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Abstract. Predicting complete response to radiotherapy in rectal can-
cer patients using deep learning approaches from morphological features
extracted from histology biopsies provides a quick, low-cost and effec-
tive way to assist clinical decision making. We propose adjustments to
the Vision Transformer (ViT) network to improve the utilisation of con-
textual information present in whole slide images (WSIs). Firstly, our
position restoration embedding (PRE) preserves the spatial relationship
between tissue patches, using their original positions on a WSI. Sec-
ondly, a clustering analysis of extracted tissue features explores morpho-
logical motifs which capture fundamental biological processes found in
the tumour micro-environment. This is introduced into the ViT network
in the form of a cluster label token, helping the model to differentiate
between tissue types. The proposed methods are demonstrated on two
large independent rectal cancer datasets of patients selectively treated
with radiotherapy and capecitabine in two UK clinical trials. Experi-
ments demonstrate that both models, PREViT and ClusterViT, show
improvements in the prediction over baseline models.

Keywords: Vision Transformer · Histology · Whole Slide Image · Clus-
tering.

1 Introduction

Around 11,500 people are diagnosed each year with rectal cancer in the UK [22].
Neoadjuvant treatment in the form of radiotherapy is commonly given to patients
⋆ Supported by Cancer Research UK.
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with locally advanced disease to shrink tumour prior to surgery. However, one
third of rectal cancer patients do not benefit from this treatment [9]. Determining
patient response to radiotherapy therefore is critical to avoid overtreatment.

The following studies provide a first indication that biological features of the
primary tumour can be captured in biopsy fragments and allow prediction of
clinical disease behaviour. Koelzer et al. [18] show that CD8 infiltration in rectal
cancer biopsies before surgery associates with favourable outcome, and Anitei et
al. [2] propose that tumour immune infiltrate evaluated with their Immunoscore
method is a useful prognostic marker for rectal cancer patients prior to surgery.
Furthermore, Jones et al. [15] find that increased stromal content in early rectal
cancer is a predictor for an increased risk of recurrence, and Rogers et al. [23]
find that tumour budding in the biopsy taken prior to chemoradiotherapy is
a negative predictor of pathological response. These studies, however, focus on
single features rather than visual assessment, and are based on limited cohorts
with heterogeneous treatment conditions.

Recent research has demonstrated the application of deep learning to predict
a patient’s response to therapy and to predict biologically relevant information
from morphological features extracted from standard histology slides. For ex-
ample, microsatellite instability (MSI) is one of the key markers informing the
treatment decision in colorectal cancer (CRC) [17, 1]. Research has shown it is
possible to predict MSI status using deep learning from standard hematoxylin
and eosin (H&E) stained slide images [3, 7, 11]. As well as MSI, Bilal et al. [3]
predict some other key molecular pathways and mutations such as chromosomal
instability, CpG island methylator phenotype and tumour-infiltrating lympho-
cytes from CRC histology slides. Sirinukunwattana et al. [26] have proven that
the consensus molecular subtypes (CMS) of CRC [10], a stratification system
with clear biological interpretation, can be predicted from H&E images using
deep learning approaches. Although Zhang et al. [27] have demonstrated the abil-
ity to predict the chemoradiotherapy response in locally advanced rectal cancer
from H&E biopsies, they only used standard machine learning approaches.

Applying deep learning to whole slide images (WSIs) of histology samples is
not computationally straightforward owing to their large pixel numbers. Weakly
supervised techniques are commonly used, whereby each WSI is split into patches
or tiles. Each patch then receives its own label from the parent slide and sub-
sequently receives its own output which can be aggregated into the output of
the parent slide. Various patch prediction aggregation methods can be used.
Campanella et al. [5] and others [4, 12, 16] explore max-pooling methods and
recurrent neural networks for the aggregation.

To date, most deep learning approaches utilise this tile-based approach, ag-
gregating independent tile predictions to obtain a slide-level prediction. We con-
tend that there is a benefit to integrating local context information as early as
possible in the learning process. Using the attention mechanisms of the Vision
Transformer (ViT) model [6] to get a slide-level prediction provides an effective
way to obtain this goal. Li et al. [19] propose to use a ViT to predict the slide-
level outcome from patch features extracted from an EfficientNet B0 (pre-trained



Enhancing Local Context of Histology Features in Vision Transformers 3

on ImageNet). Lu et al. [21] develop the CLAM model (Clustering-Constrained-
Attention Multiple-instance learning) which combines clustering analysis and
attention mechanism to aggregate their patch predictions. They first train a
convolutional neural network (CNN) to extract features for the image patches
and then apply an attention-based pooling function [13] to generate slide-level
predictions. Clustering of patch features is used to constrain the feature space
and refine predictions. Sharma et al. [25] use the K-Means clustering technique
to cluster and sample patches extracted from a CNN, on which they apply the
attention-based pooling function [13] for a slide-level prediction.

In this work, we will demonstrate the ability of the state-of-the-art ViT mod-
els to predict response to radiotherapy in locally advanced rectal cancer patients,
which to our knowledge have never been applied for this purpose before, and
will demonstrate their ability to provide visual interpretation to image features
associated with the treatment outcomes. We propose two novel variations of
ViT to enhance the local context of the tissue patch features by introducing
prior information to the model. The first network is the PREViT which uses a
novel trainable position restoration embedding (PRE) to restore patches to their
original position in the WSI, preserving the spatial relationship between tissue
patches. The second is the ClusterViT which introduces a trainable cluster label
encoding derived from the baseline model feature embeddings as prior informa-
tion for the ViT model to capture the different tissue motifs. Two independent
clinical trial cohorts (see datasets in Section 3 for a more detailed description)
are used in the development and validation of the models. Experiments demon-
strate that the proposed models improve predictions over the baseline model
and the interpretation of predictions is aided by including the PRE and cluster
token.

2 Methods

First, an outline of the baseline model is given. Subsequently, we introduce how
the ViT model is extended with PRE. We also introduce the ClusterVIT, where
we specify how relevant morphological motifs are found through standard clus-
tering methods. Finally, we combine the two proposed methods into the Clus-
terPREViT model. An overview of the resulting imaging pipeline is shown in
Fig. 1.

Baseline model We first split the WSIs into smaller patches of size 256 x
256 pixels and use tumour masks provided by a pathologist to filter out unwanted
tissue and background. We train a ResNet-50 model (pre-trained on ImageNet)
to predict patch labels, using the slide-level outcome as a label for each patch in
that slide. Once training is complete we use a mean-pooling approach, taking the
mean over the predictions of all patches within a slide for a slide-level prediction.
In addition, we extract feature embeddings ∈ R2048 from the penultimate layer
of the ResNet model for use in further models.

PREViT Shao et al. [24] propose the PPEG (Pyramid Position Encod-
ing Generator) module, designed to capture positional information of the tissue
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Fig. 1. Overview of the full model pipeline, showing the baseline model and the ViT
model variants. The tumour masks are applied to the WSIs to filter out the background
and non-tumour tissue. The remaining tissue regions are then split into patches to feed
into a ResNet-50, which generates patch feature embeddings and a baseline prediction
from mean-pooling patch predictions across slides. The features are clustered with K-
Means to provide the cluster token as contextual prior information in the ClusterViT
model, and the patch coordinates are used to preserve the spatial relationship of the
tissue patches in the PREViT model. Both cluster labels and patch coordinates are
given to the combined ClusterPREViT model.

patches. They first restore the input sequence into a 2D image space and then
apply CNNs to encode the position information, using convolution kernels of dif-
ferent sizes to capture spatial information with different granularity. However,
they convert the input sequence to lie in a 2D image space without considering
the original position of the patches in the WSI. This method does not apply
well when the patches originate from different parts of the WSI such as different
parts of tissue, and when background patches have been excluded. Therefore,
naively converting the input into 2D space is not contextually meaningful.

We propose a novel patch PRE, which restores the original position of the
patch relative to the WSI, using zero padding for areas of the image which do
not qualify for training [14], and applies convolutions in the same manner as
the PPEG module. The motivation for the patch PRE is to incorporate local
information around the patch, acting as a prior in the model representing the
surrounding tissue environment.

ClusterViT To capture the different tissue motifs across the WSIs we per-
form a clustering analysis, using a K-Means clustering model on the feature
embeddings from the baseline model. The purpose of the clustering is to detect
the morphological patterns that capture interactions between tissue types in-
cluding stroma, epithelium and immune cells. The training set (used for training
the baseline ResNet model) is used to estimate the parameters of the K-Means
model which is then used to predict the cluster labels for the validation set of
slides. The K-Means model is learnt on the L2-normalised feature embeddings,
trained across the whole training set (as opposed to per slide). Each patch re-
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ceives its own cluster label. The number of clusters is chosen to be k = 4, inspired
by the marked morphological correlation to the four molecular subtypes found
in Sirinukunwattana et al. [26]. Alternative values for the numbers of clusters,
k, were considered in the development process.

We propose a novel ViT network, ClusterViT, which incorporates a learn-
able cluster token which is added to the input after the classification token is
appended but before it is passed to the main Transformer attention network in
a similar vein to the position embedding. This idea is inspired by Gao et al. [8],
who add a nuclei grade embedding to their ViT model to capture prior infor-
mation on the nuclei for subtyping of papillary renal cell carcinoma. We encode
the cluster labels using an encoding from Gao et al. [8]. The aim of the cluster
token is to consider the tissue morphology for each patch in the WSI, and use
this as prior information for the model prediction. The cluster label from each
patch, derived from the aforementioned K-Means clustering, is embedded and
concatenated to the input as a learnable cluster token.

ClusterPREViT The ClusterPREViT model is a ViT model combining
both the patch PRE and the cluster token from the ClusterViT model. The ViT
classification token is appended to the input first, followed by the cluster token
and finally the PRE.

3 Experiments

Datasets The proposed methods are applied on H&E stained histology slides
from two retrospective rectal cancer datasets, Grampian and Aristotle (each
from separate UK clinical trials). All patients were selected to receive standard
chemoradiotherapy comprising pelvic irradiation (45-50.4Gy in 25 fractions over
5 weeks) with capecitabine 900mg/m2. Pathological complete response was as-
sessed by detailed histopathological assessment of the resection specimens after
treatment. All slides from pre-treatment biopsies had been sectioned and stained
in the same laboratory and scanned at high resolution on an Aperio scanner at a
total magnification of 20x (0.5 µm2/pixel), according to criteria from the Royal
College of Pathologists.

In the Grampian dataset, 258 WSIs from 133 patients have recorded response
to radiotherapy after data quality control steps. In the Aristotle dataset, 124
WSIs from 124 patients have response to radiotherapy after quality control. The
patient’s response to treatment is split into two classes across the trial cohorts,
measured as either a complete response or no complete response to radiotherapy.
Both trial datasets are unbalanced, with a total of 91 slides labelled as complete
response and 291 labelled as no complete response to radiotherapy. All WSIs in
this analysis have a tumour mask generated by hand by a pathologist. For all
modelling we split both datasets for training and validation such that all slides
from a single patient are in the same dataset, with a ratio of 70% training vs
30% validation.

In the ResNet training process, the final layer of the ResNet model is set to
return a single value, using a linear layer with 2048 features as input and one
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Table 1. Validation results from running each model for five rounds using different
random seeds and different data splits across the two combined datasets determined
by the random seed. The mean weighted area under the curve of the receiver operat-
ing characteristic curve (AUC) and standard deviation (std) over the five rounds are
presented as the primary metric, as well as accuracy, F1 score, precision and recall, all
weighted by class-balanced sample weights.

Model Mean AUC (std) Accuracy F1 Score Precision Recall
ResNet 0.696 (0.116) 0.696 0.787 0.802 0.788
ViT 0.857 (0.017) 0.725 0.823 0.829 0.829
PREViT 0.859 (0.021) 0.754 0.834 0.844 0.836
ClusterViT 0.859 (0.028) 0.767 0.781 0.845 0.767
ClusterPREViT 0.861 (0.013) 0.763 0.782 0.843 0.768

feature as output. For all our experiments, we use the patched images at 10x
magnification (1 µm2/pixel). We use stochastic gradient descent as the optimiser
function with a learning rate of 0.1, momentum of 0.9 and weight decay of 1e-4.
The models train on a batch size of 256 patches. The ResNet models are trained
for 20 epochs. For all ViT models, we train and validate on the same data as
for the corresponding baseline model. We use stochastic gradient descent as the
optimiser function with a learning rate of 0.001, momentum of 0.9 and weight
decay of 1e-4. The models train on all patch features for one slide at once. In the
case when the number of patches per slide is unusually large, for computational
reasons we randomly select 10,000 patches from the slide to train or validate on.
All ViT models are trained for 50 epochs.

Results We run the full model pipeline for five rounds, using different ran-
dom seeds and different data splits across the datasets, determined by the ran-
dom seed. The results presented in Table 1 are the metrics from the five rounds,
all weighted by class-balanced sample weights due to the dataset imbalance.
The default threshold of 0.5 is used for the metrics which require a binarised
prediction. This provides a valid technical comparison, but other metrics and
thresholds for clinical translation will be explored in future work. The AUC is
used as the primary metric here since it is more discriminating and consistent
than the accuracy score [20].

In terms of our primary metric the best performing model is the ClusterPRE-
ViT, with a weighted AUC of 0.861 over five rounds and the lowest standard
deviation in AUC. The PREViT and ClusterViT models perform marginally
better than the ViT, but all show a substantial improvement in performance
over the baseline ResNet model, across all measured metrics.

The benefit of both the clustering and position embedding approaches are
that they provide more insight into the model and the model predictions. The
clustering assigns a cluster label to each patch which can be visualised on the WSI
as prior information for the attention model, and the PREViT model provides
particularly informative attention heatmaps. Both approaches provide clues to
morphological continuity in a slide which suppresses the ViT models from attend-
ing to small spurious regions and encourages the attention towards regions with
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Fig. 2. Heatmaps showing the attention weights from the model predictions for this
slide. On the left is the heatmap from the ViT and on the right is the PREViT heatmap.
A pathologist reviewing these heatmaps observed that the PREViT model demon-
strates more attention to areas of invasive cancer, and less attention to non-informative
artefacts.

morphological meaning. As such, both approaches increase the interpretability
of the heatmaps of the attention weights from the ViT model predictions. Fig. 2
shows the comparison of a heatmap of the PREViT model attention weights for
one slide (right) against the ViT model attention weights (left). These heatmaps
can provide feedback to pathologists for a visual interpretation of the model
results, though further exploration and model optimisation is required to deter-
mine whether the attention heatmaps could be informative in a clinical setting.

In order to demonstrate the clinical relevance of our prediction, we carry out
a multivariate logistic regression for the validation set of each round in order to
determine the odds ratio that a patient responds to radiotherapy. In this model,
we find that the prediction made by the ClusterPREViT is the most predictive
covariate, since the confidence intervals for the estimated effect are the furthest
away from zero. This holds in all five rounds when compared to T stage, N stage,
age and gender as shown in Fig. 3.

4 Conclusion

The proposed extensions to the ViT framework demonstrate the potential of
predicting response to radiotherapy from features extracted from standard H&E
slides. As such we are presenting a new and exciting application of computa-
tional pathology. Expanding the ViT model effectively enhances performance
of the prediction as well as capturing spatial information, by capitalising on
morphological tissue clusters and spatial positioning on the WSI. Clustering the
tissue features enhances the ability to provide visual feedback which ultimately
makes our approach more usable in clinical translation. Future work will address
optimising a threshold for the binary response classification for use in the clinical
setting, and will further utilise the morphology of different tissue components to
improve model predictions and interpretations.
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Fig. 3. Log odds ratios for covariates in a logistic regression model predicting complete
response to radiotherapy. The most predictive covariate is the ClusterPREViT model
prediction when compared to T stage, N stage, age and gender. The validation set for
each round was used in a separate model, hence five lines for each covariate.
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