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Abstract. Feature engineering has become one of the most important
steps to improve model prediction performance, and to produce quality
datasets. However, this process requires non-trivial domain-knowledge
which involves a time-consuming process. Thereby, automating such pro-
cess has become an active area of research and of interest in industrial
applications. In this paper, a novel method, called Meta-learning and
Causality Based Feature Engineering (MACFE), is proposed; our method
is based on the use of meta-learning, feature distribution encoding, and
causality feature selection. In MACFE, meta-learning is used to find
the best transformations, then the search is accelerated by pre-selecting
“original” features given their causal relevance. Experimental evalua-
tions on popular classification datasets show that MACFE can improve
the prediction performance across eight classifiers, outperforms the cur-
rent state-of-the-art methods in average by at least 6.54%, and obtains
an improvement of 2.71% over the best previous works.

Keywords: automated feature engineering , automated machine learn-
ing, causal feature selection.

1 Introduction

Extracting features from raw data and transforming them into formats that are
appropriate for machine learning models is what is known as feature engineer-
ing [12]. This task is usually carried out by a data scientist with good domain
knowledge and the data sources of task at hand [19, 21, 35]. Generally, feature
engineering entails a daunting manual labor of designing, selecting and evaluat-
ing features where even a great intuition is needed [6, 18]. This is due to the fact
that the performance of most machine learning algorithms heavily relies on the
training data quality. This type of datasets usually consists in a large collection
of different formats that need to be curated to be exploited by machine learning
algorithms [6]. Therefore, by using feature engineering, we can select and obtain
novel features from the raw data that would better represent the problem.

However, most of the existing automated feature engineering proposals per-
form this task by applying the expansion-reduction method [17], which is the
process of trying a predefined set of transformation functions applied to raw
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features. Then, those transformed features are selected based on the improve-
ment of model performance or some evaluation metric [21]. However, expansion-
reduction leads to an exponential growth in the space of constructed features,
which is known as the feature explosion problem [5]. In addition, extracting novel
features without a proper and systematic method can lead to an unnecessary in-
crease in the dimensionality of the data, and hence a poor performance on the
learning process of the model [3]. Thus, the curse of dimensionality arises [20],
which is the potential of high-dimensional data to be more complicated to pro-
cess than low-dimensional data [8].

Fig. 1: The framework of our method. MACFE extracts meta-features from
dataset D and a frequency table for each feature x ∈ X. Then, an encoding
e is generated by the meta-features and feature distribution. Next, we search
for the most similar encoding on the Transformation Recommendation Matrix
(TRM) in order to recommend a useful transformation from it. The trans-

formed dataset D̂ is built from the constructed novel features and the original
ones selected by the Directed Acyclic Graph (DAG) causal model.

It is crucial to realize that there are dozens of types of machine learning mod-
els, and each has its own peculiarities and needs [19]. For instance, some models
neither work with highly correlated features nor with highly multi-collinearity.
Additionally, other models have troubles dealing with missing, noisy or irrele-
vant features. Furthermore, since data and models are so diverse, it is difficult to
generalize the practice of feature engineering across projects [35]. Thus, finding
a proper process to treat data agnostically from a specific learning algorithm can
help to choose transformations that better suit the learning process. To tackle
this issue, a possibility is to incorporate only the generated features that have
more appropriate knowledge about the data. For this, we present MACFE, a
novel meta-learning and causality approach for automated feature engineering
for classification problems using tabular data. The main contributions of this
paper are briefly described as follows:

– We present a causality-based method for feature selection on the original
dataset.For this, we use the mean magnitude effect of the features on the
target to rank and select a subset of them.

– We propose a novel meta-learning generation for unary, binary and high-
order features based on non-linear transformations. This approach addresses
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the feature explosion problem by only searching on feature transformations
that were found useful in past experiences.

In order to evaluate the proposed method, we designed a series of experiments
on fourteen popular public classification datasets with relatively small dimen-
sions to evaluate the feature generation and selection performance of MACFE.
The results are obtained from eight machine learning models: Logistic Regression
(LR), K-Nearest Neighbors (KNN), Lineal Support Vector Machine (SVC-L),
Polynomial Support Vector Machine (SVC-P), Random Forest (RF), AdaBoost
(AB), Multi-layer Perceptron (MLP) and Decision Tree (DT). As illustrated
in Fig. 1, our approach is divided into three phases. In the first one, the fea-
ture selection is carried out by using a Structural Causal Model (SCM) [22] for
choosing the most promising features. Then, we move to a meta-learning phase
(the second one), where meta-features are extracted from datasets and feature
distributions to create encodings for each attribute. Then, we lookup for feature
transformation on similar previously engineered datasets. Finally, in the third
phase, we evaluate the engineered features among eight machine learning models
and obtain the mean accuracy of stratified 5-Fold Cross Validation in order to
assess the quality of the feature engineering method. Experimental results show
that our proposal is effective on surpassing the scores of state-of-the-art feature
engineering methods by achieving a mean accuracy of 81.83% across the fourteen
testing datasets and the eight machine learning models evaluated.

The rest of this paper is organized as follows. In Section 2, we review the state
of the art in automated feature engineering. In Section 3, we elaborate on the
need of automated methods like ours. In Section 4, we introduce our proposed
method MACFE, whereas Section 5 describes the transformation recommender
system behind MACFE. In Section 6, we show in detail our evaluation results
and finally, in Section 7 the conclusions drawn in this research work are given.

2 Related Work

In recent years, many automated feature engineering methods have been pro-
posed using different methodologies. For instance, Data Science Machine (DSM)
[14] is an automated feature engineering approach for structured and relational
data. DSM proposed a Deep Feature Synthesis (DFS) method, which searches
for relations and transformations across features in databases. They include an
depth hyper-parameter d for setting the maximum composition, which recur-
sively enumerates all possible transformations. In addition, DSM generates a
large novel feature space, which is reduced by using Singular Value Decomposi-
tion (SVD) based feature selection. However, DSM is only suitable for relational
data and it could take high computational times due to all the transformation
functions used for processing all the original feature sets.

The data-driven approach presented in FCTree [9], creates novel features
from sequential transformations of the original space by employing decision trees
and then selecting the best features with the aid of information gain. The method
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in [25], known as TFC framework, presents an iterative feature generation algo-
rithm. The method applies feature transformation across all the features, and
then it selects the best features based on information gain. Nevertheless, the
generated feature space grows in a combinatorial way, leading to feature ex-
plosion. AutoFeat [13] and AutoLearn [16] are also data-driven methods. They
can generate large transformations of features, selecting useful features by using
regularized regression models for each pair of features. However, these meth-
ods require training a regression model, which can be time consuming. Also,
they both suffer from the feature explosion problem. Label based Regression
(LbR) [32] is another method for generating novel features by using Ridge Re-
gression and Kernel Ridge Regression. This method selects features based on
the Distance Correlation Coefficient and the Maximum Information Coefficient
(MIC) for each feature pair, which leads to discriminate features that are useful
in combination with others.

2.1 Meta-learning for Feature Engineering

Recently, meta-learning has been proposed as a means of improving the quality of
the generated features [21]. Meta-data can be simply defined as data about data
[33]. For this work, meta-features are used to characterize and identify features
with attributes in the context of meta-learning [1, 4, 10, 28]. Some examples
of meta-features are: a) General, such as the number of samples, features or
classes, etc. b) Statistical like standard deviation, correlation coefficients, etc.
c) Information-theoretic such as entropy, mutual information, noise ratio, etc.
d) Model-based describes some characteristics of models such as Decision Trees,
Bayesian Networks, SVMs, etc.

ExploreKit [15] is an example of a method that uses meta-learning for ranking
and selecting the most promising generated features. ExploreKit does this by ap-
plying all possible transformations on features, suffering from the feature explo-
sion problem. Furthermore, Learning Feature Engineering (LFE) is an approach
that also uses meta-learning for recommending useful features for classification
problems. The transformation recommender in LFE is based on the construction
of a meta-feature vector based on the feature values associated with a class label.
However, LFE can recommend only unary and binary transformations, lacking
high-order transformations.

2.2 Causality Feature Selection

Classical feature selection approaches consist in capturing the correlations be-
tween features and class variables and lacks from capturing causal relationships
among them. In contrast, knowing the causal relationship implies the underlying
mechanism of a dataset [34]. Hence, basing the feature engineering on relevant
causally related features to the class of interest, could provide a richer and more
robust output of engineered features.
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3 Problem Definition

Let D = {X,Y } be a dataset of input-output pairs, X a collection of n features
{x1,x2, ...,xn}, and m labels Y = {y1, ..., ym}. A machine learning algorithm
L (e.g. SVM, Logistic Regression or Random Forest), and an evaluation metric
E (e.g. accuracy, F1-score).

We refer to a transformation t ∈ T as a function t(x) that takes a feature
as an argument, and maps it to a transformed feature output x̂ ∈ X′. Where
T is our set of transformations {t1, t2, ..., tk} that can be unary or binary, de-
pending on the number of given arguments. Here, a high-order transformation
is a composition of unary and binary transformations. Over each feature it is
possible to define a series of non-linear transformations, ti : xi → x̂i that allow
to extract as much intra and inter information from the “original” data. The
goal of feature engineering is thus to transform X into X′ by applying T such
that X′ maximizes the evaluation metric E of a machine learning algorithm L.
The search for new transformed features and their combinations grows exponen-
tially, and the feature explosion problem arises. MACFE, our proposed feature
engineering approach, was devised to help mitigate this problem by employing
meta-features to guide the search for transformations on features.

3.1 Meta-learning and Meta-features

A formal definition of meta-features was proposed in [28], in which meta-features
are a set of q values extracted from a dataset D by a function f .

f(D) = σ(µ(D,hµ), hσ), (1)

Where f : D 7→ Rq is the extraction of q values from dataset D, µ : D 7→ Rq
′

is a characterization measure, σ : Rq
′ 7→ Rq can be a summarization function

such as: mean, minimum, maximum, etc. Moreover, hµ and hσ are hyperparam-
eters for µ and σ, respectively. Thus, the function f is built by measuring some
characteristic from D by µ, and a summarizing function defined by σ.

Here, meta-features describe features using meta-data. An example is the
mean or median, as they are features that provide extra information about the
underlying data distribution. In particular, the core of this work is meta-learning
applied to the identification of data through meta-features.

4 Proposed Approach

4.1 Datasets

Preprocessing. MACFE is guided by a meta-feature learning based on past ex-
perience to create novel features. Our method is trained with M random datasets
Dtrain = {D1, D2, ..., DM} collected from Open ML [30], which have a struc-
tured format and a classification task related to the data. First, the preprocessing
and cleaning of data is performed for each dataset by removing non-numerical
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features and imputing missing values with the feature mean. Next, a meta-
feature extractor is used to obtain meta-data about the datasets. Let mf be
a meta-feature vector composed by the main characteristics of a given dataset
Di ∈Dtrain. Thus, a meta-feature vector for a dataset Di is defined as:

mf = [mf1,mf2, ...,mfp], (2)

Where each mfi is a meta-feature value extracted from the data, and p is the
size of the extracted meta-features.

However, describing datasets by mapping its main characteristics can be a
challenging task. A full set of estimators and metrics can be extracted from a
dataset, e.g., the number of classes or instances in a dataset can be a meta-
feature value from such a dataset. For this, we use the approach of [24] to
perform the automatic meta-feature extraction process. The extraction of meta-
features is divided into five categories proposed by Rivolli et al. [28]: simple
or general, statistical, information-theoretic and model-based and landmarking.
In order to automate the process of extracting meta-features from datasets, we
use the framework Meta-feature Extractor (MFE) [1] for each training datasets
Di ∈Dtrain, which implements the standard meta-feature extraction described
above.

Next, we treat each feature x ∈Di as follows:

1. We create a frequency table with a fixed number of buckets or bins b, for
each feature x

2. A range r is calculated on the feature values given by the upper and lower
bounds of the feature.

3. We generate s disjoint sets or bins b with uniform width w. Thus, each bin
range bi is a bucket in which values that are in the bin range lie. Each bi
range starts with the lower bound of x plus i times the width w, and ends
with the lower bound of x plus i+ 1 times the width w.

4. Finally, each frequency table or histogram is normalized in the range [0,1].

Thus, we obtain an encoding e ∈ R1×η for each feature x ∈ Di, composed
by the meta-feature vector mf of the dataset and the feature distribution as
follows:

e = [mf1,mf2, . . . ,mfp, b0, b1, ...bs−1] (3)

4.2 Model Training

Meta-learning Phase. The meta-learning phase is described as follows. The
unary, binary and scaling feature transformations t ∈ T are applied on the
original features X. Then, an evaluation is performed on both original features
and the generated features t(X). For this, we use the Maximal Information
Coefficient (MIC) [27], which measures the strength of the linear or non-linear
relationships between two variables. MIC generates values between 0 and 1,
where 0 means statistical independence and 1 stands for a noiseless statistical
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relationship between variables. Thus, we get the set of selected transformations
Tsel for each original feature in x ∈X with the maximum score as follows:

Tsel = argmax
t∈T

gt

(
MIC(t(x))−MIC(x)

)
. (4)

Finally, the selected transformations t ∈ Tsel are stored in the Transformation
Recommendation Matrix (TRM) for each x ∈ Dtrain represented by its cor-
responding encoding e. Thus, TRM is represented as follows (Fig. 2).

TRM =

e1,1 e1,2 · · · e1,η t1
...

...
. . .

...
...

eN,1 eN,2 · · · eN,η tN



Fig. 2: TRM Matrix, where the ith row in the matrix is the feature x ∈Dtrain,
and the jth column is the encoding value of e (Eq. 3). N is the size of all the
features in Dtrain, and η is the size of encoding e composed by the meta-
feature vector mf (Eq. 2) and feature histogram. The last column stands for
the transformations t ∈ T with the resulting highest MIC score for the given
features (Eq. 4).

Algorithm 1 Training TRM

Input: Structured Dataset D
Output: TRM
D = preprocess(D)
for each xi ∈ D do

ei = encode feature(xi)
for each t ∈ Tun do

x̂i = t(xi)
s.append(MIC(x̂i)−MIC(xi))

end for
ttop = argmax(s)
TRM .append(ei, ttop)
for each xj ∈ D|j > i do

ej = encode feature(xj)
for each t ∈ Tbin do

x̂i,j = t(xi,xj)
si = MIC(x̂i,j)−MIC(xi)
sj = MIC(x̂i,j)−MIC(xj)
if si > 0 and sj > 0 then

TRM .append(ei, ej , t)
end if

end for
end for

end for

Algorithm 2 Data Transformation

Input: D, d, s
Output: D̂
D̂ = preprocess(D)
D̂ = causal selection(D̂, s)
for 1 to d do

for each xi ∈ D̂ do
ei = encode feature(xi)
tun = Similarity(TRM , ei)
x̂i = tun(xi)
D̂.append(x̂i)
for each xj ∈ D̂, xi 6= xj do

ej = encode feature(xj)
tbin=Similarity(TRM ,ei,ej)
ˆxi,j = tbin(xi,xj)

D̂.append( ˆxi,j)
end for

end for
end for
eD̂ = encode dataset(D̂)
tscaler = Similarity(TRM , eD̂)

D̂ = tscaler(D̂)

In Alg. 1 the training procedure to learn the most appropriated unary Tun

and binary Tbin transformations is presented. This process is done for each
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feature in a given dataset D. Similarly, high-order transformations are built by
combining several unary or binary transformations one after the other (Alg. 2).
The order value of the transformation function is related to the number of times
a feature is processed by a transformation, e.g., an input feature x1 is given
as an argument of the log function, so f1(x1) = log(x1). Then, the resulting
feature is combined with another feature x2, lets say a multiplication, thus,
f2(f1(x1),x2) = mult(log(x1),x2). Finally, the output feature is given to the
unary function square. Thus, the final transformed feature x̂ has an order of 3,
and can be seen as follows:

x̂ = f3(f2(f1(x1),x2)) = square(mult(log(x1),x2))) (5)

Hence, we look for the underlying information about data through the extraction
of more complex features. This gives us the capability of creating novel features
from raw features that apparently do not have any predictive power, but in
combination with high-order functions can have suitable predictive power for
some machine learning models.

Causal Feature Selection Phase. Once the TRM is trained, MACFE is
ready to recommend useful transformations for new datasets and features. For
this, we start selecting the most promising original features, a causality based
feature selection is performed on the features. A DAG Classifier is trained to dis-
cover a causal graph from data. For this, we use the implementation of Causal-
Nex [2]. This graph underlies the causal relationship between features and a
target variable. The mean identified causal magnitude effect of the features on
the target is used to rank the features. Then, a given threshold hyperparameter
s determines the top k selected features. The resulting subset of selected features
are processed to obtain an encoding e (Eq. 3).

Then, for a given feature encoding e, we search for a transformation in TRM
by retrieving the most similar feature encoding using the cosine distance as a
similarity measure [29]. We benefit from this measure for ranking the most sim-
ilar feature-vectors in the range 1.0 for identical feature-vectors and 0.0 for or-
thogonal feature-vectors [26]. Next, the most similar feature transformation is
applied over the feature. The process is followed by the binary transformations
and iterating over the features in the dataset (Alg. 2). Furthermore, a depth
d hyper-parameter is set to look for the maximum transformation order across
unary and binary functions. Lastly, for the Scaling transformations we refer to
those transformations on features that changes the scale on a standard range.
Many machine learning algorithms struggle to find patterns on data when fea-
tures are not in the same scale. For this, having scaled features can help gradient
descent to converge faster towards a minimum.

We scale features as follows. For a given feature x ∈X, the following scaling
functions can be applied. Normalization, also called Min-Max Scaler, is a method
that scales each feature value to the range [0,1]. Standardization, this method
scales each feature value so that the mean is 0 and the standard deviation is 1.
Robust Scaler, this scaler is useful when the input feature has a lot of outliers.
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The Robust Scaling is done by calculating the median (50th percentile), and also
the 25th and 75th percentiles. Then, each feature value is subtracted from the
median, and divided by the Interquartile Range (IQR) [31]. In order to learn and
recommend which scaler is appropriate for a given dataset, we follow a series of
data testings. First, we test the features to know the proportion of outliers. If this
proportion is larger than a certain threshold γ, then a Robust Scaler is applied
on the features. Secondly, if the data follows a normal distribution, then we use
a Standard Scaler. In particular, we use a Shapiro-Wilk test [11] to evaluate the
normality of data. Then, if the test value is greater than 0.05 we consider the
data is normally distributed. Finally, if none of the above tests is true about
the data, then we use a Min-Max Scaler on the features. The resulting scaling
method is saved in TRM according to the dataset encoding.

5 Experimental Results

5.1 Evaluation Details

Table 1: Statistics of 14 Case Study Datasets

ID Dataset Labels Features Instances

1 Pima Diabetes 2 8 768

2 Sonar 2 60 208

3 Ionosphere 2 34 351

4 Haberman 2 3 306

5 Fertility 2 9 100

6 Wine 3 13 178

7 E.coli 8 7 336

8 Abalone 29 7 4177

9 Dermatology 4 34 366

10 Libras 15 90 360

11 Optical 10 64 5620

12 Waveform 3 21 5000

13 Fourier 10 76 2000

14 Pixel 10 240 2000

The evaluation of MACFE as an automated feature engineering method is
performed on a set of fourteen classification datasets and eight machine learning
algorithms commonly cited in the literature [15, 16, 32]. These datasets are from
different areas, such as medical, physical, life and computer science. In addition,
these datasets are publicly available in the UCI ML Repository [7] and OpenML
Repository [30]. The main statistics of these datasets are shown in Table 1.
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5.2 Implementation Details

For our experiments, we tested the following learning algorithms: Logistic Re-
gression (LR), K-Nearest Neighbors (KNN), Linear Support Vector Machine
(SVC-L), Polynomial Support Vector Machine (SVC-P) and Random Forest
(RF), AdaBoost (AB), Multi-layer Perceptron (MLP) and Decision Tree (DT).
The scoring method for the evaluations is the mean accuracy of stratified 5-Fold
Cross Validation on each dataset. Same as the state-of-the-art methodology for
scoring. Each algorithm is used with scikit-learn [23] default parameters. This is
because our objective is to enhance the accuracy of a model by improving the
data through our automated feature engineering process, MACFE.

Table 2: Mean accuracy results in 5-fold cross validation among original datasets
(ORIG) and consulted state-of-the-art (TFC [25], FCTree [9], ExploreKit [15],
AutoLearn (AL) [16], LbR [32]) and MACFE (ours). The best performing ap-
proach is shown in bold, each dataset is shown with its corresponding ID from
Table 1.
D. ID CLF ORIG TFC [25] FCT [9] EK [15] AL [16] LbR [32] MACFE D. ID CLF ORIG TFC [25] FCT [9] EK [15] AL [16] LbR [32] MACFE

1

KNN 71.48 72.42 73.52 73.6 68.36 72.13 75.12

2

KNN 78.35 81.48 82.70 82.4 83.19 83.33 81.27
LR 76.55 75.92 76.52 73.9 74.99 71.86 77.47 LR 77.42 78.12 78.72 78.7 79.00 90.47 86.05

SVM-L 65.23 62.71 72.52 73.7 74.85 75.22 77.34 SVM-L 73.54 74.54 75.75 76.1 77.30 90.47 86.06
SVM-P 64.89 65.71 70.52 72.6 76.32 78.32 78.12 SVM-P 53.36 58.41 66.44 33.6 81.71 80.95 86.57

RF 75.37 72.42 73.52 74.0 73.05 72.47 78.12 RF 73.55 81.00 82.54 47.4 77.87 76.19 85.62
AB 74.34 74.08 74.08 74.3 72.52 73.01 76.29 AB 80.74 80.00 81.04 54.0 78.83 85.71 83.69
NN 64.32 64.12 64.22 67.3 72.39 72.50 77.86 NN 80.30 81.07 82.00 82.4 84.09 85.71 88.03
DT 72.38 70.23 70.46 70.9 71.05 71.12 71.74 DT 75.01 74.23 74.52 75.0 75.02 83.33 75.53

3

KNN 84.31 84.66 84.87 86.0 83.46 92.95 89.74

4

KNN 71.89 70.00 71.28 72.3 68.68 70.36 76.14
LR 87.44 87.26 87.39 87.7 87.95 95.77 93.44 LR 74.19 72.07 73.96 74.5 76.16 76.50 74.51

SVM-L 87.44 86.71 87.78 88.0 84.30 90.14 92.58 SVM-L 74.18 73.97 74.18 75.4 75.82 76.01 73.53
SVM-P 64.10 70.16 71.45 72.6 74.63 78.87 93.72 SVM-P 74.18 73.98 74.81 75.1 75.52 75.52 74.51

RF 93.15 91.65 93.16 94.0 92.30 91.54 95.44 RF 68.63 68.91 69.07 70.0 65.34 70.17 72.22
AB 92.02 90.94 90.12 90.3 92.43 90.14 94.01 AB 70.25 71.19 71.57 72.2 69.93 73.05 71.89
NN 93.14 92.45 92.13 93.6 92.29 97.18 92.58 NN 73.19 69.02 71.19 72.2 70.91 75.02 76.13
DT 88.32 87.12 88.04 88.1 88.59 88.73 94.87 DT 66.65 66.09 66.79 67.2 66.34 67.74 73.86

5

KNN 85.00 86.00 86.00 87.0 87.00 88.00 88.95

6

KNN 67.93 74.89 79.93 83.4 93.84 95.49 97.22
LR 88.00 88.00 89.00 88.0 87.00 88.00 89.95 LR 95.52 96.89 97.24 95.1 98.30 99.44 98.87

SVM-L 85.00 87.00 88.00 87.0 87.00 87.00 89.95 SVM-L 83.03 88.14 89.94 90.8 98.31 98.87 98.32
SVM-P 88.00 87.00 87.00 88.0 88.00 88.00 88.89 SVM-P 96.65 96.68 96.65 92.1 92.68 94.74 99.43

RF 82.00 87.00 87.00 90.0 84.00 88.00 89.89 RF 96.07 96.68 97.12 90.0 97.20 98.89 97.19
AB 79.00 83.00 84.00 83.0 79.00 85.00 87.84 AB 85.82 88.12 91.23 62.8 84.71 83.03 89.27
NN 88.00 88.00 88.00 88.0 85.00 88.00 90.00 NN 42.73 46.23 49.56 64.6 97.19 98.87 98.32
DT 80.00 84.00 84.00 85.0 85.00 88.00 87.89 DT 91.57 91.79 92.01 92.5 93.22 93.37 95.49

7

KNN 86.59 88.42 87.56 88.4 84.82 85.39 87.81

8

KNN 23.27 21.64 22.60 23.1 22.71 21.69 22.62
LR 75.88 78.23 79.24 82.8 87.19 87.19 87.73 LR 24.61 23.69 23.60 24.8 26.50 25.25 26.84

SVM-L 85.71 85.71 85.71 86.3 86.30 86.80 88.87 SVM-L 25.71 25.64 25.72 25.7 26.07 25.23 26.57
SVM-P 56.54 59.32 62.14 72.3 80.33 81.59 93.72 SVM-P 19.46 17.64 22.12 21.4 23.77 23.98 26.33

RF 82.73 83.46 83.76 85.1 86.59 84.80 95.44 RF 22.91 18.78 23.02 23.2 22.21 24.15 25.52
AB 62.47 63.54 64.37 65.8 65.75 63.06 93.44 AB 20.61 19.10 19.97 21.1 20.61 21.01 21.45
NN 78.28 80.37 81.97 83.7 86.90 86.89 92.30 NN 27.53 26.32 26.41 27.1 27.81 26.40 28.27
DT 79.74 76.32 77.67 80.3 76.40 82.11 94.87 DT 19.27 19.00 19.13 19.3 19.41 19.42 20.13

9

KNN 89.11 90.46 92.89 91.0 96.09 96.66 97.82

10

KNN 70.00 71.00 71.18 73.7 69.44 70.27 75.28
LR 97.21 97.76 97.97 97.6 98.61 97.77 97.81 LR 60.27 64.68 67.12 71.7 70.00 68.88 79.72

SVM-L 97.21 96.02 96.27 96.3 96.92 98.32 97.54 SVM-L 68.61 69.88 70.83 70.4 67.22 68.61 82.22
SVM-P 94.41 94.00 94.12 92.0 93.56 98.04 95.90 SVM-P 2.22 36.68 47.97 47.8 49.44 50.13 85.83

RF 96.92 96.45 96.61 95.5 95.81 98.04 98.09 RF 71.94 72.12 73.07 77.6 70.22 72.50 86.11
AB 54.13 57.12 61.00 57.3 54.96 54.13 75.67 AB 8.05 10.12 13.11 16.9 18.05 14.57 15.28
NN 98.04 97.13 97.22 97.7 98.22 97.77 98.09 NN 71.66 72.35 74.24 75.7 78.33 85.56 83.06
DT 95.24 95.06 94.96 95.4 94.68 96.08 96.45 DT 62.50 62.64 63.12 63.7 65.55 65.27 73.06

11

KNN 98.77 97.20 98.02 98.0 97.03 99.03 98.74

12

KNN 82.48 81.28 82.00 82.1 81.14 81.54 81.44
LR 96.49 96.40 96.40 97.0 95.83 94.82 97.88 LR 86.58 86.72 87.18 86.9 85.12 87.14 86.90

SVM-L 94.89 94.12 95.17 95.1 94.01 94.71 98.49 SVM-L 86.90 84.54 86.23 86.9 84.40 87.18 86.66
SVM-P 99.09 99.03 99.03 99.1 96.20 99.21 99.06 SVM-P 81.70 81.62 82.54 80.4 85.42 86.18 83.84

RF 96.38 96.36 96.91 97.3 96.57 92.68 98.26 RF 82.10 81.45 82.04 82.1 81.12 80.90 86.12
AB 68.65 67.62 68.35 69.7 73.78 75.46 68.17 AB 83.62 82.54 82.84 83.0 83.78 83.04 83.34
NN 98.02 95.62 95.37 96.5 96.93 96.77 98.33 NN 85.84 82.31 3.10 84.7 83.72 83.94 86.26
DT 89.90 88.00 88.46 90.4 90.41 87.42 91.10 DT 75.04 72.46 73.00 73.2 73.06 76.60 78.72

13

KNN 83.85 82.17 83.82 84.0 83.55 82.17 82.85

14

KNN 97.75 98.12 97.23 98.0 97.95 97.45 97.75
LR 79.45 79.97 80.00 82.2 83.15 84.03 82.20 LR 94.35 94.22 94.28 95.5 95.75 94.95 96.75

SVM-L 81.45 81.15 82.86 82.5 83.05 83.05 84.40 SVM-L 92.90 92.57 93.26 94.3 94.27 93.45 97.70
SVM-P 8.70 42.25 57.97 66.7 82.30 81.10 85.10 SVM-P 98.35 98.22 98.66 98.7 97.25 98.66 98.10

RF 79.90 78.90 79.16 80.8 79.31 81.85 84.45 RF 95.50 94.26 95.12 96.5 94.20 95.50 97.60
AB 48.65 46.66 49.29 50.0 50.40 48.65 43.75 AB 54.05 54.00 54.86 55.3 55.60 54.05 65.10
NN 81.90 82.34 83.12 83.4 85.50 86.90 83.40 NN 97.15 97.15 97.15 97.2 97.15 97.90 97.20
DT 74.00 74.00 74.00 74.1 74.35 74.50 75.40 DT 87.30 86.12 86.78 86.6 87.65 87.90 88.55
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5.3 Comparison with previous works

The comparison of our proposal takes into account the same scenario conditions
of the results presented in recent feature engineering proposals such as TFC [25],
FCTree [9], ExploreKit [15], AutoLearn [16] and LbR [32]. In Table 2 are shown
the scores achieved by our proposal compared against the scores obtained by
other approaches in the state-of-the-art. The best scores are shown in bold, each
dataset is represented by its ID defined in Table 1. The improvement among
algorithms and datasets is notable: as shown in Fig. 3 we achieve an average
accuracy of 81.83% across all tested datasets and classifiers, outperforming TFC,
FCT, ExploreKit, AutoLearn (AL), LbR, by 6.54%, 5.99%, 5.63%, 3.95%, and
2.71%, respectively.

Fig. 3: Mean accuracy of state-of-the-art methods and MACFE (ours) across
fourteen case study datasets and eight machine learning models.

5.4 Discussion

The transformation recommendation procedure of this method is agnostic from
the learning algorithm. But, some transformations can be more appropriate for
a certain algorithm. Therefore, MACFE achieves 100% of efficacy in terms of
improving at least one model for each dataset. The depth hyperparameter d
of MACFE can generate different orders of complex features to improve the
model performance. A high value in d can result in too complex novel features,
thus the algorithm cannot learn from the data. In contrast, a small value of the
hyperparameter s can lead to a small subset of the original features, thus not
finding good relationships between features. Hence, it is recommended a grid
search to find the optimal values of hyperparameters.
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6 Conclusions and Future Work

In this paper, we presented a causality based feature selection to reduce the
feature space search for feature transformations. Also, a meta-learning based
method for automated feature construction, on which the number of transfor-
mations executed on features depends on the number of useful transformations
found on historical past similar features. In particular, this method has the ca-
pability of constructing novel features from raw data that are informative and
useful for a learning algorithm. Hence, MACFE can automatically create fea-
tures by applying selected transformations to the data, either unary, binary or
high-order, instead of applying all possible combinations of those. Hence, the
feature explosion problem is minimized. However, MACFE has a fixed set of
unary, binary and scaling transformations. In future work, we intend to increase
this set by adding more transformation functions, leading to the construction of
more informative features from raw features. In addition, the causal selection of
features could be improved, since it is applied equally to all datasets but dif-
ferent datasets can be expected to satisfy different causal assumptions, which
produces different levels of efficacy when selecting the features to be engineered.
To improve this, better methods on general causal discovery are needed.
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