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Abstract. Modelling execution times in complex real-time embedded
systems is vital for understanding and predicting tasks’ temporal be-
haviour, and to improve the system scheduling performance. Previous
research mainly relied on worst-case execution time estimations based
on formal static analyses that are often pessimistic. The models that re-
sulted are hard to maintain and even harder to validate. In this work, the
novel use of Digital Twins provides opportunities to improve this issue
and beyond for dependable real-time systems. We aim to establish and
contribute to three questions: (i) how to easily model execution times
with an adequate level of abstraction, and how to evaluate the quality of
that model; (ii) how to identify errors in the models and how to evaluate
the impact of errors; and (iii) how to make decisions as to when and how
to improve the models. In this paper, we proposed a Digital Twin-based
adaptation framework, and demonstrated its use for modelling and re-
fining execution time profiles. Key decisions concerning the quality of
the model and its impact on performance are evaluated. Finally, some
challenges and key research questions for the formal method community
are proposed.

Keywords: Digital Twin · Real-Time Embedded Systems · Execution
Time Model · Error Modelling · Error Refinement · System Adaptation.

1 Introduction

For complex real-time embedded systems (RTES), modelling of the execution
times is essential as it helps to understand and predict a system’s temporal
behaviour, validating the timing requirements, and to improve the system per-
formance. In RTES, the execution times can be largely affected by a number of
factors, to name a few: the program execution path, which is based on the current
inputs; the interference and blocking from other sources, e.g., co-running tasks,
and contentions due to accessing shared resources; the underlying hardware and
architectural features on which the program is executed; and the current system
mode, and in some contexts is subjected to operational scenarios, etc.

In the real-time systems community, the widely applied practice is to derive
the worst-case execution time (WCET) of a program to understand its worst-
case performance, with static analyses applied based on the control flow graph
and the hardware and memory model [19]. However, this formal approach is
pessimistic and lacks the ability to adapt to changes and to mitigate faults
when there exists model inaccuracy due to partial information or change of
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system, etc. The models that resulted are hard to maintain and even harder to
validate. As the WCET fits in with a larger, more complex problems including
worst-case response time and task scheduling and allocation, consequently the
methods based on the WCET model can be both too pessimistic that produce
low resource utilisation, and being fragile to uncertainties or violation of any
assumptions that are used to derive the model.

In recent years, there is an increasing trend to apply Digital Twins (DT) in
automotive, aerospace, manufacturing, transportation and healthcare systems.
The idea of a DT is to establish a digital representative of the target system
that is largely based on models and simulations. We recognise the potential of
DTs in the design and development of real-time embedded systems.

In this paper, we apply Digital Twin as a first step towards improving the
adaptiveness, accuracy and dependability in RTES. We are interested in ap-
plying it to both critical systems, e.g., avionics (HiClass1), and more conven-
tional systems, e.g., telecoms (MOCHA2). Our DT work continues the success
of model-based design for embedded systems where previously it was largely
based on off-line simulations and verification, while lacking the ability of on-line
adaptation. In our case, the Digital Twin is running in parallel with the physical
entity at the same time while the target system is in operation. Data carrying
the information of the target system and decision from the Digital Twin ex-
changes between the physical system and the digital counterpart in real-time.
The novel use of Digital Twin in this work provides opportunities to be adapted
to multi-core real-time systems from the following aspects:

– to correct timing models in which inaccuracies exist that could reduce per-
formance or invalidate dependability;

– to suggest improvements to scheduling policies based on evidence obtained
through observation;

– to make on-line decisions relevant to scheduling (e.g., admit new tasks to
schedule or allow more events to be processed);

– to support off-line assurance decisions through large-scale simulations.

Without losing generality, we focus on the timing aspects as it is recognised as
the most critical factor in RTES. Specifically, we started from an execution time
model based on task-level cache reuse, the cache recency profile (CRP), as an
alternative to the WCET. The CRP describes the benefit in terms of execution
time speedup a task can have based on a warmed cache from previous executed
job instances. It is a sensitivity model of execution times in terms of how many
cache lines have been accessed since the task of interest was last executed.

However, like other models, the CRP is sensitive to the current workload and
operational context. Thus, it can be inaccurate if the context is shifted from the
context in which the model was originally produced. The task scheduling and
allocation algorithm is then based on this CRP. Associated with the CRP is an
error model which represents the differences between the real system and the
simulated part of the Digital Twin. The error model indicates the misalignment
of models and supports analysis to understand robustness or resilience of the
task scheduling and allocation of the system.

In this paper two key challenges are exploited: what should the components
and models in the Digital Twin feature (e.g., level of abstraction and key features

1 https://www.cs.york.ac.uk/news-events/news/2020/hi-class/
2 https://www.cs.york.ac.uk/rts/mocha/

https://www.cs.york.ac.uk/news-events/news/2020/hi-class/
https://www.cs.york.ac.uk/rts/mocha/
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Fig. 1. The DTiL-RTES framework for complex real-time embedded systems

that exist) and how the key models (e.g., the parameters associated with the
model and the model itself) are refined based on decisions made with them.
In this paper, this modelling paradigm with Digital Twin and key decisions
concerning the modelling accuracy and its impact are evaluated.

Contributions: In this work, we formulate a model-based Digital Twin frame-
work for multi-core embedded systems to improve the system performance and
resilience. We aim to establish and contribute to the following key research ques-
tions (RQs):

– RQ. 1. How to easily model execution times with an adequate level of ab-
straction, and how to evaluate the quality of that model against observations.

– RQ. 2. How to identify errors in the models and how to evaluate the impact
of errors on key performance indices.

– RQ. 3. How to make decisions as to when and how to improve the models,
supported by evidence collected from the real system and/or a simulator.

We propose the concept of Digital Twin in-the-Loop design for real-time
embedded systems (DTiL-RTES), as shown in Fig. 1. The idea is to extend the use
of Digital Twin for real-time and embedded systems beyond the design process,
and exploit its usage at operational time by formulating an observation-decision
loop. The DTiL-RTES performs both static and dynamic profiling, while making
predictions from simulation and based on models of the system. Although there
are many potentials of applying Digital Twin in multi-core systems, we focus
on timing perspective for scheduling and allocation particularly for this paper.
The DTiL-RTES approach is designed to mitigate model inaccuracy given extra
information and/or derivation is observed while the system is in operation. It
improves modelling accuracy by examining the results of the actual system with
predictions based on the models. The DTiL-RTES can also be easily extended
with a run-time monitor and an anomaly detector.

Organisation: the proposed DTiL-RTES framework is introduced in Sec. 2, which
is followed by modelling and refining execution time models in Sec. 3. The eval-
uation is then given in Sec. 4, with discussions on limitations and challenges for
the formal methods community. The related work on execution time modelling
is introduced in Sec. 5, with concluding remarks in Sec. 6.
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2 The DTiL-RTES Framework

In this section, we introduce the proposed DTiL-RTES framework, including its
design intuition and components. We will then give more details in Sec. 3 on the
execution time model and error refinement.

2.1 Design Philosophy

A Digital Twin is defined as a digital replica of a target physical system (i.e., the
system of interest) [5]. It can run independently and/or in parallel with the tar-
get system to facilitate making predictions and/or decisions. From a modelling
perspective, the Digital Twin combines models, and methods based on the mod-
els to simulate, predict, analyse, and evaluate. The Digital Twin is normally
running on a more capable machine (i.e., the host) other than the target sys-
tem. It is normally built based on existing services that are already established
between the system and the host.

Efforts of using a DT in real-time systems for run-time WCET modelling
and parameter adaptation were early discussed in [3,4]. The requirements and
open challenges of adapting DT to the context of multi-core real-time systems
have been discussed in [5]. Different to a cycle-accurate simulator, a Digital Twin
often focuses on a higher level of abstraction where the key characteristics are
identified. In general, the proposed DT is designed to meet the following re-
quired purposes: (1) answering what-ifs (decision making and optimisation) [7];
(2) support continuous modelling [3]; (3) understanding outliers and detecting
anomalies. In addition, abnormal behaviours can be observed, which provides
useful information to, for example, studying online and offline scheduling and
allocation policy in embedded real-time systems. It is recognised that these con-
cepts in Digital Twin provide a foundation and form a general background of
this work, as well as the design and modelling philosophy.

2.2 DTiL-RTES Overview and Components

An overview of the DTiL-RTES framework proposed in this work is shown in
Fig. 2. Key functions of the DT are: (a) decision support at both design-time and
run-time; (b) anomaly detection to indicate inadequacy of the model; (c) tuning
models based on new/novel observations. The DTiL-RTES consists a number of
components. We introduce the key components of the proposed DT as follows.

Specification, System and Task Models: the specification and models are
provided as database files to be used by the DT. Specifications include: (i)
system-level requirements, e.g., deadline miss rate requirement; and (ii) task-
level requirements, e.g., response time and jitter requirements. The models in-
clude: (i) system model, i.e., processor and memory model, including processor
grouping, frequencies, memory hierarchy, etc; (ii) task model, provide proper-
ties of the task set, including inter-task dependencies, period, deadline and the
worst-case execution time of the tasks; (iii) Execution Time Models: models to
predict the execution times of tasks given system input states. There is also an
associated error model to include factors that are not included in the execution
time model.
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Fig. 2. An overview of the Digital Twin in-the-loop design concept

Scheduling and Allocation Simulator: simulates the behaviour of the sched-
uler, by interpreting the processor, task and execution time models into a high-
level simulator. The key is to understand what is the impact that a change in
the model has on the scheduling decisions and performance.

Analysis Tools: accesses data from the system, streaming data to a local or
remote database, and then applies statistical analysis upon the observations.
For strictly hard real-time tasks, a formal schedulability test has to be checked
against deadline constraints, for example, using response time analysis. As part of
the DTiL-RTES, if it is established that a change is needed to a task’s execution
time model then the impact of this change is also checked.

Predictions and Decision Making: the decision making process applies changes
to the model based on results from the scheduling simulator and, optionally,
schedulability analysis. The decision process can either be offline or online. Ex-
amples of decisions include make changes to models, use a more advanced clas-
sifier, track more objects and accepts more incoming data streams, etc.

Communication Brokers: the module to connect the Digital Twin host with
the Digital Twin client(s). The module maintains communication for data pass-
ing between the host and the client(s), and with defined Quality-of-Service
(QoS), e.g., bandwidth limitation.

Note that the complete DTiL-RTES framework has other components for
other (non-timing-related) purposes, for example, safety argument, diagnosis
and fault identification. Due to the limitation of pages and scope, we will not
give an exclusive list but ignore modules irrelevant to this work.

2.3 Intended Use and Overhead

The position of the DT in this work focuses on building and refining a predictive
timing model, named as Execution Time Model (ETM). To be more specific, an
ETM is used to produce predictions of the execution time of a program, given
inputs including the system states, data inputs, system modes, etc.
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The ETM advances the WCET model in the way that it produce run-time
predictions in addition to the worst-case single estimation of the execution time,
thus the scheduler can make better use of the CPU resources without being too
pessimistic from the overly assumed worst-case scenario. The ETM model can
be built offline with data from running the system in a test environment. How-
ever, it is notable that there are many factors that will make the original ETM
(i.e., the model built offline) imprecise. Examples of these factors include insuffi-
cient information of the system, dynamically changing environment, contentions
from dynamic workload, self-adaptation of system software and hardware. The
idea of DTiL-RTES is to overcome these by collecting evidence from observa-
tions of the system, change the model where it deems it necessary. The decision
of whether changing the model is based on outcomes from an internal simulator
that evaluates the impact of errors.

In terms of the overhead of this approach, DTiL-RTES has profiling, commu-
nication, and memory (for data buffering) overhead. However, most of the heavy
computation is offloaded on the Digital Twin host, thus has limited impact on
the performance of the client.

3 ETM Modelling and Refinement

We motivated that the ETM is subjected to changes and the DT has the capabil-
ity to accommodate the issue. However, a number of research questions remain:
(1) when it is necessary to change the model; (2) how to change the model; (3)
how to evaluate the change to the model is safe. Based on the introduced frame-
work, we aim to provide solutions to (1) and (2), and provides some insights on
the third question in this work.

To refine the model at run-time, we introduce a process for ETM error mod-
elling. With a statistical learning process, the error is decomposed and analysed
to understand the sufficiency of the relevant model and if the model can be
further improved. For troublesome cases, the system would then take a snap-
shot, record it into a database, before it is further analysed with statistical
or machine learning based techniques, for example, with Principal Component
Analysis (PCA).

The workflow of the approach is shown in Fig. 3. From the figure, the general
structure and the flow of the DTiL-RTES approach can be seen in more detail.
The basic idea of this approach is to compare the results from simulation using
models based on predictions against the models using real observation with an
impact analysis.

3.1 Execution Time Model

The Execution Time Model (ETM) is a predictive model that produces execution
time estimations based on given inputs. In this work, we apply a model known
as cache recency profile (CRP) as it represents a good abstraction of the system.
The CRP is a sensitivity model that represents the reduction in WCET against
a stress metric, the recency distance, which is the distance measured by cache
line accesses between the current job execution and its last instance. This is
based on the understanding that execution time is largely dependent on cache
reuse. We note that the choice of this model as ETM is just an example use case
and we envisage our Digital Twin framework is adaptable to similar predictive
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Fig. 3. Workflow of DTiL-RTES for model refinement (bold lines: feedback loop)

timing models, for example, using recurrent neural networks. A full ETM can
consist of a combination of models, but in this work we focus on the CRP to
illustrate the idea, and use the term ETM and CRP interchangeably.

To clarify, there is a few assumptions of applying this model: (i) application
tasks are modelled as functions with a single entry point; (ii) level of task abstrac-
tion: each task represents the minimal schedulable entity. Within a node there
is no multi-threading. However, the level of abstraction in itself is a research
question; (iii) the system has turned off dynamic voltage and frequency scaling
(DVFS). DVFS adds significant interference to timing and adds unnecessary
dynamics that is not favoured against predictability; and (iv) the system uses
non-preemptive scheduling, for example, standard Linux OS without RT-patch
or any other commercial off-the-shelf (COTS) OS. These assumptions form a
very common setup of industrial real-time embedded systems.

The CRP is a simple yet effective abstraction of the temporal behaviour of a
task. For the current implementation of CRP, the following factors are consid-
ered implicitly even if not being directly modelled: (i) prior-condition of tasks
execution, (ii) data dependency between tasks, and (iii) instruction dependency
through shared libraries.

3.2 Offline Profiling of CRP Model

The initial CRP model is produced offline with the support of a cache analysis
tool (Valgrind3). Alternatively, it can be generated with static program analy-
sis with control flow graph. The offline profiling tool stretches the independent
variable (i.e., the recency distance; defined in Section 3.1), and estimates the
corresponding dependent variable (i.e., the ET w.r.t. the percentage of WCET).
The process is shown in Fig. 4.

However, the model produced in this way is limited by the prior-assumptions
of the system, and the capability of the tool used. For example, the tool has
limited support of multi-core, thus is not able to capture multi-core effects.
The model will hardly be right, as we motivated earlier. The lack of run-time
information, the exact impact factors to the execution time, cannot be fully
known until the system is in an operating state. The initial model has to be either

3 https://valgrind.org/

https://valgrind.org/
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Fig. 4. The offline CRP profiling process

pessimistic or optimistic, or partially pessimistic for some parts but optimistic
for the others.

3.3 Prediction Error

It is expected that the offline profiled model is not capable of fully capturing
all the features related to task timing, and thus prediction errors are inevitable.
A prediction error in this context is defined as the difference between the pre-
diction and the real observation, i.e., ei = ŷi − yi. Errors are inevitable in
the modelling process and it is important to identify the existence of errors
and its impact to the performance. The prediction error can be evaluated us-
ing either squared error, e2i = (ŷi − yi)2, or root mean squared error (RMSE),

RMSE =

√∑
(ŷi − yi)2/n.

Generally, there are common sources of errors in the context of a multi-core
real-time embedded systems. To list a few:

– Data and instruction dependency across the tasks.
– New tasks arriving and old tasks finishes execution/terminates.
– Change of system modes due to switch of environment.
– Bus interference due to, e.g., memory and I/O access.
– Operating system interference (e.g., Linux services).

These are known unknowns, i.e., we know their existence but do not know
when and how they will have impact. Note these interferences will not be con-
sidered explicitly but implicitly in the error modelling. While the rest that is
not categorised here would be considered as unknown unknowns, i.e., we do not
know their existence and do not know when and how they will have impact, and
be considered as contributions to the errors.
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3.4 Continuous Refinement through Naive Feedback

The model can be improved incrementally through a feedback-based process.
In this naive approach, the CRP model is improved through a feedback loop,
and we introduce a parameter (L) as the feedback gain. Assuming the current
active CRP model to be CRP = {c0, c1, ..., cn} where ci is a model parameter
and n is the total number of model parameters (i.e., degree of freedom, or
DoF), and the candidate model to be CRP c = {cc0, cc1, ..., ccn}. We define a new
operator, ⊗, as element-wise adaptation. We also define a function, g(X1, X2),
to extract modelling errors between models represented by parameters X1 and
X2, respectively. The feedback model update process is defined as: c

′
0
c′1
· · ·
c′n

 = L⊗ g


 c0c1· · ·
cn

 ,
 c

c
0
cc1
· · ·
ccn


 +

 c0c1· · ·
cn

 (1)

where L ∈ [0, 1] is the gain, which can be understood as a ‘learning rate’ and
it controls the speed of the adaptation process. The new parameters are the
result of the original parameters plus an error matrix that is extracted from
the candidate model against the original model. This adaptation method does
enable timely changes – depending on the adaptation frequency, a change in the
model can take place every few hours or even a few minutes. However, we note
this naive approach lacks guarantee on stability. The continuous change could
invalid the safety properties if applied without any constraints, and may lead to
unnecessary changes and may also be too frequent.

3.5 Model Refinement through Condition-based Model Rebuilding

To overcome the drawbacks of the naive approach, an alternative way of refining
the model is through a more controlled process that rebuilds the model based on
significance of observations. The idea is that the action needs to pass through
an impact identification phase, before the new model can be applied to the
system. The intuition behind this strategy is that an error is relevant only when
it has an impact on system performance. Any decision that is made to refine
the model should come with the expectation that the refinement would lead to
improvement of the system.

The whole process is shown in Fig. 5. The input data is firstly collected and
cleaned with anomalies being removed. The challenge to do so is to distinguish
anomalies from outliers, as outliers may contain information that is important
to the modelling process, but anomalies will negatively impact the accuracy
thus lead to a unusable model. As an example, we remove anomalies based on
statistics of every 200 samples, where any data point that is outside the range
of µ± 3× σ is removed. The anomaly removal can be much more complicated.

The candidate models are then built after a resampling and classification
process. The identification of the error impact is through a statistical test against
simulated result based on the new and the original timing models. The scenario
database (SCN DB) is the database to save identified representative/difficult
scenarios which helps to train the model in the future. When testing, the process
will also go through the test cases in the scenario database. This overcomes the
problem of limited sampling window and avoid considering all historical data.
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Fig. 5. Flow chart of ETM error modelling

To fit the CRP model, a piece-wise linear regression (PWLR) model is applied
for each task:

y(x) =


η1 + β1 (x− b1) , b1 < x 6 b2
η2 + β2 (x− b2) , b2 < x 6 b3
· · ·
ηn + βn (x− bn−1) , bn−1 < x 6 bn

(2)

where the parameters of the model (ηx, βx, bx) are found using least square es-
timation that minimised the RMSE. When building the PWLR model, the re-
sampling processing can choose to favour the rare cases more, or average cases
more. This is depending on the requirement of the scheduling algorithm. After
the CRP model is obtained, there is an associated error evaluation process, in
which it can indicate the model is not adequate and thus it needs to be changed
(for example, by using a different level of abstraction). This is supported by an
internal simulator that simulates scheduling and allocation where it utilises the
ETM to estimate the system timing performance.

In DTiL-RTES, there are two levels of assessments, and consequent actions.
One level is tuning the parameters of the model (this paper) and the other is to
redesign the model (future work). When tuning the parameters, an automatic
process is introduced that can adjust the model parameters to fit the observa-
tions and thus reduce the error. However in some cases, the tuning would be
inadequate and the model may need to be re-designed. We thus compensate this
by making humans in the loop, and introduce a testing phase which indicates
the existence of such scenarios. Finally, a decision on rebuilding the model is
made based on the impact analysis, where statistical test is performed based on
the performance evaluated in the high-level simulator.

4 Evaluation

In this section, we evaluate the proposed method with respect to modelling accu-
racy and improvement in system performance with respect to scheduling results.
The evaluation has two main objectives: the first objective is to demonstrate the
modelling and error modelling process (in Sec. 4.2); the second objective is to
show the impact on the system and how the decision can be made based on the
observations (in Sec. 4.3).
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# Benchmark Task RD MA # Benchmark Task RD MA
1 tacle/adpcm dec 151 306K 8 tacle/ndes 194 127K
2 tacle/adpcm enc 148 307K 9 tacle/ammunition 970 261G
3 tacle/gsm dec 536 3.7M 10 tacle/g723 enc 182 1.0G
4 tacle/gsm enc 916 9.9M 11 tacle/anagram 1215 7.1G
5 tacle/h264 dec 648 402K 12 tacle/audiobeam 1056 1.5G
6 tacle/mpeg2 4105 568M 13 tacle/huff dec 477 368K
7 tacle/statemate 97 60.6K 14 tacle/huff enc 840 1.6G

Table 1. Taskset and key parameters used (RD: recency distance; MA: memory access)

4.1 Evaluation setup

The testbed environment uses an Intel Core i5 quad-core processor running at
800 MHz with 16 GB of RAM. Three of the four cores (core 1-3) are used as
worker cores to run application tasks, and one core (core 0) is used to run the
global scheduler and the Digital Twin client. The dynamic voltage and frequency
scaling (DVFS) is disabled. The data was profiled on the client then transferred
in chunks to a desktop PC that serves as the Digital Twin host. The client
schedules jobs with a global non-preemptive task scheduler, i.e., a job will not
be preempted by another job on the same core once it is executed.

The taskset we used is from a well-established benchmark in real-time em-
bedded systems, the TACLe Benchmarks [6]. We modelled the taskset with an
off-line modelling tool. The main parameters of the tasks are shown in Table 1.
The tasks were released randomly, and the system scheduler randomly chose one
task to run. The execution time of each task (the dependent variable) and the
accumulated recency distance since its last run (the independent variable) was
recorded into a light-weight SQL database (SQLite4).

4.2 Modelling and Residual Error Evaluation

First, we evaluated the effectiveness of the modelling method and the mod-
elling accuracy. The observation is organised into a (Recency Distance, Execution
Time) pair. We select one of the tasks, tacle/ndes, for further analysis. There
are overall 24868 valid data points after removal of anomalies, of which 80% is
used for training and 20% is used for testing. A piece-wise regression model was
then fitted onto the data using least square estimation as described earlier.

The residual error is then evaluated with the prediction from the testing data
against the number of model parameters n (shown in Fig. 6) to understand the
trade-off between model complexity and sum of squared error. By scaling n from
2 to 12, the error drops significantly for the first iterations but then stops after
n = 7. This indicates that a more complex model would not always produce a
better result, and thus there is clearly an optimal model complexity in the sense
that it produces accurate results but at a reasonable low computational and
memory cost. The other observation is that from the histograms on the top of
the diagram, it can be seen that the error does not follow a normal distribution.
There are two modals of the distribution, one at 0 and another at 1. The message
it deliveries is that the error pattern indicates the model has accurately captured

4 https://www.sqlite.org
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Fig. 6. ETM model DoF against associated error

the main characteristics, however there could be another factor that is missed
from the model.

To further investigate, by making n = 10, we evaluated the sum of squared
residual error,

∑
(yi− ŷi)2 where yi is from the observation and ŷi is the estima-

tion based on the predictive model. The error is plotted out against the recency
distance. The result is shown in Fig. 7. From the figure, it can be seen that the
model fits well with the data in general. However, as can be seen, there is a large
number of outliers that lie in the range of 5 - 10× 104. For dependable systems,
these outliers can be more important than the normal data that is successfully
captured by the model and should be recorded into the scenario database for
further analysis.

4.3 Evaluation of Model Refinement and Performance Improvement

To see how our Digital Twin can be used in decision making and model refine-
ment, we compared the system performance using old (based on offline synthetic
model) and new CRPs (based on observations from the real system). The eval-
uation metric of performance is the total execution time of 100 randomised job
instances. The result is shown in Fig. 8. Two pairs of statistical tests were done
with a non-parametric test (Kolmogorov-Smirnov test, or K-S test [11]) applied,
with the null hypothesis H0 being the two datasets are from the same distri-
bution. The system made a decision to apply the new model based on the first
test as there exists statistically difference. The decision is further evaluated by
applying the new model to the system and re-measured the performance.

The second test between the sim and the real data gave a more positive result,
with null hypothesis not being rejected and p-value = 0.307. This shows the
predictions from the Digital Twin are broadly similar to the real data. However,
this is not a strong accept, and by cross-comparing the data distribution, there
are still significant differences and some could affect dependability.
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Fig. 7. Model fitting and residual error

4.4 Discussion on safety challenges

As demonstrated in the evaluation, although benefits can be gained, we note
safety is important to construct a dependable system. Systems such as com-
munication base stations can be more open for adaptation while the other sys-
tems such as those in avionics are less adaptable and more sensitive to risks.
The involvement of decision making in mission-critical or safety-critical systems
makes it vital to argue the system integrity. The current statistical test lacks
richness with respect to safety guarantees, and it requires formal methods and
formal verification during the decision making process [18], where model check-
ing tools including UPPAAL5 and PRISM 6 can be applied. Concepts such as
Models@runtime [16] can also be utilised, as well as converting the current safety
case from Goal Structuring Notation (GSN) [9] to a model-based safety argu-
ment, e.g., using Structured Assurance Case Metamodel (SACM) [17]. However,
as revealed in the evaluation, the outliers and misaligned data distribution, which
are keys to safety, could make formal methods much more challenging. Again,
this is related to how the model is built and what level of abstraction is sufficient.

A further challenge is also motivated. That is, when it is safe to change the
model being used and how to make transition between models. For this challenge,
it will be key that rely-guarantee style contracts [2,15] are specified and proven
to uphold the essential safety properties of the system. The proof that these are
met will be needed both offline for the mechanisms and online for the specific
changes applied.

5 Related Work

In this section, we introduce related work from two facets: timing prediction in
multi-cores, and execution time modelling for real-time and embedded systems.

5 https://uppaal.org/
6 https://www.prismmodelchecker.org/

https://uppaal.org/
https://www.prismmodelchecker.org/
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Fig. 8. Comparison of estimation from DTiL-RTES v.s. real observation

5.1 Timing Prediction for Multi-core Real-Time Embedded
Systems

Traditionally, when modelling multi-core systems, the integrated timing be-
haviour is represented by the composition of a number of independent modelled
factors including bus interconnection, cache reuse, memory contention, context
switches, operating system (OS) interference and so on. However, for COTS
systems, it is hard to consider some individual factors – in terms of hardware,
some processor specifications are vague, inaccurate and even incorrect; and with
respect to software, some binary code and dynamics libraries are closed-source,
and even worse when the application is running on an operating systems that is
not initially designed for real-time, e.g., Linux, where the characteristics of the
timing due to OS is difficult if not impossible to model accurately [12].

Challenges for modelling real-time multi-core systems also lie in the expres-
siveness of timing. Temporal logical models [14] were used to model the tim-
ing behaviour of dynamic systems, however as computer systems exhibit more
non-linear characteristics, it is beyond the expressiveness of current modelling
capability. The other attempt is to formally model the multi-core system as a
group of state machines where each core (or thread) has an independent state di-
agram with another for synchronisation. This formal analysis is often associated
with functional safety, e.g., checking the system is deadlock-free from sharing
resources.

5.2 Execution Time Modelling

In the context of modelling of multi-core timing, cache is recognised as one
of the most impactful factors. Static probabilistic timing analysis (SPTA) and
measurement-based probabilistic timing analysis (MBPTA) are the two methods
for modelling cache for deriving the bound of worst-case execution times [1]
[10]. While some of these works consider cache, their purpose is still mainly for
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deriving the worst-case execution times offline, where these information is not
further utilised.

Recent work including analytical cache model with data-driven learning meth-
ods provides another direction for execution time modelling, which including
Deep Neural Network (DNN) and Recurrent Neural Network (RNN) including
Long Short-Term Memory (LSTM). A survey of using some of those models for
computer architecture design is given in [13]. There is also work that focuses on
inter-core cache effects, e.g., cache interference prediction in multi-cores [8]. Also
with high prediction accuracy, those models either does not support run-time
use, or has significant overheads for online scheduling and model re-training.

6 Conclusion

In this work, we introduced the DTiL-RTES approach that aims to improve the
timing models at run-time to enhance adaptiveness, resilience and robustness
of the system. DTiL-RTES makes decisions based on data observed from the
system in operation. We first introduced the DTiL-RTES framework, including
its key functions and components. We then demonstrated the performance and
introduce further challenges. Future work includes how to use this framework
to improve scheduling and allocation, apply formal analysis on this framework,
and extend the framework with a run-time monitor and anomaly detector.
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