attention gates. After integrating atten-
tion, the performance obtained by Attention Dense-UNet was the best.

Analyzing all the results in Table|l} it is can be inferred that R2U-Net is the model
with the highest performance in Dice and Jaccard metrics (although a lowest value
for MSE was obtained). The gain in performance between R2U-Net and the base U-
Net model is around 13.8%, 14.7%, and 0.0008 for DSC, JAC, and MSE, respectively.
However, the architecture of R2U-Net with Attention modules obtained almost the same
values in the test set, with a difference of only 0.004, 0.007 and 0.0001, respectively.

However, the two last models require more computational resources (and inference
time). The difference in performance can be explained by the use of attention blocks,
which requires extra parameters, possibly leading to overfitting. Nevertheless, due to the
little discrepancy between the metrics in these two architectures, it could be difficult to
notice the gap in a visual comparison with images. For comparing the segmentation
performance of the models for each zone (CZ, PZ, TZ, and TUMOR), we selected the
Jaccard Index metric (1) for evaluation. A summary of the results is shown in a box-plot
(see Figure[3)), were each color represents a different model, and each point is the result
of the Jaccard performance in a tested image.

As is shown in Figure [3| the performance of the models varies according to the
prostate zone segmented. The zone with the best Jaccard index, aside from the back-
ground, was the CZ, where all of the models performed similarly, with low variance
between them. However, the best model was R2U-Net with a JAC value of 0.84, and
the worst performance in this zone was U-Net base model.

For the segmentation of the peripheral zone, all the models behaved similarly, but
they exhibited lower values for the metrics of interest in average. Although the other
2 zones were segmented with high values of JAC, it can be seen on Figure [3| that the
variance in this zone is higher than in CZ, yielding much lower values in some models
such as U-Net and Dense-UNet. In this zone, the models with lower variance and higher
mean score are R2U-Net and Attention R2U-Net with mean JAC index of 0.763 and
0.751, respectively.
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Fig. 3: Comparison of Jaccard Index per each class between Deep Learning Architec-
tures. Each predicted segmentation is represented by a colored dot to visualize the vari-
ation in the results of the models.

The Transition zone (TZ) was the one with worst segmentation performance for all
the models, with high variances and an average JAC index below 0.57, achieved by the
best architecture, R2U-Net. The variance and poor performance in this region can be
explained by overall lack of ground truth masks of this zone in the training data, as well
for the relatively small size of the zone compared to others. This zone is difficult to
segment even for radiologists, so it is commonly taken as part of CZ or PZ. The above-
mentioned problems could be solved by including more patients, with better delimited
TZ masks to our dataset. Finally, the tumor was the last region analyzed, with less
dispersion of points for all the models, but there was still variance for a few sample
images. As in the previous zones, the best models form the tumor class were R2U-Net
and Attention R2U-Net, with an average JAC index of 0.74 and 0.71, respectively. U-
Net and Dense-UNet were the worst models; however, the implementation of attention
modules improved the performance of those models by 11.6% and 39.3%, respectively.

4.2 Qualitative Results

Figure [ presents a qualitative comparison for the tested models against the ground
truth. We have selected three examples for assessing which models perform the best
in different scenarios. The images were selected based on the JAC values obtained by
R2U-Net (our best performing model) with the idea of showing the mos representative
examples of the worst case image (first column), the image with the average JAC value
in the dataset (center column) and the best segmented image in the entire test set (third
column). The first row shows the input image, while the second depicts the GT mask,
and each subsequent row displays the generated segmentation for each input image
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Fig.4: Comparison of the worst, average and best images (obtained from R2U-Net)
predicted by the worst, average, and best architectures analyzed in this work.

As expected, the R2U-Net produces very good results for all the zones in a great
share of the examples, but it struggles with the tumor zone and the transition zone, as
the quantitative results suggested. Surprisingly, the U-Net model, which was the worst
one, had acceptable results in images with only two or three zones to be segmented, as
well as, Dense U-Net model.

5 Conclusion and future work

After the analysis between all the models using the same conditions, the best architec-
ture to segment prostate and its zones was R2U-Net. The segmentation of all the zones
in any T2-weighted MR image is not easy, and in many cases there is not possible to
delimit the boundaries of transition zone, even for experts.
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This could be one of the reasons this zone is so difficult to segment for all the tested
models. Even though all the models are U-Net based, there were differences in perfor-
mance between them during segmentation tasks. The incorporation of attention gates
in the U-Net and Dense-UNet architectures yielded better average metrics values, but
this was not the case for Attention R2U-Net architecture. This could be due to the huge
increase in the number of parameters in the A-R2U-Net model, which led to overfitting
sooner that other models. Nevertheless, the difference between Attention R2U-Net and
only R2U-Net metrics in average is not significant, but due to the resources and time
consumption, we decided that the best model for training is R2U-Net.

It is well-known that the segmentation of prostate zones is a difficult task, even
for radiologists, but it is possible to achieve good results using an automatic model
with a verified dataset and the correct selection and implementation of a deep learning
architecture for training. In this study, we concluded that the best option is R2U-Net,
however there is still work to do in some zones such as TZ and Tumor, where it is
desired to get higher dice score and Jaccard index. In order to achieve that, as a future
work, we should train models with a larger dataset, as well as trying different loss
functions focused on imbalanced datasets, which can also reduce the variance in our
results.
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