
ar
X

iv
:2

20
6.

03
99

7v
2

 [
cs

.L
O

]
 2

 A
ug

 2
02

2

A Rewriting Framework for Interacting

Cyber-Physical Agents

Benjamin Lion1, Farhad Arbab1,2, and Carolyn Talcott3

1 Leiden University, Leiden, The Netherlands lion@cwi.nl
2 CWI, Amsterdam, The Netherlands arbarb@cwi.nl

3 SRI International, CA, USA talcott@gmail.com

Abstract. The analysis of cyber-physical systems (CPS) is challenging
due to the large state space and the continuous changes occurring in
their constituent parts. Design practices favor modularity to help reduc-
ing this complexity. In a previous work, we proposed a discrete semantic
model for CPS that captures both cyber and physical aspects as streams
of discrete observations, which ultimately form the behavior of a com-
ponent. This semantic model is denotational and compositional, where
each composition operator algebraically models an interaction between
a pair of components.
In this paper, we propose a specification of components as rewrite sys-
tems. The specification is operational and executable, and we study con-
ditions for its semantics as components to be compositional. We demon-
strate our framework by modeling a coordination of robots moving on a
shared field. We show that our system of robots can be coordinated by
a protocol in order to exhibit a desired emerging behavior. We use an
implementation of our framework in Maude to give practical results.

1 Introduction

Cyber-physical systems are inherently concurrent. From a cyber point of view,
the timing of a decision to sense or act on its physical environment impacts the
resulting outcome. Moreover, several cyber entities may share the same physi-
cal environment, leading to race conditions. From a physical point of view, the
ordering of events is not always possible, as some events may be independent.
Moreover, two observers of the same physical phenomenon may order events dif-
ferently. A concurrency protocol encapsulates the orderings of events acceptable
to an application, and expressing protocols as separate, concrete modules (as
in exogenous coordination [1]) helps to reduce the complexity in the design of
cyber-physical systems.

More specifically, in this context, each part of a cyber-physical system (e.g., a
car, a road, a battery, etc.) is represented as a module, and the system captures
the concurrent and interactive execution of each module. We list the following
benefits of such approach. First, it makes concurrency explicit at the level of
modules, amenable to exogenous coordination, which provides the opportunity
to reason about concurrency protocols directly as first-class objects (e.g., how

http://arxiv.org/abs/2206.03997v2

much a move of a robot consumes energy, can two robots move ‘simultaneously’,
etc.). Then, the representation of a system remains small. Often, a modular de-
sign allows composing constituent components statically to analyze the resulting
system, or dynamically at runtime to keep the state space small for, e.g., sim-
ulating some runs. Finally, a component comes with a notion of an interface,
that specifies what is visible and what is hidden from other components. This
way, both discrete and continuous aspects of components have the same type of
interface, containing the set of observations over time.

In [11] we present a model of components that captures timed-event sequences
(TESs) as instances of their behavior. An observation is a set of events with a
unique time stamp. A component has an interface that defines which events are
observable, and a behavior that denotes all possible sequences of its observations
(i.e., a set of TESs). Our component model is equipped with a family of oper-
ators parametrized with an interaction signature. Thus, cyber-physical systems
are defined modularly, where each product of two components models the inter-
action occurring between the two components. The strength, as well as practical
limitation, of our semantic model is its abstraction: there is no fixed machine
specification that generates the behavior of a component. We give in this paper
an operational description of components as rewrite systems.

Rewriting logic is a powerful framework to model concurrent systems [13,
14]. Moreover, implementations, such as Maude [3], make system specifications
both executable and analyzable. Rewriting logic is suitable for specifying cyber-
physical systems, as the underlying equational theory can represent both discrete
and continuous changes. We give an operational specification for components as
rewriting systems, and show its compositionality under some assumptions.

Finally, we apply our work to an example that considers two energy sensitive
robots moving on a shared field. Each of the two robots aims at reaching the other
robot’s initial position which, by symmetry, may eventually lead to a crossing
situation. The crossing of the two robots is the source of a livelock behavior
which can lead to failure (i.e., no energy left in the battery). We show how, an
exogenous coordination imposed by a protocol can coordinate the moves of the
two robots to avoid the livelock situation. We demonstrate the result using our
implementation of our framework in Maude.

We present the following contributions:

– an operational specification of components as rewrite systems;
– some conditions for the rewrite system’s semantics to be compositional;
– an incremental, runtime implementation of composition;
– illustration of how a composed Maude specification can be used to incre-

mentally analyze a system design using a case study involving the behavior
of two coordinated robot agents roaming on a field.

The remainder of the paper is organized as follows. In Section 2, we recall
some results on the algebra of components defined in [11], and give as examples
the component version of a robot, a battery, and their product. In Section 3,
we give an operational specification, using rewriting logic, of a product of com-
ponents as a system of agents. We show compositionality: the component of a

system of agents is equal to the product of each agent component. In Section 4,
we detail the implementation in Maude of the operational specification given in
Section 3 and analyse a system consisting of two robots, two private batteries,
and a shared field.

2 Semantic model: algebra of components

The design of complex systems becomes simpler if such systems can be decom-
posed into smaller sub-systems that interact with each other. In order to simplify
the design of cyber-physical systems, we introduced in [11] a semantic model that
abstracts from the internal details of both cyber and physical processes. As first
class entities in this model, a component encapsulates a behavior (set of TESs)
and an interface (set of events). We recall basic definitions and properties in this
section. See C.1 for additional examples.

2.1 Components

Preliminaries A timed-event stream, TES, σ over a set of events E is an infinite
sequence of observations, where its ith observation σ(i) = (O, t), i ∈ N, consists
of a pair of a subset of events in O ⊆ E, called the observable, and a positive real
number t ∈ R+ as time stamp. A timed-event stream (TES) has the additional
properties that its consecutive time stamps are monotonically increasing and
non-Zeno, i.e., if σ(i) = (Oi, ti) is the ith element of TES σ, then (1) ti < ti+1,
and (2) for any time t ∈ R+, there exists an element σ(i) = (Oi, ti) in σ such
that t < ti. We use σ(k) to denote the k-th derivative of the stream σ, such
that σ(k)(i) = σ(i + k) for all i ∈ N. We refer to the stream of observables of
σ as its first projection pr1(σ) ∈ P(E)ω, and the stream of time stamps as its
second projection pr2(σ) ∈ R

ω
+. We write (O, t) ∈ σ if there exists i ∈ N such

that σ(i) = (O, t).
We write σ(t) = O if there exists i ∈ N such that σ(i) = (O, t), and σ(t) = ∅

otherwise. We use dom(σ) to refer to the set of observable time stamps, i.e., the
set dom(σ) = {t ∈ R+ | ∃i .pr2 (σ)(i) = t}. Moreover, we use σ ∪ τ to denote
the stream such that, for all t ∈ R+, (σ ∪ τ)(t) = σ(t) ∪ τ(t) and dom(σ ∪ τ) =
dom(σ) ∪ dom(τ)

A component denotes what observables are possible, over time, given a fixed
set of events. We give three examples of components, which capture some cyber-
physical aspects of concurrent systems.

Definition 1 (Component). A component C = (E,L) is a pair of a set of
events E, called its interface, and a behavior L ⊆ TES (E).

Given component A = (EA, LA), we write σ : A for a TES σ ∈ LA.

Example 1 (Battery). A battery component is a pair (EB(C), LB(C)) with events
read(l) ∈ EB for 0% ≤ l ≤ 100%, charge(µ) ∈ EB , and discharge(µ) ∈ EB with
µ a (dis)charging coefficient in % per seconds, and C a constant capacity in

mAH. The battery displays its capacity with the event capacity(C). The behav-
ior LB is a set of sequences σ ∈ LB such that there exists a piecewise linear
function f : R+ → P(EB) with, for σ(i) = (Oi, ti),

– for σ(0) = (O0, t0), f([0; t0]) = 100%, i.e., the battery is initially fully
charged;

– if Oi = {read(l)}, then f(ti) = l and the derivation f ′
[ti−1,ti+1]

of f is constant

in [ti−1, ti+1], i.e., the observation does not change the slope of f at time ti;

– if Oi = {discharge(µ)}, then f[ti,ti+1](t) = max(f(ti)− (t− ti)µ, 0);

– if Oi = {charge(µ)}, then f[ti,ti+1](t) = min(f(ti) + (t− ti)µ, 100);

where f[t1;t2] is the restriction of function f on the interval [t1; t2]. There is a
priori no restrictions on the time interval between two observations, as long as
the sequence of timestamps is increasing and non-Zeno. �

Example 2 (Robot). A robot with identifier i is a componentR(i, T) = (ER, LR(T))
with events read(i, l) ∈ ER for 0% ≤ l ≤ 100%, d(i, p) ∈ ER with p the power re-
quested by the robot for the move and d the direction, and T a period in seconds.
For instance, the event N(i, p) represents robot i moving North with power p.
The robot reads the capacity of its battery with the event getCapacity(i,C) ∈ ER,
with C in mAH. Once the robot knows the capacity of the battery, the values
read in percent can be converted to remaining power.

The behavior LR(T) contains any sequence of observations at fix period T ,
such that σ ∈ LR(T) if and only if σ(i) = (Oi, ti) implies ti = kT with k ∈ N

and Oi ⊆ ER with |Oi| = 1. We assume that the robot does one action at a
time: either a read of its sensors, or a move in some direction. �

2.2 Product and division

Components describe which observations occur over time. When run concur-
rently, observable events from a component may relate to observable events of
another component. This relation defines what kind of interaction occurs be-
tween the two components, as it may enforce two events to occur within the
same observable at the same time (e.g., actuation of a wheel and changes of lo-
cation of the robot), or it may prevent two events to occur simultaneously (e.g.,
two robots moving to the same physical location). Interaction constraints are
therefore captured by an algebraic operator that acts on components. The result
of forming the product of two components is a new component, whose behavior
contains the composition of every pair of TESs, one from each product operand,
that satisfies the underlying constraints imposed by that specific operator.

Let A = (EA, LA) and B = (EB, LB) be two components. We use the relation
R(EA, EB) ⊆ TES (EA)×TES (EB) and the function ⊕ : TES (E)×TES (E) →
TES (E), with E = EA ∪ EB , to range over composability relations and com-
position functions, respectively. We use Σ to range over interaction signatures,
i.e., pairs of a composability relation and a composition function.

Definition 2 (Product). The product of components A and B under inter-
action signature Σ = (R,⊕) is the component C = A ×Σ B = (EA ∪ EB, L)
where

L = {σ ⊕ τ | σ ∈ LA, τ ∈ LB, (σ, τ) ∈ R(EA, EB)}

For simplicity, we write × as a general product when the specific Σ is irrel-
evant.

Example 3. We define ΣRB = ([κRB],∪) where ∪ unions two TESs as defined
in the preliminaries, and [κRB] specifies co-inductively (see [11] for details of the
construction), from a relation on observations κRB, how event occurrences relate
in the robot and the battery components of capacity C. More specifically, κRB is
the smallest symmetric relation over observations such that ((O1, t1), (O2, t2)) ∈
κRB implies that t1 = t2 and

– the discharge event in the battery coincides with a move of the robot, i.e.,
d(i, p) ∈ O1 if and only if discharge(µ) ∈ O2. Moreover, the interaction
signature imposes a relation between the discharge coefficient µ and the
required power p, i.e., µ = p/C;

– the read value of the robot sensor coincides with a value from the battery
component, i.e., read(i, l) ∈ O1 if and only if read(l) ∈ O2;

– the robot reads the capacity value that corresponds to the battery capacity,
i.e., getCapacity(i,c) ∈ O1 if and only if capacity(c) ∈ O2.

The product B ×ΣRB
R(T, i) of a robot and a battery component, under the

interaction signature ΣRB, restricts the behavior of the battery to match the
periodic behavior of the robot, and restricts the behavior of the robot to match
the sensor values delivered by the battery.
As a result, the behavior of the product component B ×ΣRB

R(T, i) contains
all observations that the robot performs in interaction with its battery. Note
that trace properties, such as all energy sensor values observed by the robot are
within a safety interval, does not necessarily entail safety of the system: some
unobserved energy values may fall outside of the safety interval. Moreover, the
frequency by which the robot samples may reveal some new observations, and
such robot can safely sample at period T if, for any period T ′ ≤ T , the product
B ×ΣRB

R(T ′, i) satisfies the safety property. �

3 System of agents and compositional semantics

Components in Section 2 are declarative. Their behavior consists of all the TESs
that satisfy some internal constraints. The abstraction of internal states in com-
ponents makes the specification of observables and their interaction easier. The
downside of such declarative specification lies in the difficulty of generating an
element from the behavior, and ultimately verifying properties on a product
expression.

An operational specification of a component provides a mechanism to con-
struct elements in its behavior. An agent is the operational specification that

produces finite sequences of observations that, in the limit, determine the behav-
ior of a component. An agent is stateful, and has transitions between states, each
labeled by an observation, i.e., a set of events with a time-stamp. We consider
a finite specification of an agent as a rewrite theory, where finite applications of
the agent’s rewrite rules generate a sequence of observables that form a prefix of
some elements in the behavior of its corresponding component. We restrict the
current work to integer time labeled observations. While in the cyber-physical
world, time is a real quantity, we consider in our fragment a countable infinite
domain for time, i.e., natural numbers. The time interval between two tics is
therefore the same for all agents, and may be interpreted as, e.g., seconds, mil-
liseconds, femtoseconds, etc. We show how an agent may synchronize with a local
clock that forbids actions at some time values, thus modeling different execution
speeds.

An operational specification of a composite component provides a mecha-
nism to construct elements in the behavior of a product expression. The prod-
uct on components is parametrized by an interaction signature that tells which
TESs can compose, and how they compose to a new TES. We consider, in the
operational fragment of this section, interaction signatures each of whose com-
posability relation is co-inductively defined from a relation on observations κ.
Intuitively, such restriction enables a step-by-step operation to check that the
head of each sequence is valid, i.e., extends the sequence to be a prefix of some
elements in the composite component. Moreover, we require κ to be such that
the product on component ×([κ],∪) is commutative and associative (see [11]). By
system we mean a set of agents that compose under some interaction signature
Σ = ([κ],∪). A system is stateful, where each state is formed from the states
of its component agents, and has transitions between states, each labeled by
an observation, formed from the component agent observations. We consider a
finite specification of a system as the composition of a set of rewriting theories
(one for each agent), and a system rewrite rule that produces a composite ob-
servation complying with the relation κ. We prove compositionality: the system
component is equal to the product under the interaction signature Σ = ([κ],∪)
of every one of its constituent agent components.

In order to give to the agent a semantics as components, we recall some
results and notations about TES transition systems T = (Q,E,→) (see [10] and
A for more results on TES transition systems) where Q is a set of states, E a
set of events, and →⊆ Q× (P(E)× R+)×Q a set of transitions.

We write q
u
−→ p for the sequence of transitions q

u(0)
−−−→ q1

u(1)
−−−→ q2...

u(n−1)
−−−−−→ p,

where u = 〈u(0), ..., u(n− 1)〉 ∈ (P(E) × R+)
n. We write |u| for the size of the

sequence u.

We use Lfin(T, q) to denote the set of finite sequences of observables labeling
a finite path in T starting from state q, such that

Lfin(T, q) = {u | ∃q′.q
u
−→ q′, ∀i < |u| − 1.u(i) = (Oi, ti) ∧ ti < ti+1}

Additionally, the set Lfin∗(T, q) is the set of sequences from Lfin(T, q) postfixed
with empty observations, i.e., the set

Lfin∗(T, q) = {uτ ∈ TES (E) | u ∈ Lfin(T, q) and τ ∈ TES (∅)}

We use Linf(T, q) to denote the set of TESs labeling infinite paths in T starting
from state q, such that

Linf(T, q) = {σ ∈ TES (E) | ∀n.σ[n] ∈ Lfin(T, q)}

where, as introduced in Section 2, σ[n] is the prefix of size n of σ.
Let X ⊆ TES (E), we use cl(X) to denote the set that contains the contin-

uation with empty observations of any prefix of an element in X , i.e., cl(X) =
{uτ ∈ TES (E) | τ ∈ TES (∅) and ∃σ.∃i .σ ∈ X ∧σ[i] = u}. Given a component
C = (E,L), we write cl(C) for the new component (E, cl(L)).

3.1 Action, agent, and system

We give the operational counterparts of an observation, a component, and a
product of components as, respectively, an action, an agent, and a system of
agents. See B for proof sketches.

Action Actions are terms of sort Action. An action has a name of sort AName
and some parameters. We distinguish two typical actions, the idle action ⋆ and
the ending action end. A term of sort Action corresponds to an observable, i.e., a
set of events. The idle action ⋆ and the ending action end both map to the empty
set of events. An example of an action is move(R1,d) or read(R1, position,

l) that, respectively, moves agent R1 in direction d or reads the value l from
the position sensor of R1. The semantics of action move(R1, d) consists of all
singleton event of the form {move(R1, d)} with d a constant direction value.
We use the operation · : Action Action → Action to construct a composite
action a1 · a2 out of two actions a1 and a2.

Agent An agent operationally specifies a component in rewriting logic. We give
the specification of an agent as a rewrite theory, and provide the semantics of
an agent as a component. An agent is a four tuple (Λ,Ω, E ,⇒), each of whose
elements we introduce as follow.

The set of sorts Λ contains the State sort and the Action sort, respectively
for state and action terms. A pair of a state and a set of actions is called a
configuration. The set of function symbols Ω contains φ : State × Action →
State, that takes a pair of a state and an action term to produce a new state. The
(Λ,Ω)-equational theory E specifies the update function φ. The set of equations
that specify the function φ can make φ both a continuous or discrete function.

The rule pattern in (1) updates a configuration with an empty set to a new
configuration, i.e.,

(s, ∅) ⇒ (s′, acts) (1)

with acts a non-empty set of action terms, and s′ a new state. We call an agent
productive if, for any state s : State, there exists a state s′ with (s, ∅) ⇒ (s′, acts)
and acts non empty set. Such agent may eventually do the idling action ⋆.

We give a semantics of an agent as a component by considering the limit
application of the agent rewrite rules. We construct a TES transition system
TA = (Q,E,→) as an intermediate representation for agent A = (Λ,Ω, E ,⇒).
The set of states Q = State× N is the set of pairs of a state of A and a time-
stamp natural number. We use the notation [s, t] for states in Q where t ∈ N.
The set of events E is the union of all observables labeling the transition relation
→⊆ Q× (P(E)× N)×Q, defined as the smallest set such that, for t ∈ N:

(s, ∅) ⇒ (s′, acts) a ∈ acts φ(s′, a) =E s′′

[s, t]
(a,t+1)
−−−−−→ [s′′, t+ 1]

(2)

An agent that performs a rewrite moves the global time from one unit for-
ward. All agents share the same time semantically, and we show some mecha-
nisms at the system level to artificially run some agents faster than others.

Let A = (Λ,Ω, E ,⇒) be an agent initially in state s0 ∈ S at time t0 ∈ N.
The finite, respectively infinite, component semantics of A is the component
JA([s0, t0])K

∗ = (E,Lfin∗(TA, [s0, t0])), respectively the component JA([s0, t0])K =
(E,Linf(TA, [s0, t0])), with E =

⋃
a∈Action a.

Lemma 1 (Closure). Let A be a productive agent initially in state [s0, t0].
Then JA([s0, t0])K

∗ = cl(JA([s0, t0])K).

Lemma 1 gives a condition under which a step by step execution of the agent
is sound with respect to generating prefixes of elements in the component se-
mantics. More precisely, if an agent A is productive, Lemma 1 ensures that finite
sequences of rewrite rule applications generate finite sequences of observations
each of which is a prefix of an element in the behavior of the component cor-
responding to A. Alternatively, if A is not productive, a finite sequence of rule
application may lead to a state for which no rule applies anymore. In such a
case, there may not be any corresponding element in the agent component for
which such finite sequence is a prefix.

System A system gives an operational specification of a product of a set of
components under Σ = ([κ],∪). The composability relation κ is fixed to be
symmetric, so that the product ×Σ is commutative. We define [κ] co-inductively,
as in [10,11]. Formally, a system consists of a set of agents with additional sorts,
operations, and rewrite rules. A system is a tuple (A, Λ,Ω, E ,⇒S) where A is a
set of agents. We use (Λi, Ωi, Ei,⇒i) to refer to agent Ai ∈ A.

The set of sorts Λ contains a sort Action ∈ Λ which is a super sort of
each sort Actioni for Ai ∈ A. The set Ω contains the function symbol comp :
Action × Action → Bool, which relates pairs of action terms. Given two ac-
tions a1,a2:Action, comp(a1, a2) = True when the two actions a1 and a2 are
composable. The set of equations E specifies the composability relation comp.

First, we impose comp to be symmetric, i.e., for all actions a1,a2:Action,
comp(a1, a2) = comp(a2, a1). Second, we assume that comp(a1 · a2, a3) and
comp(a1, a2) hold if and only if comp(a2, a3) and comp(a1, a2 · a3) hold, for
any actions a1, a2, a3 from disjoint agents. Given a set actions of actions,
we use the notation comp(actions) for the predicate that is True if all pairs of
actions in actions are composable, i.e., for all a1, a2 in actions, comp(a1, a2)
is True and for all agent Ai such that there is no a3 : Actioni ∈ actions, then
comp(a1, ⋆i) is True. We call a set actions of actions for which comp(actions)
holds, a clique. The conditions for a set of actions to form a clique models the
fact that each action in the clique is independent from agent Ai with no action
in that clique (see Section 4.1 for an instance of comp), and therefore composable
with the silent action ⋆i. The relation comp can be graphically modelled as an
undirected graph relating actions, where a clique is a connected component.

The rewrite rule pattern in (3) selects a set of actions, at most one from each
agent, checks that the set of actions forms a clique with respect to comp, and
applies the update accordingly. For {k1, ..., kj} ⊆ {1, ..., n}:

{(sk1 , actsk1), ..., (skj
, actskj

)} ⇒S {(φk1(sk1 , ak1), ∅), ..., (φkj
(skj

, akj
), ∅)} (3)

if comp(
⋃

i∈[1,j]{aki
})). As we show later, a system does not necessarily update

all agents in lock steps, and an agent not doing an action may stay in the config-
uration (s, ∅). As multiple cliques may be possible, there is non-determinism at
the system level. Different strategies may therefore choose different cliques as,
for instance, taking the largest clique.

We define the transition system for S = (A, Λ,Ω, E ,⇒S) as the TES tran-
sition system TS = (Q,E,→) with Q = StateSet× N the set of states, E the
union of all observables labeling the transition relation →⊆ Q× (P(E)×N)×Q,
which is the smallest transition relation such that, for {k1, ..., kj} ⊆ {1, ..., n}:

{(ski
, actski

)}i∈[1,j] ⇒S {(φki
(ski

, aki
), ∅)}i∈[1,j]

∧
i∈[1,j] φki

(ski
, aki

) =Ei
s′′ki

[{si}i∈[1,n], t]
(
⋃

i∈[1,j] aki
,t+1)

−−−−−−−−−−−→ [{s1, ..., s′′k1
, ..., s′′kj

, ..., sn}, t+ 1]

(4)
for t ∈ N and where we use the notation {xi}i∈[1,n] for the set {x1, ..., xn}.

Remark 1. The top left part of the rule is a rewrite transition at the system
level. As defined earlier, the condition for such rewrite to apply is the formation
of a clique by all of the actions in the update. The states and labels of the TES
transition system (bottom of the rule) are sets of states and sets of labels from
the TES transition system of every agent in the system.

Let A = {A1, ...,An} be a set of agents, and let S = (A, Λ,Ω, E ,⇒S)
be a system initially in state {(s0i, ∅)}i∈[1,n] at time t0 such that, for all i ∈
[1, n], Ai is initially in state s0i at time t0. The finite, respectively infinite,
semantics of initialized system S([s0, t0]), is the component JS([s0, t0])K∗ =
(E,Lfin∗(TS , [s0, t0])), respectively JS([s0, t0])K = (E,Linf(TS , [s0, t0])), where
E =

⋃
i∈[1,n] Ei with Ei the set of events for the agent component JA([s0i, t0])K.

Given a composability relation comp, we define the interaction signature Σ =
([κcomp],∪), with κcomp(E1, E2) ⊆ (P(E1)×N)× (P(E2)×N) to be such that, for
ai : Actioni and aj : Actionj:

– if comp(ai, aj), then ((ai, n), (aj , n)) ∈ κcomp(Ei, Ej) for all n ∈ N, i.e., two
composable actions occur at the same time;

– if comp(ai, ⋆j), then ((ai, n), (a, k)) ∈ κcomp(Ei, Ej) for all (a, k) ∈ P(Ej)×N

with k ≥ n, i.e., Aj may have an action at arbitrary future time.

with Ei the set of events of agent Ai.

Lemma 2 (Composability). If Actioni ∩ Actionj = ∅ for all disjoint agents
i and j, then the product ×([κcomp],∪) is commutative and associative.

Theorem 1 (Compositional semantics). Let S = (A, Λ,Ω, E ,⇒S) be a sys-
tem of n agents with disjoint actions and [{s01, ..., s0n}, t0] as initial state. We fix
Σ = ([κcomp],∪). Then, JS([s0, t0])K = ×Σ{JAi([s0i, t0])K}i∈[1,n] and JS([s0, t0])K∗ =
×Σ{JAi([s0i, t0])K

∗}i∈[1,n].

4 Application

We present the Maude implementation of the rewrite theories described in Sec-
tion 3. We first describe our general framework as currently implemented in
Maude, separating the agent modules, from the system module, and the com-
posability relation. The framework is instantiated for a system consisting of
two robot agents, each interacting with a (shared) field and a (private) battery
agent (more details can be found in C.2). Finally, we run some analysis on the
system using the Maude reachability search engine. The implementation of the
framework in Maude can be found in [9].

4.1 General framework

Actions An action is a pair that contains the name of the action, and the set
of agent identifiers on which the action applies. An agent action is identified by
the source agent identifier, and is a triple (id, (a; ids)) where id is the agent
doing the action with name a onto the set of agents ids, that we call resources
of agent id for action named a.

fmod ACTION is

inc STRING . inc BOOL . inc SET{Id}

sort AName Action AgentAction .

op (_;_) : AName Set{Id} -> Action [ctor] .

op (_,_) : Id Action -> AgentAction [ctor] .

op mta : -> AgentAction .

endfm

Agent The AGENT module in Listing 1.1 defines the theories on which an agent
relies, the Agent sort, and operations that an agent instance must implement.
The module is parametrized with a CSEMIRING theory, that is used to rank ac-
tions of an agent. Additionally, the AGENT includes modules that define state and
action terms. A term of sort IdStates is a pair of an identifier and a map of
sort MapKD.
A term of sort Agent is a tuple [id: C| state; ready?; softaction]. The
identifier id is unique for each agent of the same class C. The state state of an
agent is a map from keys to values. For instance, the state of a robot has three
keys, position, energy, and lastAction, with values in Location, Status, and
Bool. The flag ready? is of sort Bool and is True when the agent has submit-
ted a possibly empty list of actions, and False otherwise. The pending actions
softaction is a set of actions valued in the parametrized CSEMIRING. The use of
a constraint semiring as a structure for action valuations enables various kinds
of reasoning about preferences at the agent and system levels. We use the two
operations of the csemiring, sum + and product ×, as respectively modeling the
choice and the compromise of two alternatives. See [6, 19, 20] for more details.
An agent instance implements four operations: computeActions, getOutput,
getPostState, and internalUpdate. The operation computeActions, given
a state:MapKD of agent id of class C, returns a set of valued actions in the
parametrized CSEMIRING. The operation internalUpdate, given a state:MapKD
of agent id of class C, returns a new state state’:MapKD. For instance, an agent
may record in its state, as an internal update, the outcome of computeActions
and change the value that the key lastAction maps to. The getOutput oper-
ation, given an action name a:Name from agent identified by id2 applied to an
agent id of class C in a state state, returns a collection of outputs outputs

= getOutput(id, C, id2, an, state). The outputs generated by getOutput

are of sort MapKD and therefore structured as a mapping from keys to values.
For instance, the output of the action named read applied on a field agent has
a key position that maps to the position value of the agent doing the read ac-
tion. The operation getPostState, given an action name a:AName with inputs
input:IdStates from agent identified by id2 applied on an agent id1 of class C
in a state state, returns a new state state’ = getPostState(id1, C, id2,

an, input, state). The input input:IdStates is a collection of key to value
mappings that results from collecting the outputs, i.e., with getOutput, of an
action (id, an, ids) on all its resources in ids.

Listing 1.1. Extract from the AGENT Maude module.

fmod AGENT{X :: CSEMIRING } is

inc IDSTATE . inc ACTION .

sort Agent .

op [_:_|_;_;_] : Id Class MapKD Bool X$Elt -> Agent [ctor].

op computeActions : Id Class MapKD -> X$Elt .

op internalUpdate : Id Class MapKD -> MapKD .

op getPostState : Id Class Id AName IdStates MapKD -> MapKD

op getOutput : Id Class Id AName MapKD -> MapKD .

endfm

The agent’s dynamics are given by the rewrite rule in Listing 1.2, that updates
the pending action to select one atomic action from the set of valued actions:

Listing 1.2. Conditional rewrite rule applying on agent terms.

crl[agent] : [sys [id : ac | state ; false ; null]] =>

[sys [id : ac | state ’ ; true ; softaction]]

if softaction + sactions := computeActions (id , ac , state)

/\ state ’ := internalUpdate (id , ac , state) .

The rewrite rule in Listing 1.2 implements the abstract rule of Equation 2. After
application of the rewrite rule, the ready? flag of the agent is set to True. The
agent may, as well, perform an internal update independent of the success of the
selected action.

System The SYSTEM module in Listing 1.3 defines the sorts and operations that
apply on a set of agents. The sort Sys contains set of Agent terms, and the
term Global designates top level terms on which the system rewrite rule ap-
plies (as shown in Listing 1.4). The SYSTEM module includes the Agent theory
parametrized with a fixed semiring ASemiring. The theory ASemiring defines
valued actions as pairs of an action and a semiring value. While we assume
that all agents share the same valuation structure, we can also define systems in
which such a preference structure differs for each agent. The SYSTEM module
defines three operations: outputFromAction, updateSystemFromAction, and
updateSystem. The operation outputFromAction returns, given an agent ac-
tion (id, (an, ids)) applied on a system sys, a collection of identified outputs
idOutputs = outputFromAction((id, (an, ids)), sys) given by the union
of getOutput from all agents in ids. The operation updatedSystemFromAction

returns, given an agent action (id, (an, ids)) applied on a system sys, an
updated system sys’ = updatedSystemFromAction((id, (an, ids)), sys).
The updated system may raise an error if the action is not allowed by some
of the resource agents in ids (see the battery-field-robot example in C.2). The
updated system, otherwise, updates synchronously all agents with identifiers in
ids by using the getPostState operation. The operation updateSystem returns,
given a list of agent actions agentActions and a system term sys, a new sys-
tem updateSystem(sys, agentActions) that performs a sequential update of
sys with every action in agentActions using updatedSystemFromAction. The
list agentActions ends with a delimiter action end performed on every agent,
which may trigger an error if some expected action does not occur (see PROTOCOL
in C.2).

Listing 1.3. Extract from the SYSTEM Maude module.

fmod SYS is

inc AGENT{ASemiring } . sort Sys Global .

subsort Agent < Sys . op [_] : Sys -> Global [ctor] .

op __ : Sys Sys -> Sys [ctor assoc comm id: mt]

op outputFromAction : AgentAction Sys -> IdStates .

op updatedSystemFromAction : AgentAction Sys -> Sys .

op updateSystem : Sys List {AgentAction } -> Sys .

endfm

The rewrite rule in Listing 1.4 applies on terms of sort Global and updates
each agent of the system synchronously, given that their actions are compos-
able. The rewrite rule in Listing 1.4 implements the abstract rule of Equation 4.
The rewrite rule is conditional on essentially two predicates: agentsReady?

and kbestActions. The predicate agentsReady? is True if every agent has its
ready? flag set to True, i.e., the agent rewrite rule has already been applied.
The operation kbestActions returns a ranked set of cliques (i.e., composable
lists of actions), each paired with the updated system. The element of the ranked
set are lists of actions containing at most one action for each agent, and paired
with the system resulting from the application of updateSystem. If the updated
system has reached a notAllowed state, then the list of actions is not compos-
able and is discarded. The operations getSysSoftActions and buildComposite

form the set of lists of composite actions, from the agent’s set of ranked actions,
by composing actions and joining their preferences.

Listing 1.4. Conditional rewrite rule applying on system terms.

crl[transition] : [sys] => [sys ’]

if agentsReady ?(sys) /\ saAtom := getSysSoftActions (sys) /\

saComp := buildComposite (saAtom , sizeOfSum (saAtom)) /\

p(actseq , sys ’) ; actseqs := kbestActions (saComp , k, sys) .

Composability relation The term saComp defines a set of valued lists of actions.
Each element of saComp possibly defines a clique. The operation kbestActions

specifies which, from the set saComp, are cliques. We describe below the imple-
mentation of kbestActions, given the structure of action terms.
An action is a triple (id, (an, ids)), where id is the identifier of the agent
performing the action an on resource agents ids. Each resource agent in ids

reacts to the action (id, (an, ids)) by producing an output (id’, an, O)

(i.e., the result of getOutput). Therefore, comp((id, (an, ids)), ai) holds, with
ai : Actioni and i ∈ ids, only if ai is a list that contains an output (i, an,

O), i.e., an output to the action. If one of the resources outputs the value
(i,notAllowed(an)), the set is discarded as the actions are not pairwise com-
posable. Conceptually, there are as many action names an as possible outputs
from the resources, and the system rule (2) selects the clique for which the action
name and the outputs have the same value. In practice, the list of outputs from
the resources get passed to the agent performing the action.

4.2 Analysis in Maude

We analyze in Maude two scenarios. In one, each robot has as strategy to take
the shortest path to reach its goal. As a consequence, a robot reads its position,
computes the shortest path, and submits a set of optimal actions. A robot can
sense an obstacle on its direct next location, which then allows for sub-optimal
lateral moves (e.g., if the obstacle is in the direct next position in the West
direction, the robot may go either North or South). In the other scenario, we
add a protocol that swaps the two robots if robot id(0) is on the direct next

location on the west of robot id(1). The swapping is a sequence of moves that
ends in an exchange of positions of the two robots. See C.2 for details on the
TROLL, FIELD, BATTERY, and PROTOCOL agents specified in Maude, and for the
specification of the init term for both scenarios.

In the two scenarios, we analyze the behavior of the resulting system with
two queries. The first query asks if the system can reach a state in which the
energy level of the two batteries is 0, which means that its robot can no longer
move:

search [1] init =>* [sys :: Sys

[bat (1) : Battery | k(level) |-> 0 ; true ; null],

[bat (2) : Battery | k(level) |-> 0 ; true ; null]] .

The second query asks if the system can reach a state in which the two robots
successfully reached their goals, and end in the expected locations:

search [1] init =>* [sys :: Sys [field : Field | k((5 ; 5))

|-> d(id (0)), k((0 ; 5)) |-> d(id (1)) ; true ; null]] .

As a result, when the protocol is absent, the two robots can enter in a livelock
behavior and eventually fail with an empty battery:

Solution 1 (state 80)

states: 81 rw: 223566 in 73ms cpu (74 ms real) (3053554 rw/s)

Alternatively, when the protocol is used, the livelock is removed using exoge-
nous coordination. The two robots therefore successfully reach their end loca-
tions, and stop before running out of battery:

No solution . states: 102

rewrites : 720235 in 146 ms cpu (145 ms real) (4920041 rw/s)

In both cases, the second query succeeds, as there exists a path for both
scenarios where the two robots reach their end goal locations. The results can
be reproduced by downloading the archive at [9].

5 Related work

Real-time Maude Real-Time Maude is implemented in Maude as an extension
of Full Maude [17], and is used in applications such as in [8]. There are two ways
to interpret a real-time rewrite theory, called the pointwise semantics and the
continuous semantics. Our approach to model time is similar to the pointwise
semantics for real-time Maude, as we fix a global time stamp interval before
execution. The addition of a composability relation, that may discard actions to
occur within the same rewrite step, differs from the real-time Maude framework.

Models based on rewriting logic In [21], the modeling of cyber-physical systems
from an actor perspective is discussed. The notion of event comes as a central
concept to model interaction between agents. Softagents [19] is a framework
for specifying and analyzing adaptive cyber-physical systems implemented in
Maude. It has been used to analyze systems such as vehicle platooning [4] and

drone surveillance [12]. In Softagents agents interact by sharing knowledge and
resources implemented as part of the system timestep rule.

Softagents only considers compatibility in the sense of reachability of desired
or undesired states. Our approach provides more structure enabling static analy-
sis. Our framework allows, for instance, to consider compatibility of a robot with
a battery (i.e., changing the battery specification without altering other agents
in the system), and coordination of two robots with an exogenous protocol, itself
specified as an agent.

Algebra, co-algebra The algebra of components described in this paper is an ex-
tension of [11]. Algebra of communicating processes [5] (ACP) achieves similar
objectives as decoupling processes from their interaction. For instance, the en-
capsulation operator in process algebra is a unary operator that restricts which
actions may occur, i.e., δH(t ‖ s) prevents t and s to perform actions in H .
Moreover, composition of actions is expressed using communication functions,
i.e., γ(a, b) = c means that actions a and b, if performed together, form the
new action c. Different types of coordination over communicating processes are
studied in [2].

Discrete Event Systems Our work represents both cyber and physical aspects of
systems in a unified model of discrete event systems [1,16]. In [7], the author lists
the current challenges in modelling cyber-physical systems in such a way. The
author points to the problem of modular control, where even though two modules
run without problems in isolation, the same two modules may block when they
are used in conjunction. In [18], the authors present procedures to synthesize
supervisors that control a set of interacting processes and, in the case of failure,
report a diagnosis. An application for large scale controller synthesis is given
in [15]. Our framework allows for experiments on modular control, by adding an
agent controller among the set of agents to be controlled. The implementation
in Maude enables the search of, for instance, blocking configurations.

6 Conclusion

We give an operational specification of the algebra of components defined in [11].
An agent specifies a component as a rewrite theory, and a system specifies a
product of components as a set of rewrite theories extended with a composability
relation. We show compositionality, i.e., that the system specifies a component
that equals to the product, under a suitable interaction signature, of components
specified by each agent.

We present an implementation of our framework in Maude, and instantiate a
set of components to model two energy sensitive robots roaming on a shared field.
We analyze the behavior of the resulting system before and after coordination
with a protocol, and show how the protocol can prevent livelock behavior.

The modularity of our operational framework and the interpretation of agents
as components in interaction add structure to the design of cyber-physical sys-
tems. The structure can therefore be exploited to reason about more general
properties of CPSs, such as compatibility, sample period synthesis, etc.

Acknowledgement Talcott was partially supported by the U. S. Office of Naval
Research under award numbers N00014-15-1-2202 and N00014-20-1-2644, and
NRL grant N0017317-1-G002. Arbab was partially supported by the U. S. Office
of Naval Research under award number N00014-20-1-2644.

References

1. Farhad Arbab. Puff, the magic protocol. In Gul Agha, Olivier Danvy, and José
Meseguer, editors, Formal Modeling: Actors, Open Systems, Biological Systems -

Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday, volume
7000 of Lecture Notes in Computer Science, pages 169–206. Springer, 2011.

2. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1):109–137, 1984.

3. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-

Performance Logical Framework, How to Specify, Program and Verify Systems in

Rewriting Logic, volume 4350 of Lecture Notes in Computer Science. Springer,
2007.

4. Yuri Gil Dantas, Vivek Nigam, and Carolyn L. Talcott. A formal security as-
sessment framework for cooperative adaptive cruise control. In IEEE Vehicular

Networking Conference, pages 1–8. IEEE, 2020.
5. Wan J. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer

Science. An EATCS Series. Springer, 2000.
6. Tobias Kappé, Benjamin Lion, Farhad Arbab, and Carolyn Talcott. Soft com-

ponent automata: Composition, compilation, logic, and verification. Science of

Computer Programming, 2019.
7. Stéphane Lafortune. Discrete event systems: Modeling, observation, and control.

Annual Review of Control, Robotics, and Autonomous Systems, 2(1):141–159, 2019.
8. Jaehun Lee, Sharon Kim, Kyungmin Bae, and Peter Csaba Ölveczky. Hybridsyn-

chaadl: Modeling and formal analysis of virtually synchronous CPSs in AADL.
In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided Verifica-

tion - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,

Proceedings, Part I, volume 12759 of Lecture Notes in Computer Science, pages
491–504. Springer, 2021.

9. Benjamin Lion. Cyber-physical framework in maude.
http://dx.doi.org/10.5281/zenodo.6587173, May 2022.

10. Benjamin Lion, Farhad Arbab, and Carolyn Talcott. Runtime composition of
systems of interacting cyber-physical components, 2022.

11. Benjamin Lion, Farhad Arbab, and Carolyn L. Talcott. A semantic model for
interacting cyber-physical systems. In Julien Lange, Anastasia Mavridou, Larisa
Safina, and Alceste Scalas, editors, Proceedings 14th Interaction and Concurrency

Experience, ICE 2021, Online, 18th June 2021, volume 347 of EPTCS, pages 77–
95, 2021.

12. Ian A. Mason, Vivek Nigam, Carolyn L. Talcott, and Alisson Vasconcelos De Brito.
A framework for analyzing adaptive autonomous aerial vehicles. In Antonio Cerone
and Marco Roveri, editors, Software Engineering and Formal Methods Collocated

Workshops: DataMod, FAACS, MSE, CoSim-CPS, and FOCLASA, Revised Se-

lected Papers, volume 10729 of Lecture Notes in Computer Science, pages 406–422.
Springer, 2017.

http://dx.doi.org/10.5281/zenodo.6587173

13. José Meseguer. Conditioned rewriting logic as a united model of concurrency.
Theor. Comput. Sci., 96(1):73–155, 1992.

14. José Meseguer. Twenty years of rewriting logic. J. Log. Algebraic Methods Pro-

gram., 81(7-8):721–781, 2012.
15. L. Moormann, J.M. van de Mortel-Fronczak, W.J. Fokkink, P. Maessen, and J.E.

Rooda. Supervisory control synthesis for large-scale systems with isomorphisms.
Control Engineering Practice, 115:104902, 2021.

16. Maurice Nivat. Behaviors of Processes and Synchronized Systems of Processes,
pages 473–551. Springer Netherlands, Dordrecht, 1982.

17. Peter Csaba Ölveczky. Real-time maude and its applications. In Santiago Escobar,
editor, Rewriting Logic and Its Applications - 10th International Workshop, WRLA

2014, Held as a Satellite Event of ETAPS, Grenoble, France, April 5-6, 2014,

Revised Selected Papers, volume 8663 of Lecture Notes in Computer Science, pages
42–79. Springer, 2014.

18. Meera Sampath, Stéphane Lafortune, and Demosthenis Teneketzis. Active diagno-
sis of discrete-event systems. IEEE Trans. Autom. Control., 43(7):908–929, 1998.

19. Carolyn Talcott, Farhad Arbab, and Maneesh Yadav. Soft agents: Exploring soft
constraints to model robust adaptive distributed cyber-physical agent systems. In
Software, Services, and Systems - Essays Dedicated to Martin Wirsing on the Occa-

sion of His Retirement from the Chair of Programming and Software Engineering,
volume 8950 of LNCS. Springer, 2015.

20. Martin Wirsing, Grit Denker, Carolyn L. Talcott, Andy Poggio, and Linda Briese-
meister. A rewriting logic framework for soft constraints. Electr. Notes Theor.

Comput. Sci., 176(4):181–197, 2007.

A TES transition system

The behavior of a component as in Definition 1 is a set of TESs. We give an
specification of such behavior using a labelled transition system.

Definition 3 (TES transition system). A TES transition system is a triple
(Q,E,→) where Q is a set of states, E is a set of events, and →⊆ Q× (P(E)×
R+)×Q is a labeled transition relation, where labels are observations. △

We present two different ways to give a semantics to a TES transition system:
inductive and co-inductive. Both definitions give the same behavior, as shown
in Theorem 1 in [10].

Semantics 1 (runs). Let T = (Q,E,→) be a TES transition system. Given

s ∈ (P(E) × R+)
n, we write q

s
−→ p for the sequence of transitions q

s(0)
−−→

q1
s(1)
−−→ q2 ...

s(n)
−−−→ p. We use →∗ and →ω to denote, respectively, the set of finite

and infinite sequences of consecutive transitions in →. Then, finite sequences of
observables form the set Lfin(T, q) = {σ ∈ TES (E) | q

s
−→ q′, ∃n.s = σ[n] ∧

σ(n) ∈ TES (∅)} and infinite ones, the set Linf(T, q) = {σ ∈ TES (E) | ∀n.σ[n] ∈
Lfin(T, q)} where, as introduced in Section 2, σ[n] is the prefix of size n of σ. The
semantics of such a TES transition system T = (Q,E,→), starting in a state
q ∈ Q, is the component CT (q) = (E,Linf(T, q)).

Semantics 2 (greatest post fixed point) Alternatively, the semantics of a TES
transition system is the greatest post fixed point of a function over sets of
TESs paired with a state. For a TES transition system T = (Q,E,→), let
R ⊆ TES (E) × Q. We introduce φT : P(TES (E) × Q) → P(TES (E) × Q) as
the function:

φT (R) = {(τ, q) | ∃p ∈ Q, q
τ(0)
−−→ p ∧ (τ ′, p) ∈ R}

The product of two components is parametrized by a composability relation
and a composition function and syntactically constructs the product of two TES
transition systems.

Definition 4 (Product). The product of two TES transition systems T1 =
(Q1, E1,→1) and T2 = (Q2, E2,→2) under the constraint κ is the TES transition
system T1 ×κ T2 = (Q1 ×Q2, E1 ∪ E2,→) such that:

q1
(O1,t1)
−−−−→1 q′1 q2

(O2,t2)
−−−−→2 q′2 ((O1, t1), (O2, t2)) ∈ κ(E1, E2) t1 < t2

(q1, q2)
(O1,t1)
−−−−→ (q′1, q2)

q1
(O1,t1)
−−−−→1 q′1 q2

(O2,t2)
−−−−→2 q′2 ((O1, t1), (O2, t2)) ∈ κ(E1, E2) t2 < t1

(q1, q2)
(O2,t2)
−−−−→ (q1, q′2)

q1
(O1,t1)
−−−−→1 q′1 q2

(O2,t2)
−−−−→2 q′2 ((O1, t1), (O2, t2)) ∈ κ(E1, E2) t1 = t2

(q1, q2)
(O1∪O2,t1)
−−−−−−−→ (q′1, q

′
2)

△

Observe that the product is defined on pairs of transitions, which implies
that if T1 or T2 has a state without outgoing transition, then the product has
no outgoing transitions from that state. The reciprocal is, however, not true in
general.

Theorem 1 in [10] states that the product of TES transition systems de-
notes (given a state) the set of TESs that corresponds to the product of the
corresponding components (in their respective states). Then, the product that
we define on TES transition systems does not add nor remove behaviors with
respect to the product on their respective components.

B Proofs

Proof. Given that JA([s0, t0])K
∗ = (E,Lfin∗(TA, [s0, t0])) and cl(JA([s0, t0])K) =

(E,Linf(TA, [s0, t0])), we have to show that Lfin∗(TA, [s0, t0]) = cl(Linf(TA, [s0, t0])).

cl(Linf(TA, [s0, t0])) = {sτ ∈ TES (E) | τ ∈ TES (∅) and

∃σ.∃i.σ ∈ Linf(TA, [s0, t0]) ∧ σ[i] = s}

= {sτ ∈ TES (E) | τ ∈ TES (∅) and

∃σ.∃i.∀n.σ[n] ∈ Lfin(TA, [s0, t0]) ∧ σ[i] = s}

⊆ Lfin∗(TA, [s0, t0])

The other direction comes from the assumption that A is productive. Then,
every reachable state in TA has an outgoing transition and therefore every finite
sequence of transition is a prefix of an infinite sequence. Thus, Lfin∗(TA, [s0, t0]) ⊆
cl(Linf(TA, [s0, t0])). ⊓⊔

Proof (Sketch - Lemma 2). We abbreviate κcomp to κ, and use Σ = ([κ],∪). We
know that:

1. for all actions a1 and a2, comp(a1,a2) = comp(a2,a1);
2. for all a1 : Action1, a2 : Action2, and a3 : Action3, comp(a1, a2) and comp(a1 · a2, a3)

if and only if comp(a2, a3) and comp(a1, a2 · a3).

Item 1 implies symmetry of κ and commutativity of ×Σ .
We show that, for three observations (a1, n), (a2, k), and (a3, l):

((a1, n), (a2, k)) ∈ κ(E1, E2) ∧ ((a1, n) + (a2, k), (a3, l)) ∈ κ(E1 ∪ E2, E3)

⇐⇒ ((a2, k), (a3, l)) ∈ κ(E2, E3) ∧ ((a1, n), (a2, k) + (a3, l)) ∈ κ(E1, E2 ∪ E3)

where ((a, u), (b, v)) = (a ∪ b, u) if u = v, (a, u) if u < v, and (b, v) otherwise.

Suppose that n = k = l. Then,

((a1, n), (a2, n)) ∈ κ(E1, E2) ∧ ((a1 ∪ a2, n), (a3, n)) ∈ κ(E1 ∪ E2, E3)

⇐⇒ comp(a1,a2)∧ comp(a1 · a2, a3)

⇐⇒ comp(a2, a3)∧ comp(a1, a2 · a3)

⇐⇒ ((a2, n), (a3, n)) ∈ κ(E2, E3) ∧ ((a1, n), (a2 ∪ a3, n)) ∈ κ(E1, E2 ∪ E3)

The second equivalence follows from E1 and E2 being disjoint.
Suppose that n < k, then ((a1, n), (a2, k)) ∈ κ(E1, E2) if and only if ((a1, n), (∅, n)) ∈

κ(E1, E2), by definition of κ. Thus, for n = l < k, we have:

((a1, n), (a2, k)) ∈ κ(E1, E2) ∧ ((a1, n), (a3, n)) ∈ κ(E1 ∪ E2, E3)

⇐⇒ ((a1, n), (∅, n)) ∈ κ(E1, E2) ∧ ((a1, n), (a3, n)) ∈ κ(E1 ∪ E2, E3)

⇐⇒ comp(a1, ⋆2) ∧ comp(a1 · ⋆2, a3)

⇐⇒ comp(⋆2, a3) ∧ comp(a1, ⋆2 · a3)

⇐⇒ ((a2, k), (a3, n)) ∈ κ(E2, E3) ∧ ((a1, n), (a3, n)) ∈ κ(E1, E2 ∪ E3)

Similar reasoning apply when n 6= l or l 6= k.
We can conclude that κcomp satisfies the condition of Lemma 7 in [11], and

×([κcomp],∪) is commutative and associative.

Proof (Sketch - Theorem 1). The proof uses the result of Lemma 2 that×([κcomp],∪)

is associative and commutative. Then, we give an inductive proof that JS([s0, t0])K =
×Σ{JAi([s0i, t0])K}i∈[1,n]. We fix S = ({A1, ...,An}, Λ,Ω, E ,⇒S) and An+1 =
(Λn+1, Ωn+1, En+1,⇒n+1), such that comp inΩ relates action of agents in {A1, ...,An+1}.
Let S ′ = ({A1, ...,An,An+1}, Λ,Ω,⇒S).

We show that TS ×κ TAn+1 = (Q,E,→) and TS′ = (Q′, E′,→′) are bisimilar,
which consists in the existence of a relation R ⊆ Q × Q′ such that, for all
(q, r) ∈ R:

1. ∀q′ ∈ Q with q
(O,t)
−−−→ q′, there exists r′ ∈ Q′ with r

(O,t)
−−−→ r′; and

2. ∀r′ ∈ Q′ with r
(O,t)
−−−→ r′, there exists q′ ∈ Q with q

(O,t)
−−−→ q′.

First, we define an equivalence relation ∼ on states in Q as ([sS , t], [sA, t
′]) ∼

([sS ,max(t, t′)], [sA,max(t′, t)]). Then, we define the set of states Q∼ such that
([sS ,max(t, t′)], [sA,max(t′, t)]) ∈ Q∼ if and only if ([sS , t

′], [sA, t]) ∈ Q or
([sS , t

′], [sA, t]) ∈ Q. We show that the TES transition system TS ×κ TAn+1

projected to states in Q∼ is bisimilar to TS ×κ TAn+1 . The reason is that the
transition rules in TS and TAn+1 universally quantify over time t ∈ N, which
allows arbitrary positive translation in time. As a consequence, states in Q′ can
be embedded in states in Q.

We now prove 1 and 2 by showing that ([s′1, t])
(O,t′)
−−−−→′ ([s′2, t

′]) if and only if

([s1, t], [q1, t])
(O,t′)
−−−−→ ([s2,max(t′, t)], [q2,max(t, t′)]) where s1 and s2 are states in

TS , q1 and q2 are states in TAn+1 and s′1 and s′2 are states in TS′ . We split cases
on whether the observation comes from S, from A, or is a joint observation. We
use the equational theory of the system to prove the result. △

C Additional examples

C.1 A system of cyber-physical agents: an example

This section illustrates our approach on an intuitive and simple cyber-physical
system consisting of two robots roaming on a shared field. A robot exhibits some
cyber aspects, as it takes discrete actions based on its readings. Every robot
interacts, as well, with a shared physical resource as it moves around. The field
models the continuous response of each action (e.g., read or move) performed by a
robot. A question that will motivate the paper is: given a strategy for both robots
(i.e., sequence of moves based on their readings), will both robots, sharing the
same physical resource, achieve their goals? If not, can the two robots, without
changing their policy, be externally coordinated towards their goals?

In this paper, we specify components in a rewriting framework in order to
simulate and analyze their behavior. In this framework, an agent, e.g., a robot
or a field, specifies a component as a rewriting theory. A system is a set of
agents that run concurrently. The equational theory of an agent defines how
the agent states are updated, and may exhibit both continuous and discrete
transformations. The dynamics is captured by rewriting rules and an equational
theory at the system level that describes how agents interact. In our example, for
instance, each move of a robot is synchronous with an effect on the field. Each
agent therefore specifies how the action affects its state, and the system specifies
which composite actions (i.e., set of simultaneous actions) may occur. We give
hereafter an intuitive example that abstracts from the underlying algebra of each
agent.

Agent A robot and a field are two examples of an agent that specifies a compo-
nent as a rewriting theory. The dynamics of both agents is captured by a rewrite
rule of the form:

(s, ∅) ⇒ (s′, acts)

where s and s′ are state terms, and acts is a set of actions that the field or
the robot proposes as alternatives. Given an action a ∈ acts from the set of
possibilities, a function φ updates the state s and returns a new state φ(s′, a).
The equational theory that specifies φ may capture both discrete and continuous
changes. The robot and the field run concurrently in a system, where their actions
may interact.

Example 4 (Battery). A battery is characterized by a set of internal physical
laws that describe the evolution of its energy profile over time under external
stimulations. We consider three external stimuli for the battery as three events:
a charge, a discharge, and a read event. Each of those events may change the
profile of the battery, and we assume that in between two events, the battery
energy follows some fixed internal laws.
Formally, we model the energy profile of a battery as a function f : R+ →
[0, 100%] where f(t) = 50% means that the charge of the battery at time t is
of 50%. In general, f may be arbitrarily complex, and captures the response of

event occurrences (e.g., charge, discharge, read) and passage of time coherently
with the underlying laws (e.g., differential equation). For instance, a charge (or
discharge) event at a time t coincides with a change of slope in the function f
after time t and before the next event occurrence.
For simplicity, we consider a battery for which f is piecewise linear in between
any two events. The slope changes according to some internal laws at points
where the battery is used for charge or discharge.
In our model, a battery interacts with its environment only at discrete time
points. Therefore, we model the observables of a battery as a function l : N →
[0, 100%] that intuitively samples the state of the battery at some monoton-
ically increasing and non-Zeno sequence of timestamp values. We capture, in
Definition 1, the continuous profile of a battery as a component whose behavior
contains all of such increasing and non-Zeno sampling sequences for all contin-
uous functions f .

Example 5 (Robot). A robot’s state contains the previously read values of its
sensors. Based on its state, a robot decides to move in some specific direction or
read its sensors.
Similarly to the battery, we assume that a robot acts periodically at some discrete
points in time, such as the sequence move(E) (i.e., moving East) at time 0,
read((x, y), l) (i.e., reading the position (x, y) and the battery level l) at time T ,
move(W) (i.e., moving West) at time 3T while doing nothing at time 2T , etc.
The action may have as effect to change the robot’s state: typically, the action
read((x, y), l) updates the state of the robot with the coordinate (x, y) and the
battery value l.

System A system is a set of agents together with a composability constraint κ
that restricts their updates. For instance, take a system that consists of a robot
id and a field F . The concurrent execution of the two agents is given by the
following system rewrite rule:

{(sid , acts id), (sF , actsF)} ⇒S {(φid (sid , aid), ∅), (φF (sF , aF), ∅)}

where aid ∈ acts id and aF ∈ actsF are two actions related by κ.
Each agent is unaware of the other agent’s decisions. The system rewrite ⇒S

filters actions that do not comply with the composability relation κ. As a result,
each agent updates its state with the (possibly composite) action chosen at
runtime, from the list of its submitted actions. The framework therefore clearly
separates the place where agent’s and system’s choices are handled, which is a
source of runtime analysis.

Already, at this stage, we can ask the following query on the system: will
robot id eventually reach the location (x, y) on the field? Note that the agent
alone cannot answer the query, as the answer depends on the characteristics of
the field.

Example 6 (Battery-Robot). Typically, a move of the robot synchronizes with a
change of state in the battery, and a read of the robot occurs at the same time

as a sampling of the battery value.
The system behavior therefore consists of sequences of simultaneous events oc-
curring between the battery and the robot. By composition, the battery exposes
the subset of its behavior that conforms to the specific frequency of read and
move actions of the robot. The openness of the battery therefore is reflected by
its capacity to adapt to any observation frequency.

Coordination Consider now a system with three agents: two robots and a field.
Each robot has its own objective (i.e., location to reach) and strategy (i.e., se-
quence of moves). Since both robots share the same physical field, some exclusion
principals apply, e.g., no two robots can be at the same location on the field at
the same time. It is therefore possible that the system deadlocks if no actions
are composable, or livelocks if the robots enter an infinite sequence of repeated
moves.

We add a protocol agent to the system, which imposes some coordination con-
straints on the actions performed by robots id1 and id2. Typically, a protocol co-
ordinates robots by forcing them to do some specific actions. As a result, given a
system configuration {(sid1

, acts id1
), (sid2

, acts id2
), (sF , actsF), (sP , actsP)} the

run of robots id1 and id2 has to agree with the observations of the protocol, and
the sequence of actions for each robot will therefore be conform to a permissible
sequence under the protocol.

In the case where the two robots enter a livelock and eventually run out of
energy, we show in Section 4 the possibility of using a protocol to remove such
behavior.

Example 7 (Safety property). A safety property is typically a set of traces for
which nothing bad happens. In our framework, we consider only observable be-
haviors, and a safety property therefore declares that nothing bad is observable.
However, it is not sufficient for a system to satisfy a safety property to conclude
that it is safe: an observation that would make a sequence violate the safety
property may be absent, not because it did not actually happen, but merely
because the system missed to detect it.
For example, consider a product of a battery component and a robot with a sam-
pling period T , as introduced in Example 6. Consider the safety property: the
battery energy is between the energy thresholds e1 and e2. The resulting system
may exhibit observations with energy readings between the two thresholds only,
and therefore satisfy the property. However, had the robot used a smaller sam-
pling period T ′ = T/2, which adds a reading observation of its battery between
every two observations, we may have been able to detect that the system is not
safe because it produces sequences at this finer granularity sampling rate that
violate the safety property. We show how to algebraically capture the safety of
a system constituted of a battery-robot.

C.2 Instances of agents in Maude

Section 4.1 introduces the signature for an agent module, and the rewrite rules for
an agent and a system. The instance of an agent module provides an equational

theory that implements each operation, namely computeActions,internalUpdate,
getOutput, and getPostState. Each instance comes with an interface, called
AGENT-INTERFACE in which the action names for AGENT are constructed. For
instance, the interface for the robot agent called TROLL contains the construc-
tors for action names move: direction -> Action and read: sensorName ->

Action. An agent that interacts with another agent must therefore include the
interface module of that agent. We also assume that each agent shares the same
preference structure, which we call action semiring (written ASemiring). The ac-
tion semiring consists of an action paired with a natural number preference value.
To illustrate the use of our framework to simulate and verify cyber-physical sys-
tems, we present an agent specification for four components: a FIELD, a TROLL,
a BATTERY, and a PROTOCOL.

A FIELD component interacts with the TROLL component by reacting to its
move action, and its sensor reading. As shown in Listing 1.5 the FIELD agent
has no actions, but reacts to the move action of the TROLL agent by updating
its state and changing the agent’s location. Currently, the update is discrete,
but more sophisticated updates can be defined (e.g., changing the mode of a
function recording the trajectory of the TROLL agent). In the case where the
state of the FIELD agent forbids the TROLL agent’s move, the FIELD agent enters
in a disallowed state marked as notAllowed(an), with an as the action name.
The FIELD responds to the read sensor action by returning the current location
of the TROLL agent as an output.

Listing 1.5. Extract from the FIELD Maude module.

fmod FIELD is

inc TROLL -INTERFACE .

inc FIELD -INTERFACE .

inc PROTOCOL -INTERFACE .

inc AGENT{ASemiring } .

...

*** Passive agent:

eq computeActions (id , Field , M) = null .

eq internalUpdate (id , Field , M) = M .

ceq getPostState (r, Field , id , a, mtOutput , M) = M’

if isMove ?(a) /\

k(loc) |-> d(id) , M1 ’ := M /\

loc ’ := next (loc , a) /\

loc ’ =/= loc /\

M[k(loc ’)] == undefined /\

M’ := k(loc ’) |-> d(id), M1 ’ .

ceq getPostState (r, Field , id , a, mtOutput , M) = notAllowed

(a)

if isMove ?(a) /\ k(loc) |-> d(id) , M1 ’ := M /\

loc ’ := next (loc , a) /\ ((loc ’ =/= loc and M[k(

loc ’)] =/= undefined) or loc ’ == loc) .

ceq getOutput (r, Field , id , readSensors (position sn), M)

= (k(" pos") |-> loc , M’)

if k(loc) |-> d(id) , M1 ’ := M /\

M’ := (k(" obstacles ") |-> obstacle (1, id , loc , M)

) .

endfm

A TROLL agent reacts to no other agent actions, and therefore does not include
any agent interface. However, the TROLL agent returns a ranked set of actions
given its state with the computeActions operation. The expression may contain
more than one action, with different weights. The weights of the action may
depends on the internal goal that the agent set to itself, as for instance reaching
a location on the field. The TROLL agent specifies how it reacts to, e.g., the sensor
value input from the field, by updating the corresponding key in its state with
getSensorValues.

Listing 1.6. Extract from the TROLL Maude module.

fmod TROLL is

inc AGENT{ASemiring } .

inc LOCATION .

inc TROLL -INTERFACE .

eq computeActions (id , Troll , M) = getSoftActions (id , M ,

trollActions (id , M)) .

ceq internalUpdate (id , Troll , M) = insert(k(" read "), nd (1) ,

M) if M[k(" read ")] == nd (0) .

ceq internalUpdate (id , Troll , M) = insert(k(" read "), nd (0) ,

M) if M[k(" read ")] == nd (1) .

ceq getPostState (id , Troll , id , readSensors (sn),

sensorvalues , M) = M’

if M’ := getSensorValues (getResources (id , readSensors (

sn)) , sensorvalues), k(" goal ") |-> M[k(" goal ")], k

(" read ") |-> nd (1) .

endfm

A BATTERY agent does not act on any other agent, as the FIELD, but reacts to
the TROLL agent actions. Each move action triggers in the BATTERY agent a change
of state that decreases its energy level. As well, each charge action changes the
BATTERY agent state to increase its energy level. Similarly to the field, in the case
where the state of the battery agent has 0 energy, the battery enters a disallowed
state marked as notAllowed(an), with an as the action name. A sensor reading
by the TROLL agent triggers an output from the BATTERY agent with the current
energy level.

Listing 1.7. Extract from the battery Maude module.

fmod BATTERY is

inc AGENT{ASemiring } .

inc BATTERY -INTERFACE .

inc TROLL -INTERFACE .

*** Passive agent:

eq computeActions (id , Battery , M) = null .

eq internalUpdate (id , Battery , M) = M .

ceq getOutput (r, Battery , id , readSensors (energy sn), M)

= k(" bat ") |-> M[k(" bat ")]

if r := getBattery (id) .

*** Next state.

ceq getPostState (r, Battery , id , an , mtOutput , M) = M’

if isMove ?(an) /\

k(" bat") |-> nd(s i) , M1 ’ := M /\

M’ := insert(k(" bat") , nd(i) , M) .

ceq getPostState (r, Battery , id , charge(j), mtOutput , M) =

M1

if nd(i) := M[k(" bat")] /\

i < capacity /\

M1 := insert(k(" bat") , nd(min (i + j, capacity))

, M) .

ceq getPostState (r, Battery , id , an , mtOutput , M) =

notAllowed (an)

if isMove ?(an) /\ M[k(" bat ")] == nd (0) .

endfm

A PROTOCOL agent swap(id1,id2) acts on the TROLL agents id1 and id2,
and is used as a resource by the two TROLL agent move action. A PROTOCOL

internally has a finite state machine T(id):Fsa that accepts or rejects a sequence
of actions. Each move action of a TROLL is accepted only if there is a transition in
the PROTOCOL agent state transition system. A PROTOCOL agent swap(id1, id2)

always tries to swap agents with ids id1 and id2. Thus, if id2 is on the direct
East position of id1 on the field, then action start succeeds, and the protocol
enters in the sequence move(N) for id2, move(W) for id2, move(E) for id1, and
then move(S) for id2. Eventually the sequence ends with finish action. The
PROTOCOL agent may also have some transitions labeled with a set of actions,
one for each of the agent id1 and id2. In which case, the transition succeeds
if the clique contains, for each agent involved in the protocol, an action that
is composable with the action labeling the protocol transition. We use the end

action to mark the end of the sequence of actions forming a clique. The PROTOCOL
may reject such end action if the clique does not cover the set of actions labeling
the transition, which therefore discard the set of actions as not composable.

Listing 1.8. Extract from the battery Maude module.

fmod SWAP is

inc AGENT{ASemiring } .

inc TROLL -INTERFACE .

inc PROCESS -INTERFACE .

inc FIELD -INTERFACE .

inc PROTOCOL -INTERFACE .

op T : Identifier -> Fsa .

*** Update of state from external move or its own

swapping actions

ceq getPostState (id , Protocol , id ’, move (d), sysState , M

) = M’

if {q(i)} := getState (M) /\

M’ := insert(k(" recv ") , recv (union(getLabel (M)

, {l(id ’, move (d))})) , M) .

*** Ending transition correctly

ceq getPostState (id , Protocol , id , end , sysState , M) =

M’

if state := getState (M) /\

label := getLabel (M) /\

tr := getTransitions (T(id)) /\

(state , label , state ’), tr ’ := tr /\

M’ := insert(k(" recv ") , recv ({}) , insert(k("

state") , ds(state ’) , M)) .

*** Not allowed states

eq getPostState (id , Protocol , id ’, end , sysState , M) =

notAllowed (end) [owise] .

eq getPostState (id , Protocol , id ’, a, sysState , M) = M [

owise] .

eq getOutput (id , Protocol , id ’, a, M) = empty .

ceq computeActions (swap (id , id ’) , Protocol , M) = ((swap

(id , id ’) , (start ; getResources (swap (id , id ’),

start))), 5)

if {q(0)} := getState (M) .

eq computeActions (swap (id , id ’), Protocol , M) = null [

owise] .

eq internalUpdate (swap (id , id ’), Protocol , M) = M .

endfm

Composability relation The TROLL, FIELD, and BATTERYmodules specify the state
space and transition functions for, respectively, a TROLL, FIELD, and BATTERY

agent. A system consisting of a set of instances of such agents would need a
composability relation to relate actions from each agent.
More precisely, we give some possible cliques of a system consisting of two TROLL

agents with identifiers id(0), id(1):TROLL, one field:FIELD agent, and two
BATTERY agents bat(0), bat(1):BATTERY.
The actions of agent id(0) compose with outputs of its corresponding battery
bat(0) and of the shared field agent.
For instance, a move action of the id(0) agent is of the form (id(0), (move(d),

{bat(0), field})), where d is a direction for the move, and composes with
outputs of the battery and field, both notifying that the move is possible.
Alternatively, a read action of the id(0) agent is of the form (id(0), (read,

{bat(0), field})) and composes with outputs of the battery and field, each
giving the battery level and the location of agent id(0).

System The agents defined above are instantiated within the same system to
study their interactions. We consider a system containing two TROLL agents,
with identifiers id(0) and id(1), paired with two BATTERY agents with identifier
bat(0) and bat(1), and sharing the same FIELD resource. The goal for each
agent is to reach the initial location of the other agent. If both agents follow the
shortest path to their goal location, there is an instant for which the two agents
need to swap their positions. The crossing can lead to a livelock, where agents
move symmetrically until the energy of the batteries runs out. The initial system
term, without the protocol, is given by:

eq init = [[id (0): Troll | k(" goal ") |-> (5 ; 5) ; false ;

null]

[bat (0) : Battery | k(" bat") |-> nd(capacity) ; false ; null

]

[id (1): Troll | k(" goal ") |-> (0 ; 5) ; false ; null]

[bat (1) : Battery | k(" bat") |-> nd(capacity) ; false ; null

]

[field : Field | (k((0 ; 5)) |-> d(id (0)) , k((5 ; 5))

|-> d(id (1))) ; false ; null]] .

The initial system term with the protocol is given by:

eq init = [[id (0): Troll | k(" goal ") |-> (5 ; 5) ; false ;

null]

[bat (0) : Battery | k(" bat") |-> nd(capacity) ; false ; null

]

[id (1): Troll | k(" goal ") |-> (0 ; 5) ; false ; null]

[bat (1) : Battery | k(" bat") |-> nd(capacity) ; false ; null

]

[swap (id (0),id (1)) : Protocol | k(" state") |-> ds({q(0)}), k

(" recv ") |-> recv ({}) ; false ; null]

[field : Field | (k((0 ; 5)) |-> d(id (0)) , k((5 ; 5))

|-> d(id (1))) ; false ; null]] .

	A Rewriting Framework for Interacting Cyber-Physical Agents

