Skip to main content

Digital Twin Reconfiguration Using Asset Models

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Practice (ISoLA 2022)

Abstract

Digital twins need to adapt to changes in the physical system they reflect. In this paper, we propose a solution to dynamically reconfigure simulators in a digital twin that exploits formalized asset models for this purpose. The proposed solution uses (1) semantic reflection in the programs orchestrating the simulators of the digital twin, and (2) semantic web technologies to formalize domain constraints and integrate asset models into the digital twin, as well as to validate semantically reflected digital twin configurations against these domain constraints on the fly. We provide an open-source proof-of-concept implementation of the proposed solution.

This work was supported by the Research Council of Norway through the projects SIRIUS (237898) and PeTWIN (294600).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/TR/turtle/.

  2. 2.

    OWL classes and individuals are declared when they occur in a triple, not in a separate construct. We can derive that asset:Wall is a class, because it is a subject of a triple with predicate rdf:type. One can add a triple asset:Wall a owl:Class to make this explicit.

  3. 3.

    Standard semantic data for both top-down and bottom-up asset models is the subject of current research projects (e.g., DEXPI [42], CFIHOS [18] and READI [9]).

  4. 4.

    If it is used as an interface, the identifier of connection to the PT must be given to the FMU (this is elided here).

References

  1. Anderl, R., Haag, S., Schützer, K., Zancul, E.: Digital twin technology - an approach for Industrie 4.0 vertical and horizontal lifecycle integration. IT Inf. Technol. 60(3), 125–132 (2018)

    Google Scholar 

  2. Banerjee, A., Dalal, R., Mittal, S., Joshi, K.P.: Generating digital twin models using knowledge graphs for industrial production lines. In: Proceedings Web Science Conference (WebSci 2017), pp. 425–430. ACM (2017)

    Google Scholar 

  3. Bickford, J., Van Bossuyt, D.L., Beery, P., Pollman, A.: Operationalizing digital twins through model-based systems engineering methods. Syst. Eng. 23(6), 724–750 (2020)

    Article  Google Scholar 

  4. Blochwitz, T.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Modelica Conference, pp. 173–184. The Modelica Association (2012)

    Google Scholar 

  5. Bolpagni, M.: Building information modelling and information management. In: Bolpagni, M., Gavina, R., Ribeiro, D. (eds.) Industry 4.0 for the Built Environment. SI, vol. 20, pp. 29–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82430-3_2

    Chapter  Google Scholar 

  6. Cameron, D.B., Waaler, A., Komulainen, T.M.: Oil and gas digital twins after twenty years. How can they be made sustainable, maintainable and useful? In: Proceedings 59th Conference on Simulation and Modelling (SIMS 59), pp. 9–16. Linköping University Electronic Press (2018)

    Google Scholar 

  7. Delgoshaei, P., Austin, M.A., Veronica, D.A.: A semantic platform infrastructure for requirements traceability and system assessment. In: Ninth International Conference on Systems (ICONS 2014). IARIA, February 2014

    Google Scholar 

  8. Feng, H., Gomes, C., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.: Introduction to digital twin engineering. In: Martin, C.R., Blas, M.J., Inostrosa-Psijas, A. (eds.) Annual Modeling and Simulation Conference, ANNSIM 2021, Virtual Event/Fairfax, VA, USA, 19–22 July 2021, pp. 1–12. IEEE (2021)

    Google Scholar 

  9. Fjøsna, E., Waaler, A.: READI Information modelling framework (IMF). Asset Information Modelling Framework. Technical report, READI Joint Industry Project (2021)

    Google Scholar 

  10. Fraga, A., Llorens, J., Alonso, L., Fuentes, J.M.: Ontology-assisted systems engineering process with focus in the requirements engineering process. In: Boulanger, F., Krob, D., Morel, G., Roussel, J.-C. (eds.) Complex Systems Design & Management, pp. 149–161. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11617-4_11

    Chapter  Google Scholar 

  11. Glimm, B., Krötzsch, M.: SPARQL beyond subgraph matching. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 241–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_16

    Chapter  Google Scholar 

  12. Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C Recommendation (2013). http://www.w3.org/TR/sparql11-entailment/

  13. Gomes, C., Lúcio, L., Vangheluwe, H.: Semantics of co-simulation algorithms with simulator contracts. In: MoDELS (Companion), pp. 784–789. IEEE (2019)

    Google Scholar 

  14. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

    Google Scholar 

  15. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38756-7_4

    Chapter  Google Scholar 

  16. Heaton, J., Parlikad, A.K.: Asset information model to support the adoption of a digital twin: west Cambridge case study. IFAC-PapersOnLine 53(3), 366–371 (2020). 4th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies - AMEST 2020

    Google Scholar 

  17. IEC TC3. IEC 81346–1 Structuring principles and reference designations - Part 1 Basic rules. International Standard IEC 81346–1 Ed. 1, IEC, July 2009

    Google Scholar 

  18. IOGP Jip 36: CFIHOS Standards. https://www.jip36-cfihos.org/cfihos-standards/. Accessed 12 Dec 2021

  19. Kamburjan, E., Johnsen, E.B.: Knowledge structures over simulation units. In: Proceedings SCS Annual Modeling and Simulation Conference (ANNSIM 2022) (2022, in press)

    Google Scholar 

  20. Kamburjan, E., Klungre, V.N., Giese, M.: Never mind the semantic gap: modular, lazy and safe loading of RDF data. In: Proceedings 19th International Conference on the Semantic Web (ESWC 2022), vol. 13261. Lecture Notes in Computer Science, pp. 200–216. Springer (2022). https://doi.org/10.1007/978-3-031-06981-9_12

  21. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Programming and debugging with semantically lifted states. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 126–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_8

    Chapter  Google Scholar 

  22. Kharlamov, E., Martín-Recuerda, F., Perry, B., Cameron, D., Fjellheim, R., Waaler, A.: Towards semantically enhanced digital twins. In: IEEE BigData, pp. 4189–4193. IEEE (2018)

    Google Scholar 

  23. Kostylev, E.V., Grau, B.C.: On the semantics of SPARQL queries with optional matching under entailment regimes. In: ISWC, pp. 374–389 (2014)

    Google Scholar 

  24. Leal, D.: ISO 15926 “Life Cycle Data for Process Plant”: an Overview. Oil Gas Sci. Technol. 60(4), 629–637 (2005)

    Google Scholar 

  25. Lietaert, P., Meyers, B., Van Noten, J., Sips, J., Gadeyne, K.: Knowledge graphs in digital twins for AI in production. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IAICT, vol. 630, pp. 249–257. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85874-2_26

    Chapter  Google Scholar 

  26. Mehmandarov, R., Waaler, A., Cameron, D., Fjellheim, R., Pettersen, T.B.: A semantic approach to identifier management in engineering systems. In: Proceedings International Conference on Big Data (Big Data), pp. 4613–4616. IEEE (2021)

    Google Scholar 

  27. Nigischer, C., Bougain, S., Riegler, R., Stanek, H.P., Grafinger, M.: Multi-domain simulation utilizing SysML: state of the art and future perspectives. Procedia CIRP 100, 319–324 (2021)

    Article  Google Scholar 

  28. Oakes, B.J., Meyers, B., Janssens, D., Vangheluwe, H.: Structuring and accessing knowledge for historical and streaming digital twins. In: Tiddi, I., Maleshkova, M., Pellegrini, T., de Boer, V. (eds.) Joint Proceedings of the Semantics Co-located Events: Poster & Demo Track and Workshop on Ontology-Driven Conceptual Modelling of Digital Twins, vol. 2941. CEUR Workshop Proceedings. CEUR-WS.org (2021)

    Google Scholar 

  29. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

    MATH  Google Scholar 

  30. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (2008). http://www.w3.org/TR/rdf-sparql-query/

  31. READI: Reference Designation System for Oil and Gas - READI (2020)

    Google Scholar 

  32. Rotondi, M., Cominelli, A., Di Giorgio, C., Rossi, R., Vignati, E., Carati, B.: The benefits of integrated asset modelling: lessons learned from field cases. In: Europec/EAGE Conference and Exhibition, OnePetro (2008)

    Google Scholar 

  33. Skjæveland, M.G., Giese, M., Hovland, D., Lian, E.H., Waaler, A.: Engineering ontology-based access to real-world data sources. J. Web Semant. 33, 112–140 (2015)

    Article  Google Scholar 

  34. Smogeli, Ø.R., et al.: Open simulation platform - an open-source project for maritime system co-simulation. In: COMPIT, Technische Universität Hamburg-Harburg (2020)

    Google Scholar 

  35. Sohier, H., Lamothe, P., Guermazi, S., Yagoubi, M., Menegazzi, P., Maddaloni, A.: Improving simulation specification with MBSE for better simulation validation and reuse. Syst. Eng. 24(6), 425–438 (2021)

    Article  Google Scholar 

  36. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE Trans. Ind. Informatics 15(4), 2405–2415 (2019)

    Article  Google Scholar 

  37. W3C, OWL Working Group. Web ontology language. https://www.w3.org/OWL

  38. W3C, RDF Working Group. Resource description framework. https://www.w3.org/RDF

  39. W3C, SHACL Working Group. Shapes constraint language. https://www.w3.org/TR/shacl/

  40. Waszak, M., Lam, A.N., Hoffmann, V., Elvesæter, B., Mogos, M.F., Roman, D.: Let the asset decide: digital twins with knowledge graphs. In: 19th IEEE International Conference on Software Architecture (ICSA 2022). IEEE (2022)

    Google Scholar 

  41. Wei, K., Sun, J.Z., Liu, R.J.: A review of asset administration shell. In: 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1460–1465 (2019)

    Google Scholar 

  42. Wiedau, M., von Wedel, L., Temmen, H., Welke, R., Papakonstantinou, N.: ENPRO data integration: extending DEXPI towards the asset lifecycle. Chem. Ing. Tec. 91(3), 240–255 (2019)

    Article  Google Scholar 

  43. Yan, H., Yang, J., Wan, J.: KnowIME: a system to construct a knowledge graph for intelligent manufacturing equipment. IEEE Access 8, 41805–41813 (2020)

    Article  Google Scholar 

  44. Zhang, J., Luo, H., Xu, J.: Towards fully BIM-enabled building automation and robotics: a perspective of lifecycle information flow. Comput. Ind. 135, 103570 (2022)

    Google Scholar 

  45. Zhou, B., et al.: SemML: facilitating development of ML models for condition monitoring with semantics. J. Web Semant. 71, 100664 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Kamburjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamburjan, E., Klungre, V.N., Schlatte, R., Tarifa, S.L.T., Cameron, D., Johnsen, E.B. (2022). Digital Twin Reconfiguration Using Asset Models. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Practice. ISoLA 2022. Lecture Notes in Computer Science, vol 13704. Springer, Cham. https://doi.org/10.1007/978-3-031-19762-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19762-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19761-1

  • Online ISBN: 978-3-031-19762-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics