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Abstract. We propose a simulation-based approach to verify Variability-
Intensive Systems (VISs) with stochastic behaviour. Given an LTL for-
mula and a model of the VIS behaviour, our method estimates the prob-
ability for each variant to satisfy the formula. This allows us to learn
the products of the VIS for which the probability stands above a certain
threshold. To achieve this, our method samples VIS executions from all
variants at once and keeps track of the occurrence probability of these
executions in any given variant. The efficiency of this algorithm relies
on Algebraic Decision Diagram (ADD), a dedicated data structure that
enables orthogonal treatment of variability, stochasticity and property
satisfaction. We implemented our approach as an extension of the ProV-
eLines model checker. Our experiments validate that our method can
produce accurate estimations of the probability for the variants to sat-
isfy the given properties.

Keywords: Software product lines, variability, statistical model checking, markov
chains, stochastic systems

1 Introduction

When deployed in the field, the correct behaviour of software systems is often
put at risk because of unpredictability in the environment (e.g., users or natural
phenomena) these systems interact with. That is, the state evolution of the
environment is stochastic and this, in turn, entails random non-determinism
in the system behaviour. In face of this stochasticity, engineers must provide
confidence that the system they build will behave correctly in various situations
they cannot control. The difficulty of this task vastly increases when the same
engineers develop not a standalone system, but a Variability-Intensive System
(VIS).

VISs, such as software product lines [11] and configurable systems [29,27],
are systems that one can derive into multiple variants (or configurations). The
term variability refers to all the ways in which the variants can differ. In soft-
ware product lines, such variation points are usually named features. Therefore,



system variants are uniquely identified by their set of features. Variability makes
development activities inherently harder for VISs than for single system de-
velopment. This is due to the necessity of handling features and their effects
throughout all development steps, including verification and validation. There-
fore, quality assurance techniques must ensure that all system variants that will
run in the fieldwork correctly.

VIS variants share many common behaviors and that differ in identified func-
tionalities. For a set of n functionalities one can at worst create 2n different sys-
tems. Checking each system individually would introduce an explosion of time.
To overcome these problems, researchers have proposed compact product line
representations. These representations make it possible to check all the products
in one pass. For nearly 10 years, these approaches were limited to purely Boolean
systems. Recently, we have extended the approach to stochastic systems. In this
case, we must calculate the probability that a product satisfies the property.
This calculation is generally done by extending classical exhaustive algorithms
such as those implemented in PRISM.

The variability of VISs and their stochasticity call for dedicated techniques to
estimate the probability that any VIS variant satisfies intended requirements over
its behaviour. Engineers should be able to quickly answer questions like “what is
the probability that all variants satisfy a given requirement”, “which variants sat-
isfy a given requirement with a desired degree of confidence”, or “which variants
are the most likely to satisfy a given set of requirements”. One straightforward
way to answer such questions is to apply classical quality assurance techniques
to each variant separately to derive an accurate ranking of the variants’ likeliness
to comply with a requirement. However, getting an accurate answer for all vari-
ants may prove difficult, time-consuming and, in turn, even falsify the ranking
of these variants with respect to their probability to satisfy the requirements.

In this paper, we propose a method to learn the probability that VIS variants
satisfy a given property. Compared to state-of-the-art methods, our approach (a)
allows engineers to explicitly model the stochastic distribution of environment
events and (b) can effectively assess probabilistic properties across multiple vari-
ants. As a side effect, our approach is able to learn the variants of the VIS for
which the probability to satisfy the property stays above a given threshold. To
achieve this, we lean on Statistical Model Checking (SMC) – a type of verifica-
tion algorithms that relies on execution sampling and statistical tests to assess
model properties [22,35,23]. Statistical model checking consists of learning the
probability that the execution of a system will satisfy a given property. The
approach elegantly combines (1) a simulation-based algorithm for learning the
probability distribution of satisfying the property by observing a fixed number
of its executions with (2) runtime verification algorithms applied on these execu-
tions. Those runtime verification algorithms naturally depend on the nature of
the property to be validated. We develop a novel SMC algorithm that is family-
based, i.e. it can sample executions from all variants at once and keep track of the
occurrence probability of these executions in any given variant. The effectiveness
of this algorithm relies on Algebraic Decision Diagram (ADD) [2], a dedicated
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data structure that enables an orthogonal treatment of variability, stochasticity
and property satisfaction.

We conduct a preliminary validation of our approach based on case studies
from the literature. Our results confirm that our family-based approach produces
reliable estimations of the probability for the variants to satisfy given proper-
ties. We discuss the factors that influence the effectiveness of our method – i.e.,
its capability to compute estimations that preserve the differences between the
variants – compared to alternatives that analyze each variant separately.

2 Background

2.1 Markov Chains and Variability

We model stochastic system behaviours into Discrete-Time Markov Chains (DTMCs).
In such models, (1) the state space S of the system is countable, (2) time elapses
at discrete steps and (3) the transitions between states T ⊆ S × S are stochas-
tic. Hence, one can see DTMCs as a Kripke structure where each transition
between two states has a probability to occur at each discrete time step. These
probabilities are defined such that they satisfy the usual probability axioms. By
Markov’s property, the probability of occurrence of a transition depends only on
the current state and not on the previously executed transitions. Therefore, the
probability for the DTMC to follow a k-length path ρ = s0 . . . sk−1 is equal to
the product of the state transition probabilities.

Rodrigues et al. [28] have extended DTMC with variability. The resulting
formalism – named Featured DTMC (FDTMC) – associates each transition
t ∈ S × S of the Markov chain with a probability profile Πt that encodes the
probability for each variant v to execute t. Such profiles list the set of variants
that are following the transitions as well as the probability to take such a tran-
sition for a given variant. Precisely, given a set V of variants, Πt is a function
from V to [0, 1]. For any t = (s, s′) and v ∈ V , Πt(v) = 0 means that the variant
v cannot execute t, whereas Πt(v) = 1 means that, when in state s, v surely ex-
ecutes t at the next discrete time step. For an FDTMC to be consistent, for any
state s ∈ S the probability profile associated to the transitions leaving s must
satisfy the probability axioms for all variants. That is, for any v ∈ V , s ∈ S,
we have

∑
t∈{(s,s′)∈T}Πt(v) = 1. A variant v is typically represented as a set of

features (aka variation points) such as v ∈ BF .
The product of two probability profiles Πt and Πt′ is defined as (Πt ⊗

Πt)(v) = Πt(v)Πt′(v). The sum ⊕ and the division / of two probability profiles
are defined similarly. We denote by 0 (resp 1) the fixed profile that associates a
value i to every variant (∀v ∈ V,Π(v) = i). Then for 0 (resp. 1) a complement
of Πt is defined as (−Πt), with (−Π)(v) = 1−Π(v), and we also note it 1−Π.

Based on probability profiles, we define an FDTMC as a tuple (S, ν, V,Π)
where S is a countable, non-empty set of states; ν is a vector of size |S| that
records the initial probability distribution of every state; V is the set of variants;
Π : (S × S)→ (V → [0, 1]) is the transition probability function, which assigns
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a probability profile to each transition. The fact that variant v cannot execute a
transition from s to s′ is encoded as Π(s, s′)(v) = 0. Note that the probability
that any variant executes a k-length path ρ = s0, s1, . . . , sk in the FDTMC is
given by Π(s0,s1) ⊗ · · · ⊗Π(sk−1,sk).

An FDTMC is a concise representation for a set of DTMCs, that is, one
per valid variant (or product). The DTMC modelling a particular variant v is
obtained by projecting the probability profile of each transition onto v. The
transition probability function of the resulting DTMC is defined as P : S×S →
[0, 1] : P (s, s′) = Π(s, s′)(v).

We provide an example of FDTMC in Figure 1 and a projection of this
FDTMC in Figure 2. This model considers two exclusive features I and J and
an optional feature K. The 4 resulting variants can then be expressed in the
following feature combinations {{I}, {I,K}, {J}, {J,K}}.

Each transition has either a fixed probability value (e.g. the Markov chain
transits from s0 to s1 with a fixed probability profile of 0.5) or a profile that
depends on the variant features. For example, from state s0, all variants can
transit to s1 (or s2) with probability 0.5. All variants can also transit from s1 to
state s0 but with different probabilities (i.e, 0.5 for variants with feature I, 0.2
for ones with J).

Furthermore, only some variant can execute some transitions. For example,
only variants with feature J can loop over s2 while only variants with feature I
can loop over s1. Having a variant that cannot execute a transition t is similar
to Πt(v) = 0. Similarly, a variant with a probability of 1 to execute a transition
is equivalent to a non-stochastic transition (e.g., s4 to s3 for variants without K
feature).
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Fig. 1: An illustrative example of
stochastic VIS represented as
a FDTMC.
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Fig. 2: DTMC resulting from the
FDTMC|{J∧¬I∧¬K} projection.
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2.2 Probabilistic Linear Temporal Logic

We formulate requirements over stochastic systems in the Linear-Time Logic
(LTL) [26]. We form LTL formulae according to the following grammar:

φ ::= > | a | φ ∧ φ | ¬φ | ©φ | φ U φ

where a is an atomic state property; © is the next operator; and U is the until
operator. From the until operator, one can derive ♦φ, which means that the
system must eventually reach a state that satisfies φ; and �φ, which means that
the φ should always hold.

In this work, given that we employ simulation-based approaches that return
finite traces, it may happen that we cannot conclude the satisfaction or the
violation of an LTL formula (that involves the until operator) from finite traces.
This happens, e.g., for a U b, when the finite system execution always satisfies
a without ever satisfying b. In such a case, we conclude that the trace does not
satisfy the property. We discuss ideas to improve our method in such cases in
Section 8.

2.3 Statistical Model Checking

Statistical Model Checking (SMC) is a family of algorithms to estimate the
probability that a stochastic system satisfies an LTL property φ [35]. The idea
is to sample a set E of bounded executions of the system and to associate each
execution e ∈ E with a Bernoulli variable be (1 if the execution satisfies the
property, 0 otherwise). Then, one can estimate the overall probability that the
system satisfies φ as

∑
e∈E

be
|E| . SMC also applies to non-stochastic systems by

assuming an implicit uniform probability distribution on each state successor.
Recently, Delahaye et al. [15,3] proposed an SMC approach to verify para-

metric Markov chains, that is, DTMCs whose transition probabilities depend on
numeric parameters function such as Pr : S × S → Poly(X) where X is the set
of parameters p0, ..., pn. Then the – parametric – function f ∈ Poly(X) of a k-
length path ρ = s0, s1, . . . , sk in the pMC is given by Pr(s0,s1)⊗· · ·⊗Pr(sk−1,sk).
The probability to execute this path can be derived for any DMTCs by valu-
ate the parameters of this function. Given a parameter valuation ν ∈ RX and
a parametric function f ∈ Poly(R), f(ν) is the probability that the variant ν
executes the path.

This approach is interesting because it samples paths in the DTMC uni-
formly and accumulates a parametric function that encodes the – parametric
– probability of this path to be executed for any valuation (aka variants). The
approach also associates every sampled execution with a reward (e.g., 1 if the
execution satisfies the checked property; 0 otherwise). Then, the probability that
a given parameter valuation satisfies the property is estimated as the average
of all rewards weighted with the value of the associated parametric function
corresponding to the parameter valuation. Delahaye et al. [15] demonstrate the
soundness of their method theoretically and experimentally on three examples.

5



There are three fundamental differences between these parametric Markov
chains and FDTMCs that impede the direct application of Delahaye et al.’s ap-
proach. First, FDTMCs include Boolean parameters, whereas parametric Markov
chains include real parameters. Second, these Boolean parameters represent VIS
features and determine the existence of transitions within the different variants,
whereas Delahaye et al. assume that all transitions are available regardless of
any particular parameter values. Third and last, VIS features are interdependent
and it is necessary to filter out feature combinations that do not correspond to
any existing (valid) variants. However, these two approaches can be both used
to verify every variants (or valuations) of a stochastic VIS because:

FDTMC|v∈BF = pMC|ν∈RX ⇐⇒ ∀t ∈ T,Πt(v) = Prt(ν).

Therefore, our work takes inspiration from the principles of Delahaye et al.
[15,3] but develops a novel SMC approach to verify FDTMCs. The implementa-
tion of our algorithms relies on a dedicated data structure – based on Algebraic
Decision Diagrams (ADDs) [2] – to account for the binary nature and relation-
ships of FDTMCs parameters. Indeed, the advantage of our data structure over
Delahaye’s parametric approach is that ADDs can record (1) which variants
can (or cannot) execute a given FDTMC path and (2) with which probability
– and it can do so while keeping its structure concise as it accumulates more
probability profiles. The other advantage of our approach is that we can directly
embed constraints between the features within the decision diagram that can
also act as constraints between transition probabilities. [8,12]. By doing so, we
discard invalid combinations of features by constructions – whereas parametric
approaches would invoke a solver to determine the set of valid combinations.
Overall, our solution fits specifically well to the problem of verifying stochastic
VISs, whereas Delahaye’s method is more appropriate for classical parametric
models.

3 Statistical Model Checking for Featured DTMC

We consider the problem of checking an LTL formula on a featured discrete-
time Markov chain. The traditional SMC method of Younes et al. [36] can work
only on a single variant. One straightforward way to address our problem is,
therefore, to compute the projections of the FDTMC onto each variant ∀v ∈
V, FTMC|v and apply traditional SMC to each resulting DTMC. For example,
the projection in Figure 2 results in 6 states with two states (5 and 6) that
accept the LTL formula φ. The traditional SMC method will sample n paths of
k steps (arbitrary values). In this example, some possible paths of 3 steps are:
ρ1 = (0, 1, 3, 2), ρ2 = (0, 2, 2, 4), ρ3 = (0, 2, 4, 3), ρ4 = (0, 1, 0, 1), ρ5 = (0, 1, 3, 5)
and ρ6 = (0, 1, 3, 6). The two last paths ρ5 and ρ6 reach an accepting state. This
mean that they violate the safety property (i.e., ρi∈{5,6} 6|= φ). The probability
that the system will produce these behavior is P [ρ5] = .5× .8× .1 = .04 and .12
for ρ6. More probable paths are for example ρ1 where P [ρ1] = .24 or ρ3 (.35).
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Given 6 samples P of 3 steps, lets say the one described ρ1, ..., ρ6, the probability
E that the system violates the property is

E =

∑
ρ∈P,ρ6|=φ P [ρ]∑
ρ∈P P [ρ]

=
.04 + .12

.24 + .105 + .35 + .05 + .04 + .12
= 0.176

Although this procedure is simple, it suffers from the exponential blow-up in-
herent to variability [9], that is, the number of variants tends to increase expo-
nentially in the number of features.

Instead, we propose a new SMC method that can sample executions from
all variants at once (i.e., directly in the FDTMC) regardless of the probabilistic
differences across the variants. We rely on the theoretical results of Delahaye et
al. [15,3] and adapt their principles to FDTMC verification. Hence, our algorithm
performs a uniform random walk to sample a path in the FDTMC. That is, at
each step, the next transition to execute is selected uniformly regardless of the
number of variants that can execute it and with which probability.

For each sample path ρ, we record three pieces of information:

– The probability profile Πρ associated to ρ, which records the probability
that each variant executes it. In our implementation, we encode a probability
profile into an ADD. We also record the set of variants Vρ that can execute ρ.
We can compute this set fromΠρ a posteriori, such that v ∈ Vρ ⇔ Πρ(v) > 0.

– A Boolean value bρ that indicates whether ρ satisfies or not the checked
formula, that is, the reward of ρ according to Delahaye et al.’s terminology.

– The probability pρ that the uniform random walk samples ρ.

A number n of repeated applications of Algorithm 1 produce a set of tu-
ples {(ρ1, Π1, b1, p1) . . . (ρn, Πn, bn, pn)}. Then, leaning on Delahaye et al.’s the-
ory [15] for parametric DTMC estimation, we can compute an estimator of the
probability that any system variant satisfies the property. For a given variant
v, this estimator is the average reward of the paths ρi sampled from the FT-
DMC projection onto v, weighted by the probability that v executes ρi, that is,
Ebv = 1

nv
×
∑
i(bi×Πi(v)) where nv is the number of paths sampled in the pro-

jection onto v such as ∀v ∈ V, nv =
∑n
i=1Πi(v) > 0. The idea is that for a large

number n of samples, this expected reward converges towards the real probabil-
ity that v satisfies the property. Our uniform random walk approach, however,
cannot directly produce such an estimator because it samples paths uniformly,
irrespective of the real probabilities that the variants can execute these paths.
We, therefore, follow Delahaye et al’s parametric approach and normalize the
weighted average reward Ebv with the probability with which the random walk
sampled each path ρi. Hence, we compute the estimator as

Π̃ =
1

n
⊗ (

b1
p1
⊗Π1 ⊕ ...⊕

bn
pn
⊗Πn) (1)

Π̃ =
1

2
⊗ (

1

1/2× 1/3
⊗Π({0→1→3} ⊕

0

1/2× 1/2
⊗Π{0→2→2}) (2)
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where 1
n is the probability profile that associates 1

nv
to each variant v. Then,

for sufficient numbers {nv}, Π̃(v) is the estimated probability that the variant
v satisfies φ. We can reduce the demonstration of this result to Delahaye et
al.’s proofs for parametric DTMC [15,3], by transforming our FDTMC into a
parametric DTMC (c.f. Figure 3), such that each parameter corresponds to a
feature and takes either the value 1 (the feature is enabled) or 0 (the feature is
disabled). Then, in probability profile a positive literal over a feature f is simply
encoded as f (e.g., f×0.4 corresponds to Π(f) = 0.4) and a negative literal over
f is encoded as (1− f) (e.g., (1− f)× 0.4 corresponds to Π(¬f) = 0.2). In the
end, the only difference in our working assumptions – which has no incidence on
the proof – is that the number of paths that each variant can execute can differ.
This is taken into account with the profile 1

n and is equivalent to having paths
that some variants executes with a zero probability. For the sake of conciseness,
we do not replicate the proof of Delahaye et al. here.

2

1

4

3

0

.5

   I x (1-J) x .3

+ (1-I) x J x .8

(1-I) x J x .3

   I x (1-J) x .5
+ (1-I) x J x .2


.5

4

3

6

5

I x (1-J) x .2

   I x (1-J) x 1
+ (1-I) x J x .7

.1

K x .9

.3K x .1 +

(1-K) x 1

.6

Fig. 3: Parametric DTCM resulting from the FDTMC illustrative example.

Algorithm 1 implements our random walk method for properties of the form
♦a with a ∈ AP . The reasons we present the algorithm for these simple prop-
erties are the clarity of the presentation and because the key principle of our
method is how we accumulate probability information during the random walk.

The algorithm selects an initial state of the FDTMC according to the initial
state distribution ν (Line 1). Then, it enters an iterative process to select the
successive states that the FDTMC goes through (Lines 7–17)). If the current
state s satisfies the atomic property a then the current path ρ satisfies ♦a –
in this case, the algorithm stops and returns ρ and the associated probability
profile Πρ that describes the probability for each variant to execute ρ (Line
19). Otherwise, the algorithm picks the next state s′ from the reachable set of
successors with a uniform probability (Line 12–13). In order to sample a relevant
path, we consider only states s′ that at least one variant can reach from s with a
non-zero probability. The algorithm also updates the probability profile of ρ by
multiplying it with the probability profile of the transition from s to s′ (noted
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Π(s,s′) — see Line 15). The algorithm iterates until it executes k steps or finds
a state satisfying a.

The generalization to any LTL property is straightforward. It consists of
executing the trace into the Büchi automaton equivalent to φ. Then the trace
satisfies the property if and only if the execution loops over an accepting state
of the automaton. Concretely, this generalization is obtained by removing Lines
9–11 and add after Line 18 the execution of the trace into the automaton. The
implementation of this execution is a standard model checking procedure and is
omitted here for conciseness.

The most important design decision for our algorithm is the representa-
tion we use for probability profiles and their accumulation. We propose to en-
code probability profiles using Algebraic Decision Diagram (ADD) data struc-
ture. ADD are a generalization of Binary Decision Diagram (BDD). BDDs
are traditionally used for non-stochastic VISs and encode efficiently [9] which
variants can or cannot execute the transitions. We propose ADD to also en-
code variants probability to execute transitions and thus to capture VISs with
stochastic nature. More formally, an ADD represents Bn → R function. Such
function can capture the probability to execute a transition for every vari-
ant. ADDs1,s3(I,¬J,K) = .3 while ADDs1,s3(¬I, J,¬K) = .8, etc. Operations
such as sum, product, modulo, etc. can be applied to ADDs. In our case, the
product of two ADDs will multiply the probability values for every variants
∀v ∈ V, (ADD1⊗ADD2)(v) = ADD1(v)⊗ADD2(v). Scalar value i can also be
considered as an ADD such as ∀v ∈ V,ADD(v) = i.
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Fig. 4: Probability profiles of some transitions and paths encoded as ADDs.
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Figures 4a, 4b and 4c illustrate probability profiles of some featured stochastic
transitions as ADDs. While the (s2, s2) transition is only possible for variants
with {¬I ∧ J}. Such variants have .3 probability to fire this transitions (.7 to
fire another one). Other variants cannot fire this transition. The (s2, s4) is a
XOR ADD over I and J . I ∧¬J variants can and will fire this transition as the
probability is 1. Similarly, (s4, s3) transition is mandatory for K variants while
¬K variants have .9 probability to not fire it. Figure 4d and 4e are two examples
of probability profile of path (s2, s2, s4, s3) and (s0, s2, s4, s6). The first one is
the product of the probability profiles of transitions illustrated in Figure 4.

Figure 5 Illustrates our method with two sampled paths using Algorithm 1.
The first path is: ρ1 = (s0, s1, s3, s2). The second is ρ7 = (s0, s2, s4, s6). As ex-
plained, Algorithm 1 returns a triplet containing the path probability profile (i.e.,
encoding the probability to execute the path given each variant. The Boolean
value that indicates if the path violates or not the given formula ρ1 = 0 while
ρ7 = 1, and the uniform probability to sample the path (.055 for ρ1 and .125 for
ρ7). Then for each samples path, the average reward to violate the formula is:

1

n
⊗ (

0

.055
⊗Π1 ⊕

1

.125
⊗Π7).

The profile n is the number of executable sampled paths for each variant. For
instance, while {¬I ∧ J ∧K} or {I ∧ ¬J ∧K} variants or can executes the two
sampled paths, {¬I ∧ J ∧ ¬K} or {I ∧ ¬J ∧ ¬K} can only execute ρ1.

Note that in this example, the final (rightmost) ADD does not represent a
probability (the terminal values are greater than one). This is because the num-
ber of samples is insufficient for these values to converge to the real probability
values. Here, the terminal values are greater than one because the correspond-
ing variants have a real probability to sample the paths that is greater than the
probability of sampling these paths uniformly. Through additional repetitions of
our algorithm, we would likely obtain other paths that the variants are less likely
to execute and, ultimately, the final ADD will converge. Nevertheless, this ex-
ample already illustrates the capability of our family-based approach to exploit
common behaviour shared across multiple variants: by sampling only two paths
in the FDTMC, we manage to get information about four different variants.
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K K
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Fig. 5: Illustration of the equation 2, Π̃ = 1
n ⊗ ( b1p1 ⊗Π1 ⊕ ... ⊕ bn

pn
⊗Πn) with

two sampled paths.
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Input: An FDTMC m = (S, ν, V,Π);
An LTL formula φ = ♦ka.
Output: a random path ρ with maximum length k;
a binary variable b, equal to 1 if and only if ρ |= φ;
Π, the probability profile of ρ;
pρ is the probability that uniform sampling returns ρ

1 s← pick from S with probability νs;
2 depth← 0;
3 b← 0;
4 ρ← s;
5 Πρ ← 1;
6 pρ ← 1;
7 while b = 0 ∧ depth < k do
8 depth← depth+ 1;
9 if s |= a then

10 b← 1;
11 end
12 Succ← {s′ ∈ S|∃v ∈ V : Π(s,s′)(v) > 0};
13 s′ ← pick from Succ with probability 1

|Succ| ;

14 ρ← ρs′;
15 Πρ ← Πρ ⊗Π(s,s′);
16 pρ ← pρ × 1

|Succ| ;

17 s← s′;

18 end
19 return (ρ, b,Πρ, pρ)

Algorithm 1: Uniform Random Walk in FDTMC

4 Evaluation

4.1 Objectives and Methodology

We conduct experiments that assess the effectiveness of our method in estimating
correctly the probability of each variant to satisfy given properties. Our exper-
iments consider a scenario where engineers have a limited simulation budget,
that is, a number of SMC runs (in our case, a run is a uniform random walk).
When we apply SMC to each variant, we equally share the budget between all
variants. We decompose our evaluation in three research questions.

ϕ = ∀Lowπ0
∃Mid
π1
∀Highπ2

�
(
(π0.ϕ0 ∧ (π1.ϕ1 =⇒ π2.ϕ2)) ∧ ♦(π0.ϕ

′
0 ∧ (π1.ϕ

′
1 =⇒ π2.ϕ

′
2))
)

Our first research question evaluates the soundness of our approach. It aims
to validate that our approach is consistent with (1) classical SMC applied to each
variant’s DTMC separately and (2) the parametric SMC approach of Delahaye
et al. [15,3].
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RQ1: Is our approach consistent with other probability estimation methods?

To demonstrate this consistency, we reuse a toy example, called “Parametric
Toy”, that comes from Delahaye et al.’s paper [15]. It is a simple parametric
model that we transformed into an equivalent FDTMC where each variant cor-
responds to a parameters valuation. We consider 26 such different variants. The
reason we use this example is that its small size gives us confidence that our
translation has preserved the original semantics of the model. We set the simu-
lation bound k to 15, which is sufficient to for this small model. The setting of
k depends on various factors such as the ones mentioned in Section 4.2.

To compare the approaches, we compute the correlation between (1) our
ground truth containing the probability of each variant to satisfy the given prop-
erty and (2) the same probabilities estimated by the method. We computed this
ground truth from a very large number of simulations run for each separate vari-
ant to precisely estimate the probabilities (106 simulations per variant). We use
the Kendall coefficient to measure the correlation because, as an ordinal associ-
ation metric, it focuses on how well each method ranks the variants according to
their probability (irrespective of the actual probability values). A high Kendall
correlation means that the method preserves the ranking of the variants accord-
ing to their probability to satisfy the property. To complement our analysis, we
also use the Pearson’s correlation coefficient, which captures linear relationships
between two variables (here, the ground truth versus the probability values es-
timated by each method). Thus, a high Pearson correlation would indicate that
the method can also preserve the difference in probability between the variants.

Our second research question evaluates the benefits of factorizing the analysis
over all variants at once:

RQ2: Does family-based analysis improve effectiveness?

To answer this question, we compare the effectiveness of (1) our family-based
approach with (2) our uniform random walk applied to each variant separately.
Since both approaches use the same sampling strategy (uniform sampling), any
observable difference would show the benefit of factorizing the sampling across
all variants.

We measure effectiveness as the capability of each method to estimate prop-
erly the satisfaction probability of these variants. As mentioned before, we get
an aggregated view of effectiveness by computing the Kendall and Pearson cor-
relations. That is, we measure the capability of SMC methods to rank variants
properly (using Kendall) and to preserve the relative difference between the
estimated probability of the variants (using Pearson).

To conduct these experiments, we use two models that are bigger than Para-
metric Toy. The first is the Body Sensor Network from [25] and the second is
a minepump VIS [21,9]. We check both models against the property originally
described in their respective papers. As for the simulation bound k, we set it to
30 for the Body Sensor Network and to 50 for the Minepump. Those values are
sufficient to find violations of the properties.
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Finally, we check how our uniform sampling approach compares to a product-
by-product sampling that considers the transition probability values to guide the
random walk (i.e., the standard way to apply SMC to probabilistic systems). The
difference between this “guided” random walk and uniform random walk is that
the former asymptotically produces better estimates since it directly samples
from the DTMC transition function. However, this guided approach may miss
rare property violations in case of insufficient sampling budget, which may affect
the conclusions of SMC. Hence, our research question is:

RQ3: Is guided random walk more effective than uniform random walk?

To answer this question, we repeat our RQ2 experiments (same protocol and
settings) using SMC with guided random walk applied to each variant individ-
ually.

4.2 Datasets and Parameters

To conduct our experiments, we use two models from the literature. The first
is the Body Sensor Network from [25]. This system consists of a set of medical
sensors that monitor a person’s vital signs. Sensors and other elements exhibit
variation points from which 10 variants can be derived. This system has only
one property to satisfy, which is that it should never reach a failure state.

The second model is a minepump VIS [21,9] with 448 variants. The under-
lying FTS comprises 250,561 states3. We have modified this model to introduce
probability over non-deterministic transitions (e.g. those that modify the level
of water and the presence of methane), such that the probability mass is dis-
tributed uniformly over alternative transitions. For this model, we consider the
four properties described in Table 1.

We set respectively, the simulation bound to 30 for BSN and 50 for minepump.
The setting of the simulation bound k often depends on the case study. It re-
quires knowledge about the case study but also about external factors such as
system requirements, system execution context, etc. This expertise usually came
from the system engineers. For example, k may depend on the property to check,
such as what is the probability of having a system failure by some given time t.
That is, it requires knowledge about how long the system should run before it
can be considered safe.

Higher simulation bound allows finding more (but usually less probable) vio-
lations of the properties. The simulation bound may also depend on the system
itself and its future usage. A more complex system will likely require a higher
simulation bound because a bigger state space must be checked. If interested in
rare events or if the system will run during a long time period before mainte-
nance, the simulation bound can be increased as well. Similarly, the number of
samples (or simulation runs) also depends on the case study. Basically, a com-
plex system with a lot and/or longer paths will likely require a more significant
number of samples to have a precise enough idea of the probability to satisfy the
property.

3 The state space of all variants taken individually reaches 889,124 states.
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Property number Property formula

minepump #16 ¬((�♦methane) ∧ (�♦¬methane))
minepump #18 �(methane⇒ (♦stateMethanestop))
minepump #26 �((highWater ∧ ¬methane)⇒ ♦pumpOn)
minepump #30 ¬♦�(¬pumpOn ∧ highWater)

Table 1: Minepump properties that we use in our experiments.

4.3 Implementation

We implemented our family-based SMC algorithm and the classical product-by-
product SMC algorithm into ProVeLines4 [12], a state-of-the-art model checker
for VIS. The tool takes as input (a) an FDTMC – modelled in an extension of
the Promela language [20] where transitions are associated with a probability
distribution and can be guarded with features, (b) an LTL formula, and (c) a s
sample budget of k steps. Then it runs simulations (using the available budget)
and returns the probability of variants that satisfied the property. Therefore, we
compare our algorithm and classical SMC on common technical ground.

To efficiently encode the probability profiles Πρ that our algorithm ma-
nipulates and returns, we extended the Algebraic Decision Diagrams [2] data
structure. ADDs are like binary decision diagrams [5] except that leaf nodes
can receive a real value. In our case, branches represent features of the VIS.
Therefore, an ADD path represents a set of variants, and the value of the leaf
is the probability associated to this set. Equation 2 is implemented by using
two extended ADDs. ADDp that iteratively capture the output of each path
sampled by Algorithm 1 (i.e., b

p ⊗Πρ) and ADD∼ that accumulate them such

ADD∼ =
∑n
p=0ADDp. We implemented our ADD extension into the efficient

CuDD library [30]. The extension allows to store multiple real values as leaves
in order to optimize the implementation.

As for the parametric approach, we reuse the prototype Python implemen-
tation of Delahaye et al5. [15]. Unfortunately, this prototype does not support
concurrent systems (i.e., multiple processes/modules) and a very limited subset
of the Prism language. Consequently, it cannot verify Body Sensor Network nor
Minepump case studies.

We run all our experiments on a Dell Latitude i7 16GB 1.8GHz. To account
for random variations, we execute 10 runs of each experiment and report the
average accuracy. Body Sensor Network and Minepump ground truth computa-
tions took, respectively, 6 minutes and 50 minutes approximately. The different
case studies took a few seconds for Body Sensor Network and few minutes for
Minepump. The memory consumption of ProVeLines was around a dozen of MB.
We do not notice differences in performance between the methods implemented
in ProVeLines.

4 https://bitbucket.org/SamiLazregSuidi/provelines-stc/src/master/
5 https://github.com/paulinfournier/MCpMC
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5 Results

We present our experimental results for the three research questions hereafter.

5.1 RQ1: Soundness

We show in Table 2 the correlation analysis for the Parametric Toy exemplar,
the only model we could model equivalently in Delahaye et al.’s tool [15] and
in ours. We show the correlations for Delahaye et al.’s approach (Parametric),
our family-based algorithm, and the product-by-product uniform random walk.
For each method, we show the correlation between the probability values that
the method estimated and the ground truth. As a reminder, the ground truth
was computed from a very large number of simulations run for each variant to
precisely estimate the probabilities (106 simulations per variant). Interestingly,
we observe that each method achieves extremely strong correlations (above 0.89).
This indicates that both the approach of Delahaye et al. [15] and our novel SMC
algorithm can produce suitable estimates to compare and rank the variants of
the Parametric Toy.

We can observe that the variation of the number of simulations does not
drastically influence the correlation of any of the methods. This indicates that
even the smallest simulation budget we considered (103) is enough to cover rare
behaviors specific to few variants of the Toy exemplar. This also suggests that
our uniform normalisation function is adequate for this system [15].

These positive results indicate that our approach can produce suitable
estimations. This allows us to have confidence in its correctness and ca-
pabilities.

This successful preliminary validation encourages us to pursue our endeavour
on larger models and more complex properties, which we investigate in the next
research questions.

5.2 RQ2: Benefits of family-based

We study the correlations achieved by our approach (“Family-based”) compared
to the product-by-product random walk (“PbyP: Classical”), on larger models
than the parametric toy exemplar. Table 3 shows the results for Body Sensor
Network (BSN) and for Minepump. It has to be noted that the two models
have significantly different characteristics. The state-space of Minepump is larger
than BSN and requires, therefore, longer explorations (in terms of simulation
bound k) to sample relevant path prefixes. BSN, however, presents an extreme
factor of complexity: all its stochastic transitions are featured, i.e., the transition
probabilities change with the system features. This means that the stochastic
behaviour of two variants can differ significantly and do so early during the
simulation.
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In the BSN case (Table 3), we observe that, for all sampling budgets, both
approaches achieve very strong Pearson correlation (>0.93) and strong Kendall
correlation (>0.77). This means that they are both effective in estimating the
ranking of variants (wrt. their property violation probability) and even more
in estimating the relative differences (in violation probability) between these
variants.

In both cases, increasing the budget improves the correlation values. This
indicates that, in spite of its reasonable state space size, BSN remains challeng-
ing to simulate due to the divergence in the variants’ stochastic behaviour. We
actually observe that, though our family-based approach strongly correlate with
the ground truth, the product-based alternative is better in this case.

In the Minepump case (Table 3), we observe again that the two approaches
are overall effective: they both achieve very strong Pearson correlation (>0.90)
and strong Kendall correlation (>0.64) for all properties and sampling budget.
There are, however, observable differences between the two techniques.

First, the family-based approach achieves better Kendall correlations than
the product-by-product method (up to 0.13 difference), but worse Pearson cor-
relation (up to 0.07). This means that the product-by-product estimates the
relative difference between variants slightly better. However, it has more failures
when it comes to ranking these variants. This can be explained by the fact that,
in Minepump, multiple variants can have very close violation probabilities. In
this case, the product-by-product method can fail to rank them due to the in-
herent estimation error. By contrast, the family-based approach estimates the
probability of these variants at once; therefore, it applies the same estimation
error to all variants, which does not impact the rankings.

Second, increasing the sampling budget increases the correlation values for
the product-by-product method, but has no significant effect on the family-based
approach. This indicates that our method can provide its maximal benefits even
with a small sampling budget. We explain these results by the fact that the
minepump variants differ more by their unique transitions than in their proba-
bilities to execute common transitions. In such a case, the factorization capabil-
ity of our family-based method is optimally used and enables the production of
accurate estimation even with a low number of sampled paths.

The main benefit of our approach is to effectively estimate the rank-
ing of the different variants according to the probability to violate the
property. Our method is more effective at ranking variants than product-
by-product approaches, especially at low sampling budgets.

5.3 RQ3: Guided sampling

Our last research question investigates whether a product-by-product sampling
approach that is guided by transition probabilities brings benefits over uniform
sampling. Results for this approach are again shown in Table 3 (column “PbyP:
Guided”).
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In the BSN case, we observe that this new approach achieves very strong
Pearson correlation (>0.96) – it is as effective as the product-by-product uniform
sampling approach – and strong Kendall correlations (>0.73) – though, overall,
less strong than the two uniform approaches. Interestingly, we observe that these
Kendall correlations can significantly increase or decrease with the sampling
budget, whereas one would expect the correlation to improve monotonically with
the sampling budget. Because it is guided, this sampling approach inherently
favours common execution paths over rare paths. In case these rare paths are
violating, this biased sampling introduces random factors in the ranking of the
variants.

In the Minepump case, the guided approach achieves lower Pearson and
Kendall correlations compared to the two uniform approaches, though these
correlations remain strong (>0.73). As we previously observed on the uniform
product-by-product method, the guided approach improves its estimations with
an increasing the sampling budget, though it never manages to perform better
than our family-based method.

Our uniform sampling method performs better at low sampling budgets.
This indicates that guided sampling methods tend to be more sensitive
to path rarity, which can deteriorate the estimations.

These results demonstrate the importance of path rarity in accurately esti-
mating all variants’ violation probability. This importance, in turn, motivates
the use of uniform sampling and normalization methods that we have proposed
in this paper.

Table 2: correlation between each method and the ground truth (106 simula-
tions run for each variant). In each cell, left number is Pearson’s correlation;
right number is Kendall’s. In the table, “Parametric” refers to Delahaye et al.’s
approach. “Family-based” is our novel SMC algorithm. “PbyP: Classical” means
uniform random walk SMC applied to each variant separately.

Sample budget Family-based PbyP: Classical Parametric

Param. Toy 103 0.9655 0.9294 0.9964 0.8928 0.9570 0.9983
Param. Toy 104 0.9630 0.9230 0.9972 0.9733 0.9539 0.9984
Param. Toy 105 0.9627 0.9231 0.9998 0.9733 0.9539 0.9984

6 Threats to Validity

The first threat to validity is the models we use. We used only two VIS models
from the literature that we could easily adapt to become stochastic VIS. These
models do not exhibit a real-world level of complexity (i.e., hundreds of variants
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Table 3: correlation between each method and the ground truth (106 simula-
tions run for each variant). In each cell, left number is Pearson’s correlation;
right number is Kendall’s. In the table, “Family-based” is our novel SMC al-
gorithm. “PbyP: Classical” means uniform random walk SMC applied to each
variant separately. “PbyP: Guided” means guided SMC applied to each variant
separately.

Sample budget Family-based PbyP: Classical PbyP: Guided

BodySensorNet. 102 0.9386 0.7778 0.9675 0.809 0.9673 0.7333
BodySensorNet. 103 0.9594 0.7778 0.9984 0.8667 0.9976 0.9556
BodySensorNet. 104 0.9672 0.9111 0.9999 0.9111 0.9982 0.9111
BodySensorNet. 105 0.966 0.9556 1.0 0.9556 0.9994 0.8222

minepump#16 250 0.9586 0.778 0.9762 0.6412 0.8284 0.756
minepump#16 500 0.9617 0.7791 0.9873 0.6753 0.8274 0.7601
minepump#16 1000 0.9602 0.7697 0.9922 0.6852 0.8292 0.7606
minepump#16 2000 0.9603 0.7766 0.9953 0.7152 0.8292 0.761

minepump#18 250 0.9574 0.7651 0.9856 0.7171 0.837 0.7424
minepump#18 500 0.9576 0.7775 0.991 0.737 0.8366 0.7544
minepump#18 1000 0.958 0.7699 0.995 0.7752 0.8381 0.7518
minepump#18 2000 0.9578 0.7823 0.9969 0.781 0.837 0.7563

minepump#26 250 0.909 0.8434 0.9509 0.7841 0.8445 0.733
minepump#26 500 0.9085 0.8453 0.9677 0.7912 0.8493 0.7579
minepump#26 1000 0.909 0.8445 0.9751 0.7958 0.8526 0.7804
minepump#26 2000 0.9085 0.8469 0.9809 0.811 0.8552 0.7832

minepump#30 250 0.9027 0.8583 0.9591 0.7859 0.7799 0.7498
minepump#30 500 0.9028 0.8719 0.9745 0.8277 0.7847 0.8074
minepump#30 1000 0.9014 0.8788 0.9773 0.833 0.7856 0.8064
minepump#30 2000 0.9038 0.8765 0.9832 0.8365 0.7859 0.8323
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and hundreds of thousands of states). But even if the case studies are relatively
simple compared to real-world VISs, the preliminary results of our evaluation
show that our method is a promising direction for verification of VISs. As fu-
ture work, we plan to collect several real-world stochastic systems from differ-
ent industries such as space, automotive and biomedical to further develop our
method.

Our second threat to validity is that the effectiveness of our method may
depend on the system to verify. Indeed, a basic assumption is that systems with
many common behaviors across the variants will provide better results. This
is what we can observe with our models. The effectiveness of our method also
depends on the property to check. For example, our method provides worst
Pearson but better Kendall correlations for the last two minepump properties
#26 and #30. The other case studies share similar results. However, further
research and investigations will be required to characterize how different systems
and properties will impact our method.

Similarly, the choice of the normalization function and the simulation bound
k may highly impact the results of our method. We show that the uniform
normalization function outperforms the traditional guided sampling in giving
accurate estimations. However, as the convergence speed can be affected by the
choice of the normalization function [15], this choice may also depend on the
case study. For the simulation bound, our k settings find violations for every
variant with reasonable probability of happening (higher than 0.0001). Indeed,
in our models, a lower k produces fewer behaviors (but more probable) that
violate the property, while higher k will find more violations (but with a lower
probability of happening). Nevertheless, setting precisely the simulation bound
(similar to simulation run length) requires knowledge about the case study and
external factors such as system requirements, system execution context, etc. This
expertise usually came from the system engineers.

Another threat concerns the way we computed out ground truth that is used
as real probabilities that each variant has to violate the property. We propose to
compute this ground truth using a very high number of samples compared to the
one used for the experiment. For example, for minepump, 106 samples were used
to compute the ground truth. In comparison, 202 samples is the budget to assess a
method. We also repeated the computation of ground truth multiple times to see
if this high number is sufficient to avoid random variations. We observed slight
probability variations from 10−6 to 10−9 (depending on the case study). These
variations are too small to impact product ranking. Another way to compute
the ground truth is to apply exhaustive bounded probabilistic model checking
on each variant. This computation method differs from the one we propose in
this paper and might not be a relevant comparison.

Finally, a construct validity comes from the metrics we use to measure effec-
tiveness. Kendall and Pearson coefficients are established statistical methods to
measure the correlation between two variables (here, the ground truth and the
estimations). We reused standard libraries to compute them and are therefore
confident that our computation is correct. Still, these coefficients assess to what
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extent the estimations preserve the real differences between variants (be it of
raking or of value) and do not precisely reflect the estimation errors. Overall,
these coefficients are meaningful if the goal is to compare products rather than
get extremely accurate probability estimations.

7 Related Work

7.1 VIS verification

There are numerous models proposed for VIS verification. For instance, Classen
et al. proposed Featured Transition System [9] (FTS) formalism which is an
automata-based model that relies on transitions labelled by a features expression.
Consequently, this formalism determines which variants can exercise the transi-
tion. Using this information, the fact that variants have behaviour in common
could be exploited, leading to significant speedup in terms of verification time.
Accordingly, Classen et al. proposed variability-aware exhaustive algorithms to
model-check FTS.

In addition to FTS, other models have been extended to capture the be-
haviour of multiple variants such as modal transition system [31], product-line-
CCS [19], featured Petri-nets [24]. Each formalism has a different syntax and
semantics. Modal transition systems or modal I/O automata use optional “may”
transitions to model variability. Similarly, product-line-CSS is a process algebra
with alternative choice operators between two processes to model the behavior
of a set of variants. All these approaches are reasonable solutions for VIS verifi-
cation. However, most of them are isolated efforts that do not come with mature
companion tools. Our work is, therefore, based on FTS. Ter Beek et al.’s [31]
solution based on modal transition systems is another mature approach. How-
ever, it requires the use of a separate logic to link variants to their behaviour
in the model, which we found to be less practical than the explicit variability
information contained in FTS. This information makes it easy and efficient to
determine the variants that can execute a given buggy behaviour [10].

There also exist VIS models that include probabilistic information, such as
FDTMCs [28] and Markov decision processes [7]. These models come with dedi-
cated generalization of exact probabilistic model checking algorithms to compute
precise probability values to satisfy given properties. By contrast to all the above
methods, our approach is non-exhaustive and samples paths from the model to
estimate the probabilities of the stochastic VIS while reducing the verification
effort. Our work, therefore, trades off the exactness of the verification results
for an increased efficiency. This compromise is essential to verify VIS with large
state space.

A related line of work concerns the selection of a DTMC from a family of
candidate DTMCs. Ceska et al. [6] approach this problem from three angles: fea-
sibility (does there exist a family member that satisfies the property), threshold
(which family members satisfy the property within a given probability thresh-
old, and which ones do not), and optimality (which family member optimizes
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the probability to satisfy the property). They propose a solution to answer these
three questions based on an abstraction-refinement scheme over Markov decision
processes. Our objectives differ in that we aim to estimate the violation probabil-
ity of each family member, a more precise information that is not necessary (but
is sufficient) to answer the above questions. The exploration of using SMC and
combine it with Ceska et al.’s abstraction approach is an interesting direction
for future work.

7.2 SMC for VIS

Recent work has applied SMC in the context of VIS. Vandin et al. [33,32],
proposed an algebraic language to formally model behaviour with dynamic vari-
ability (i.e. where the system can adapt its configuration during its execution).
Vandin et al. also proposed a product-based SMC approach to check proper-
ties on the reconfigurable system. Contrary to this work, our approach assumes
static variability (the variants are distinct systems) and relies on family-based
algorithms to reason more efficiently on the whole set of variants.

Dubslaff et al. [17] and Nunes et al. [28] have studied VIS subject to stochas-
tic behaviour and proposed exhaustive model-checking algorithms to check the
probabilistic properties of such systems. These algorithms suffer from scalability
limitations because of their exhaustive nature and the inherent computational
cost of stochastic model checking approaches. To overcome this scalability is-
sue, Delahaye et al. applied SMC to stochastic parametric systems [16]. Their
approach opens the possibility to verify stochastic VIS, where each variant is a
valuation of the parameters. More precisely, Delahaye et al. target the verification
of quantitative reachability properties. By contrast, we support non-quantitative
but more general properties (expressed in a fragment of LTL).

In a series of recent works [32], ter Beek et al. proposed a simulation-based
approach for software product lines with stochastic behaviours. The approach
relies on an algebra to describe sets of variants and on SMC [22,35,23] to compute
the probability of each variant to satisfy a given bounded LTL property.

In this paper, we reconciled the approaches of [32] and of [15] by propos-
ing a family-based extension of SMC for FDTMC. We sketched the theory and
proposed an implementation in the ProVeLines model checker [12]. We then
show that our approach is more effective than the traditional, guided, product-
by-product SMC method. It is, furthermore, sample-efficient as its factorization
capability enables the production of suitable estimations with a low sample bud-
get.

8 Conclusion

There are two majors difficulties with the verification of VISs. The first is to
find a compact representation for a set of variants that share a common basis of
behaviours, but also differ by their unique behaviours. The second is to exploit
this representation to evaluate each variant efficiently.
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In this paper, we consider VISs whose behaviours depend on stochastic infor-
mation. As seen in [28], such systems can be represented with FDTMC. That is
to say with transition systems whose transitions are extended with probability
profiles. Such profiles list the set of variants that are following the transitions as
well as the probability to take such a transition for a given variant.

Interestingly, we got some promising results that our family-based approach
produces consistent results and could precisely estimate the rank of the different
variants, especially at very low simulation budgets. Product-based approaches
seem to suffer from a fundamental limitation. The amount of estimations errors
sums up between the different variants reducing thus ranking capabilities. Con-
sequently, they may require more significant simulation budgets to outperform
our method.

Over the last years, verifying FDTMC has been the subject of intense stud-
ies (see e.g., [28,18]). Some of the verification techniques that have been pro-
posed are family-based; that is, exploiting the compact structure of FDTMC to
avoid redundant work. Other approaches enumerate and perform verification on
each variant represented by the FDTMC. All those studies rely on extensions
of probabilistic model checking algorithms. While such algorithms are precise,
they eventually suffer from the state-space explosion problem.

This paper is the beginning of a new thread of results on applying SMC to
VISs. There are various directions for future research. The first direction is to
consider variants with both stochastic and non-deterministic aspects. This could
be done by combining the result of the present paper with the smart sampling
approach for non-deterministic behaviours proposed in [14]. Another extension
concerns the properties that we can verify. The present paper is restricted to
bounded executions. The problem is that verifying full LTL over infinite ex-
ecutions is incompatible with a simulation-based approach. Indeed, the main
hypothesis of such an approach is that the property can be decided on each
simulation after a finite number of steps. This is a contradiction with the live-
ness fragment of LTL that requires monitoring unbounded executions. Several
authors have proposed solutions to this problem. These solutions either require
to have computed to the full state space of the model, or they drastically in-
crease the number of simulations [13,34]. We plan to investigate a novel approach
based on three-valued LTL. The idea would be to use the work in [4] that offers
a finite-word automata-based representation to monitor LTL properties. Given
a finite execution, the approach can either decide if it satisfies the property by
comparing the outcomes of two finite automata, or return an undefined value
in case the comparison is inconclusive. Such a three-valued approach cannot be
handled by classical Monte Carlo algorithms, but promising extensions exist [1]
and can inspire our work.
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model checking for unbounded temporal properties. ACM Trans. Comput. Log.,
18(2):12:1–12:25, 2017.

14. P. R. D’Argenio, A. Legay, S. Sedwards, and L. Traonouez. Smart sampling for
lightweight verification of markov decision processes. CoRR, abs/1409.2116, 2014.

15. B. Delahaye, P. Fournier, and D. Lime. Statistical model checking for parameter-
ized models. working paper or preprint, Feb. 2019.

16. B. Delahaye, P. Fournier, and D. Lime. Statistical model checking for parameter-
ized models. 2019.
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