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Abstract. Parkinson’s disease (PD) is a common neurodegenerative 
disorder with a prevalence rate estimated to 2.0% for people aged over 
65 years. Cardinal motor symptoms of PD such as rigidity and bradyki- 
nesia affect the muscles involved in the handwriting process resulting 
in handwriting abnormalities called PD dysgraphia. Nowadays, online 
handwritten signal (signal with temporal information) acquired by the 
digitizing tablets is the most advanced approach of graphomotor diffi- 
culties analysis. Although the basic kinematic features were proved to 
effectively quantify the symptoms of PD dysgraphia, a recent research 
identified that the theory of fractional calculus can be used to improve 
the graphomotor difficulties analysis. Therefore, in this study, we fol- 
low up on our previous research, and we aim to explore the utilization 
of various approaches of fractional order derivative (FD) in the anal- 
ysis of PD dysgraphia. For this purpose, we used the repetitive loops 
task from the Parkinson’s disease handwriting database (PaHaW). Hand- 
written signals were parametrized by the kinematic features employing 
three   FD   approximations:   Grünwald-Letnikov’s,   Riemann-Liouville’s, 
and Caputo’s. Results of the correlation analysis revealed a significant 
relationship between the clinical state and the handwriting features based 
on the velocity. The extracted features by Caputo’s FD approximation 
outperformed the rest of the analyzed FD approaches. This was also con- 
firmed by the results of the classification analysis, where the best model 
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trained by Caputo’s handwriting features resulted in a balanced accuracy 
of 79.73% with a sensitivity of 83.78% and a specificity of 75.68%. 

 

Keywords: Fractional order derivatives · Fractional calculus · 
Parkinson’s disease · Online handwriting · Handwriting difficulties 

1 Introduction 

Fractional calculus (FC) is a name of the theory of integrals and derivatives of an 
arbitrary order [28]. It has been developed simultaneously with the well-known 
differential calculus [16] and its principles have been successfully used in modern 
engineering and science in general [18,32,37]. The advances of FC have been 
employed in the modeling of different diseases as well, like the human immunod- 
eficiency virus (HIV) [2] or malaria [27]. In addition, the FC has been widely uti- 
lized in several computer vision disciplines such as the super-resolution, motion 
estimation, image restoration or image segmentation [34]. Furthermore, in our 
recent research we developed new handwriting features extraction techniques 
based on the application of the fractional order derivatives (FD) [11,21–25]. 

Parkinson’s disease (PD) is a chronic idiopathic disorder, with the prevalence 
rate estimated to be approximately 2.0% for people aged over 65 years [12]. It is 
characterized by the progressive loss of dopaminergic neurons in the substancia 
nigra pars compacta [6,13], which is a major cause of the symptoms linked with 
the PD. Primary PD motor symptoms are tremor at rest, muscular rigidity, 
progressive bradykinesia, and postural instability [3,14]. One of the essential 
motor symptoms of PD is PD dysgraphia [17,36]. Additionally, a variety of non- 
motor symptoms such as cognitive impairment, sleep disturbances, depression, 
etc. may arise. 

PD dysgraphia includes a spectrum of neuromuscular difficulties like motor-
memory dysfunction, motor feedback difficulties, graphomotor production deficits 
and others [17,31]. These disabilities leads to a variety of handwriting difficulties 
manifesting as dysfluent, shaky, slow, and less readable handwrit- ing. The 
most commonly observed handwriting abnormality in PD patients is 
micrographia. Micrographia represents the progressive decrease of letter’s ampli- 
tude or width [20]. Some PD patients never develop micrographia, but they still 
exhibit other handwriting difficulties. Accordingly, the consequences of PD dys- 
graphia significantly affect a person’s quality of life. Starting with slow and less 
legible handwriting and often progressing to lower self-esteem, poor emotional 
well-being, problematic communication and social interaction, and many others. 
Nowadays, the most advanced approaches of the PD manifestations quantifi- 
cation contained in the handwriting are based on digitizing tablets [9,21,35]. 
These devices can acquire x and y trajectories along with temporal information, 
therefore the temporal, kinematic, or dynamic characteristics can be processed 
together with the spatial features. Handwritten signal acquired by the digitizing 
tablet is called online handwriting. 

In the past decades, researchers have been exploring the effect of several 
handwriting/drawing tasks in  PD  dysgraphia analysis,  including  the simplest 



 

 

 

ones (loops, circles, lines, Archimedean spiral) together with more complex ones 
(words, sentences, drawings, etc.) [7–9,21–23,26]. Drotar et al. [7–9] reported 
classification accuracy up to 89% using a combination of kinematic, pressure, 
energy or empirical mode decomposition features. The diagnosis of PD with 
accuracy of 71.95% based on the kinematic and entropy features extracted from 
the sentence task was reported by Impedovo et al. [15]. Taleb et al. [35] reported 
up to 94% accuracy of PD severity prediction using kinematic and pressure 
features in combination with adaptive synthetic sampling approach (ADASYN) 
for model training. Rios-Urrego et al. [30] achieved classification accuracy of 
83.3% using the kinematic, geometric, spectral and nonlinear dynamic features. 
New kinematic features utilizing the discrete time wavelet transform, the fast 
Fourier transform and a Butter/adaptive filter introduced by Aouraghe et al. [1] 
resulted in classification accuracy of 92.2%. 

Finally, in our recent works [21–23,25] we introduced and evaluated a new 
advanced approach of PD dysgraphia analysis employing the FD as a substitu- 
tion of the conventional differential derivative during the basic kinematic feature 
extraction. Newly designed handwriting features achieved classification accuracy 
up to 90%, using the Grünwald-Letnikov approach only. In addition to PD dys- 
graphia analysis, we explored the FD-based handwriting features in analysis of 
graphomotor difficulties in school-aged children, where we examined three dif- 
ferent FD approaches [24]. The results suggests that the employment of various 
FD approximations brings major differences in kinematic handwriting features. 
Therefore, as a next logical step, this study aims to: 

1. extend our previous research in PD dysgraphia analysis by the utilization of 
various FD approaches, 

2. explore the differences of various FD approaches in the analysis of PD dys- 
graphia, 

3. compare the power of the FD-based handwriting features extracted by sev- 
eral FD approximations to distinguish between the PD patients and healthy 
controls (HC). 

 

2 Materials and Methods 

2.1 Dataset 

For the purpose of this study, we used the Parkinson’s disease handwriting 
database (PaHaW) [7]. The database consists of several handwriting or drawing 
tasks acquired in 37 PD patients and 38 healthy controls (HC). The partici- 
pants were enrolled at the First Department of Neurology, St. Anne’s University 
Hospital in Brno, Czech Republic. All participants reported Czech language as 
their native language and they were right-handed. The patients completed their 
tasks approximately 1 h after their regular dopaminergic medication (L-dopa). 
All participants signed an informed consent form approved by the local ethics 
committee. Demographic and clinical data of the participants involved in this 
study can be found in Table 1. For the purpose of this study, we selected the 
repetitive loop handwriting task. This task is missing for several participants of 
the PaHaW dataset, therefore, we processed 31 PD patients and 37 HC only. 



 

 

 

Table 1. Demographic and clinical data of the participants. 
 

Gender N Age [y] PD dur [y] UPDRS V LED [mg/day] 

Parkinson’s disease patients 

Females 15 70.2 ± 8.4 7.9 ± 3.9 1.9 ± 0.4 1129.7 ± 572.9 

Males 16 65.9 ± 13.1 7.0 ± 3.9 2.4 ± 0.9 1805.7 ± 743.3 

All 31 68.0 ± 11.1 7.4 ± 3.9 2.2 ± 0.8 1478.6 ± 739.8 

Healthy controls 

Females 17 61.6 ± 10.2 – – – 

Males 20 63.3 ± 12.5 – – – 

All 37 62.9 ± 11.5 – – – 

N – number of subjects; y – years; PD dur – PD duration; UPDRS V – 
Unified Parkinson’s disease rating scale, part V: Modified Hoehn & Yahr 
staging score [10]; LED – L-dopa equivalent daily dose. 

 

2.2 Data Acquisition 

The PaHaW database [7] consists of nine handwriting tasks. For the purpose of 
this study we selected the repetitive loop task only. An example of the repet- 
itive loop task for a PD patient and a HC can be seen in Fig. 1. During the 
acquisition of the handwriting tasks, the participants were rested and seated 
in a comfortable position with a possibility to look at a pre-filled template. In 
case of some mistakes, they were allowed to repeat the task. A digitizing tablet 
(Wacom Intuos 4M) was overlaid with an empty paper and the participants wrote 
on that using the Wacom Inking pen. Online handwriting signals were recorded 
with fs = 150 Hz sampling rate, and the following time sequences were acquired: 
x and y coordinates (x[t], y[t]); time-stamp (t); on-surface and in-air movement 
status (b[t]); pressure (p[t]); azimuth (az[t]); and tilt (also called altitude; al[t]). 

 
2.3 Fractional Order Derivative 

The main subject of this study is the exploration of the various FD approxima- 
tions as a substitution of the conventional differential derivatives in the handwrit- 
ing feature extraction process. We utilized three different FD approximations, 
namely:  Grünwald-Letnikov  (GL),  Riemann-Liouville  (RL),  and  Caputo  (C), 
implemented  by  Valério  Duarte  in  Matlab  [38–40]. 

First approach employed in this study was developed by Grünwald and Let- 
nikov. A direct definition of the derivation of the function y(t) by the order α 
– Dαy(t) [28] is based on the finite differences of an equidistant grid in [0,τ ], 
assuming that the function y(t) satisfies certain smoothness conditions in every 

finite interval (0, t),t ≤ T , where T denotes the period. Choosing the grid 

0 = τ0 < τ1 < ... < τn+1 = t = (n + 1)h, (1) 

with  
τk+1 − τk = h, (2) 
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Fig. 1. Example of the repetitive loop task for a HC (left) and a PD patient (right). 
 
 

and using the notation of finite differences 
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cαy(τn+1−v ) 

 
, (3) 

cα = (−1)v−1(α). (4) 

The  Grünwald–Letnikov  definition  from  1867  is  defined  as 

GLDαy(t) =  lim   
1  

Δαy(t), (5) 
 

h→0 hα     h 

where  GLDαy(t)  denotes  the  Grünwald-Letnikov  derivatives  of  order  α  of  the 
function y(t), and h represents the sampling lattice. 

Second approach used in this study has been given by Riemann-Liouville. The 
left-inverse interpretation of Dαy(t) by Riemann-Liouville [18,28] from 1869 is 
defined as 

 
RLDαy(t) =    1 d 

  n ∫t

 
 

 

 
(t − τ )n−α−1y(t) dt, (6) 

Γ(n α) dt 0 

where RLDαy(t) denotes the Riemann-Liouville derivatives of order α of the 
function y(t), Γ is the gamma function and n 1 < α n, n N,t > 0. 

Third and last FD approach involved in this study was developed by M. 
Caputo [4]. In contrast to the previous ones, the improvement hereabouts lies in 
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the unnecessity to define the initial FD condition [18,28]. The Caputo’s definition 
from 1967 is 

CDαy(t) =  
  1 

t

 

Γ(n − α) 
(t − τ )n−α−1yn(t) dt, (7) 

0 

where C Dαy(t) denotes the Caputo derivatives of order α of the function y(t), 
Γ is the gamma function and n − 1 < α ≤ n, n ∈ N,t > 0. 

2.4 Feature Extraction 

Considering the nature of the selected task, on-surface handwriting features were 
extracted only. Since we did employ three FD approaches in the feature extrac- 
tion process, three sets of the handwriting features were created. Digitizing tablet 
rarely omits 3–4 samples during the acquisition, therefore the in-signal outliers 
removal was performed (outliers were considered as elements more than three 
scaled median absolute deviations from the median). If not pre-processed, the 
differentiation of this gap would leave significant peaks in the output handwrit- 
ing feature. All handwriting features were computed for α in the range of 0.1–1.0 
(with the step of 0.1), where α = 1.0 is equal to the full derivation. Furthermore, 
the statistical properties of all extracted handwriting features were described by 
the mean and the relative standard deviation (relstd). To sum up, each feature 
set consists of 180 computed kinematic features. 

 
2.5 Statistical Analysis and Machine Learning 

Firstly, the normality test of the handwriting features using the Shapiro-Wilk 
test was performed [33]. Since most of the features were found to come from 
normal distribution, we did not apply any normalization on a feature basis. 
To control for the effect of confounding factors (also known as covariates), we 
controlled for the effect of age and gender of the subjects. 

Next, Spearman’s (ρ) and Pearson’s (r) correlation coefficient with the sig- 
nificance level of 0.05 were computed to assess the strength of the monotonous 
and linear relationship between the handwriting features and the subject’s clin- 
ical status (PD/HC). Finally, to control for the issue of multiple comparisons, p-
values were adjusted using the False Discovery Rate (FDR) method. 

Consequently, binary classification models were built in order to distinguish 
between the PD patients and HC utilizing the extracted handwriting features. 
An ensemble extreme gradient boosting algorithm known as XGBoost [5] (with 
100 estimators) was used for this purpose. The XGBoost algorithm was selected 
due to its ability to find complex interactions among features as well as the 
possibility of ranking their importance and its robustness to outliers. Hyper- 
parameter space optimization (1000 iteration) by the randomized search strategy 
(stratified 5-fold cross-validation with 10 repetitions) was performed to optimize 
balanced accuracy. The set of hyper-parameters that were optimized can be 
found in the following table (Table 2). 
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Table 2. Hyper-parameters set. 
 

Hyper-parameter Values 

Learning rate [0.001, 0.01, 0.1, 0.2, 0.3] 

Gamma [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.5] 

Maximum tree depth [6, 8, 10, 12, 15] 

Subsample ratio [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 

Columns subsample ratio at each level [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 

Columns subsample ratio for each tree [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 

Balance between positive and negative weights [1, 2, 3, 4] 

Minimum weights required in a child node [0.5, 1.0, 3.0, 5.0, 7.0, 10.0] 

 

 
The classification performance was evaluated by the following classifica- 

tion metrics: Matthew’s correlation coefficient [19] (MCC), balanced accuracy 
(BACC), sensitivity (SEN) also known as recall (REC), specificity (SPE), pre- 
cision (PRE) and F1 score (F1). These metrics are defined as follows: 

TP × TN + FP × FN  
 MCC = √

N 
, (8) 

BACC = 
1 TP TN 

, (9) 
 

SPE = 
TN 

 
TN + FP  

, (10) 

PRE = 
TP 

 
TP + FP  

REC = 
TP 

 
 

, (11) 

 
, (12) 

TP + FN  

F1 = 2 
PRE × REC 

PRE + REC 

 
(13) 

where N = (TP + FP )    (TP + FN )     (TN + FP )     (TN + FN ), TP (true 
positive) and FP (false positive) represent the number of correctly identified 
PD patient and the number of subjects incorrectly identified as PD patient, 
respectively. Similarly, TN (true negative) and FN (false negative) represent 
the number of correctly identified HC and the number of subjects with PD 
incorrectly identified as being healthy. 

For a better illustration, the overview of the performed analysis from the 
handwriting task selection to the evaluation of the results can be found in Fig. 2. 



 

 

 

 
 

Fig. 2. Flow overview of the performed experiments. 
 
 

3 Results 
 

The results of the correlation analysis can be seen in Table 3, where the top 
5 features per FD approximation according to the p-values of Spearman’s corre- 
lation are shown. The most significant correlation (after the FDR adjustment) 
with the clinical state (PD/HC) of the participants was identified in the features 
extracted by the Caputo’s FD approach. Nevertheless, all FD approaches pro- 
vided the handwriting features that pass the selected significance level (p < 0.05), 
while features extracted by Caputo’s and Riemann-Liouville’s achieved the p- 
values very close to 0. Most of the top selected handwriting features are based 
on horizontal velocity, and all of them have α different from 1, which confirms 
the positive impact of the FD in PD dysgraphia analysis. 

The results of the classification analysis are summarized in Table 4. In total, 
4 models were trained: one model per each FD approach and one model com- 



 

 

 

Table 3. Results of the correlation analysis between the subjects’ clinical status 
(PD/HC) and the computed handwriting features ranked by the adjusted p-value (and 
the correlation coefficient) of Spearman’s correlation. 

 

Feature name ρ ps p∗s
 r pp p∗p

 

Caputo 

relstd horizontal velocity-α = 0.6 −0.5408 0.0001 0.0001 −0.5456 0.0001 0.0001 

relstd horizontal velocity-α = 0.5 −0.5122 0.0001 0.0001 −0.5204 0.0001 0.0001 

relstd horizontal velocity-α = 0.4 −0.4912 0.0001 0.0001 −0.5024 0.0001 0.0001 

mean horizontal velocity-α = 0.3 0.4791 0.0001 0.0001 0.4049 0.0006 0.0051 

mean horizontal velocity-α = 0.4 0.4716 0.0001 0.0001 0.4240 0.0003 0.0036 

Grünwald-Letnikov 

relstd horizontal velocity-α = 0.8 −0.4475 0.0001 0.0180 −0.4332 0.0002 0.0240 

relstd horizontal velocity-α = 0.9 −0.4310 0.0002 0.0180 −0.4184 0.0004 0.0240 

relstd horizontal velocity-α = 0.7 −0.4220 0.0003 0.0180 −0.4162 0.0004 0.0240 

relstd horizontal velocity-α = 0.6 −0.3964 0.0008 0.0324 −0.3682 0.0020 0.0720 

relstd vertical velocity-α = 0.9 −0.3949 0.0009 0.0324 −0.3801 0.0014 0.0630 

Riemann-Liouville 

mean horizontal velocity-α = 0.2 0.4882 0.0001 0.0001 0.3869 0.0011 0.0060 

relstd horizontal velocity-α = 0.2 −0.4716 0.0001 0.0001 −0.4643 0.0001 0.0013 

mean horizontal velocity-α = 0.3 0.4716 0.0001 0.0001 0.4240 0.0003 0.0022 

relstd vertical velocity-α = 0.2 −0.4686 0.0001 0.0008 −0.4654 0.0001 0.0013 

relstd vertical velocity-α = 0.3 −0.4475 0.0001 0.0008 −0.4483 0.0001 0.0013 

ρ – Spearman’s   correlation   coefficient;   ps – p-value   of   Spearman’s   correlation;   p∗s – 
adjusted p-value of Spearman’s correlation; r – Pearson’s correlation coefficient; pp – p-
value of Pearson’s correlation; pp∗ – adjusted p-value of Pearson’s correlation; relstd – 
relative standard deviation; h. – horizontal; v. – vertical. 

 
 

bining all the features. The best classification performance was achieved by the 
Caputo’s FD approach with BACC = 0.7973, SEN = 0.8378, SPE = 0.7568, 
PRE = 0.7750 and F1 = 0.8052. However, the highest SEN and SPE were 
achieved by the Riemann-Liouville approach (SPE = 0.8378, PRE = 0.8065). 

Next, in  Fig. 3 the  comparison of  the horizontal  velocity function for  α  = 
0.6 across all of the utilized FD approximations is visualized. The handwriting 
features were extracted from the performance of the PD patient with high PD 
severity. And finally, an example of the dependency of the mean of horizontal 
velocity on the FD order α for all three FD approaches is shown in Fig. 4. 

 
4 Discussion 

The main goal of this study is to explore various FD approximations and their 
differences in the analysis of the PD dysgraphia by online handwriting. For bet- 
ter illustration and more understanding of the differences as well as the common 



 

 

 

Table 4. Results of the classification analysis. 
 

FD approach MCC BACC SEN SPE PRE F1 

C 0.5966 0.7973 0.8378 0.7568 0.7750 0.8052 

RL 0.5204 0.7568 0.6757 0.8378 0.8065 0.7353 

GL 0.4867 0.7432 0.7297 0.7568 0.7500 0.7397 

ALL 0.5135 0.7568 0.7568 0.7568 0.7568 0.7568 

MCC – Matthew’s correlation coefficient;  BACC – balanced  accuracy; 
SEN – sensitivity; SPE – specificity; PRE – precision; F1 – F1 score; GL – 
Grünwald-Letnikov; C – Caputo; RL – Riemann-Liouville; ALL (combina- 
tion of all feature-types, i. e. 540 features). 

 

 
Fig. 3. Comparison of the horizontal  velocity  function  (α  =  0.6)  across  all  of  the 
FD approximations (PD patient; C – Caputo; GL – Grünwald-Letnikov; RL – Riemann- 
Liouville). 

 

 
Fig. 4. Mean of horizontal velocity depending on FD order α (PD patient; C – Caputo; 
GL – Grünwald-Letnikov;  RL – Riemann-Liouville). 

 

 

characteristics, the comparison of the identical handwriting feature extracted for 
all three FD approaches can be found in Fig. 3. The feature is extracted from the 
handwritten product of a PD patient and the feature represents the horizontal 
velocity for α = 0.6. The velocity function extracted by the Riemann-Liouville’s 
approximation dominates by its oscillatory nature in comparison to the other two 
approaches. Nevertheless the envelope of Riemann-Liouville’s approach follows 
the local maximums and minimums of the functions computed by the Caputo’s 
and  Grünwald-Letnikov’s  approximation.  A  minor  shift  of  the  velocity  function 
can be noticed between the Caputo’s and Grünwald-Letnikov’s approaches. This 
is due to the nature of the Caputo’s FD approach, which differentiates input 



 

 

 

data before the convolution operation, so the temporal memory is applied to 
the velocity afterwards. Regarding the visualization in Fig. 3, we can confirm 
the differences in the same handwriting feature extracted by various FD approx- 
imations. Additionally, the dependency comparison of the mean of horizontal 
velocity on the order α is provided in Fig. 4. The oscillatory behaviour of the 
Riemann-Liouville’s function results in the wider gap from the Caputo’s and 
Grünwald-Letnikov’s  functions.  Nevertheless,  all  three  FD  approaches  converge 
to the same point as the order α is closer to 1.0. This behaviour is expected, 
because the full derivation has to be the same for all approaches. 

Regarding the results of the correlation analysis, the most significantly cor- 
related handwriting features (after the FDR adjustment) were extracted by the 
Caputo’s FD. This observation is in line with our previous results [24], where 
we analysed the same three FD approaches in assessment of the graphomo- 
tor difficulties in school-aged children. The performance of the handwriting 
features extracted by the Riemann-Liouville’s approach is almost as good as 
the  Caputo’s  features.  The  Grünwald-Letnikov’s  handwriting  features  achieved 
weaker relationship, however the features are still below selected level of signifi- 
cance (p < 0.05). Most significantly correlated handwriting features are related 
to the horizontal velocity. In general, PD dysgraphia is linked with the reduced 
velocity, which could occur even more often than micrographia [15,29,31]. This 
strong relationship is reasonable due to the cardinal symptoms of PD, such as 
bradykinesia or rigidity, which have a significant impact on fine motor skills, 
including handwriting/drawing. Moreover, some studies suggest that the hor- 
izontal version of micrographia is even more common than the vertical ver- 
sion [36]. The values of the correlation coefficients for handwriting features 
described by the mean are positive, which means that the performance of the 
participant is worse with the higher values of the horizontal velocity. This can be 
confusing because just the opposite effect may be expected. However, this may 
be specific for the repetitive loop task, where the velocity for the healthy writer 
is more constant. On the other hand, the writer with PD dysgraphia performs 
the loop more jerkily, which leads to higher velocity with more variability. This 
is confirmed by the fact that the features described by the relative standard 
deviation are negative, which means that the handwriting performance is better 
with the lower variability of the horizontal velocity. 

Based on the results of the classification analysis, the best classification 
performance was obtained by the handwriting features computed by Caputo’s 
FD. The resulting balanced accuracy was 79.73% with SEN =  83.78% and 
SPE = 75.68%. In our similar study [21] we achieved classification accuracy 
of 80.60% with SEN = 79.4% and SPE = 80.56% using all of the handwrit- 
ing  tasks  from  the  PaHaW  database,  but  only  the  Grünwald-Letnikov  FD  was 
employed. In comparison to this study, we can conclude that the exploration 
of the various FD approaches improved the classification analysis, considering 
that we achieved almost the same performance only by one handwriting task 
and using the on-surface kinematic features only. The balanced accuracy of the 
Riemann-Liouville and Grünwald-Letnikov FD is approximately 5% lower while 



 

 

 

the sensitivity is lower up to 15% in comparison to the Caputo’s FD. Considering 
the reported results, we can conclude that the Caputo’s approach is the most 
suitable FD approximation of the kinematic analysis of the PD dysgraphia by 
online handwriting. 

 
5 Conclusion 

To the best of our knowledge, this is one of the first studies performing an inves- 
tigation of the various FD approaches in the computerized analysis of the PD 
dysgraphia by online handwriting. For that reason, the outcomes should be con- 
sidered as being rather exploratory and pilot in nature. Based on the reported 
results, Caputo’s FD approximation outperformed the rest of the analysed FD 
approaches in all experiments. The correlation analysis resulted in the significant 
relationship between the clinical state and the handwriting features based on the 
velocity, which is in line with our previous findings. Additionally, the best clas- 
sification model achieved the balanced accuracy of 79.73% with SEN = 83.78% 
and SPE = 75.68%, which is a comparable result to our previous studies. 

This study has several limitations and possible parts, that could be further 
improved. The processed dataset is relatively small in terms of the statistical 
validity of the achieved results. Next, the α order should be explored more sensi- 
tively (e.g. with a step of 0.01 or even less) in order to identify the optimal range 
for PD dysgraphia analysis. Additionally, other feature types, such as temporal, 
spatial, and dynamic, should be included in future comparisons. Moreover, the 
comparison of the various FD-based features with the conventionally used hand- 
writing features should be performed. Besides, all handwriting tasks included 
in the PaHaW database have to be investigated by the various FD approaches. 
And finally, various machine learning models should be trained and compared 
in future studies. 
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39. Valério,  D.,  Sá  da  Costa,  J.:  Ninteger:  a  fractional  control  toolbox  for  Matlab.  In: 
Fractional Differentiation and Its Applications, Bordeaux (2004) 
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