
 
 

Delft University of Technology

Robust Adaptive Back-Stepping Control Approach Using Quadratic Lyapunov Functions
for MMC-Based HVDC Digital Twins

Liu, Le; Lekić, Aleksandra; Popov, Marjan

DOI
10.1007/978-3-031-19762-8_9
Publication date
2022
Document Version
Final published version
Published in
Leveraging Applications of Formal Methods, Verification and Validation. Practice - 11th International
Symposium, ISoLA 2022, Proceedings

Citation (APA)
Liu, L., Lekić, A., & Popov, M. (2022). Robust Adaptive Back-Stepping Control Approach Using Quadratic
Lyapunov Functions for MMC-Based HVDC Digital Twins. In T. Margaria, & B. Steffen (Eds.), Leveraging
Applications of Formal Methods, Verification and Validation. Practice - 11th International Symposium, ISoLA
2022, Proceedings (pp. 126-138). (Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13704 LNCS). Springer.
https://doi.org/10.1007/978-3-031-19762-8_9
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-19762-8_9
https://doi.org/10.1007/978-3-031-19762-8_9


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Robust Adaptive Back-Stepping Control
Approach Using Quadratic Lyapunov Functions

for MMC-Based HVDC Digital Twins

Le Liu(B), Aleksandra Lekić, and Marjan Popov

Delft University of Technology, Delft 2628 CD, The Netherlands
{L.liu-7,A.Lekic,M.Popov}@tudelft.nl

Abstract. Due to its excellent performance, VSC-based high voltage direct cur-
rent (HVDC) power systems draw significant attention. They are being heavily
used in modern industrial applications, such as onshore and offshore wind farms,
and for interconnection between asynchronous networks. However, the traditional
proportional-integral (PI) control method is not robust enough to track the refer-
ence signal quickly and accurately during significant system disturbances. This
paper proposes a robust adaptive back-stepping control (BSC)method that secures
vulnerable power-electronic equipment. The adaptive BSC controller regulates the
sum of capacitor energy, and the AC grid current through decoupled and closed
control-loop design. The major advantage of the proposed control approach is
the smooth transient response and accurate tracking ability, which is superior
to classical control methods. In addition, the proposed methods have the merits
of systematic and recursive design methodology and demand a low processing
burden for Lyapunov functions and control laws. Moreover, the implementation
particularities of the proposed approach are illustrated and verified for a power
system digital twin using real-time digital simulator (RTDS).

Keywords: MMC · Energy controller · Nonlinear robust control · Adaptive
back-stepping control · Lyapunov stability · HVDC grids · RTDS · Digital twins

1 Introduction

The Modular Multilevel Converters (MMC) have high reliability, modular structure,
high efficiency, and adequate redundancy. Due to the technical excellence of flexibility
and reliability, the MMC-based HVDC power system is attracting significant attention
in modern industrial applications. It has been increasingly utilized as the solution for
wind farms, STATCOMs, HVDC, and energy storage systems [2].

The most pressing technical challenge of MMC is the simultaneous control of state
variables, including the AC/DC voltage, sum capacitor voltages, and circulating currents
[3]. MMC, being a switching power converter, features a variety of state variables and
complex dynamics, which present nonlinear behaviors [4]. Therefore, to accelerate the
feasibility of the MMC-based HVDC system, MMCs are supposed to utilize advanced
and robust control methods.
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These control approaches can be divided into linear and nonlinear controllers. Cur-
rently, the HVDC system generally adopts a centralized dispatch approach for power
management [5]. The active and reactive power control is usually achieved by imple-
menting the cascaded PI controllers, which can track the set-points without steady-state
errors. The structure is simple and easy to employ.However, the linear-basedPI controller
always encounters complex cascade or parallel structures, and decoupling assumptions
between control variables. The transient response is generally attained after 100 ms,
which is very slow regarding the fast nature of electrical transients in power systems.
Additionally, the selection of proportional and integral gain values is complicated.

Hence, there are many open research topics of advanced nonlinear control strategies,
which can control multiple variables, within allowable safe boundaries and constraints.
One promising approach for nonlinear control of power electronic converters is theBack-
Stepping Control (BSC) method. The BSC has the merits of systematic and recursive
designmethodology. Some approaches are outlined in [6, 7]. A dual-layer back-stepping
control method is reported in [6], where the energy controller delivers the set-point to
the lower layer controller. However, the controller is configured as STATCOM, and the
feasibility of the method in a point-to-point HVDC system is not proven yet. The authors
of [7] designed the BSC method based on the simplified transmission model, and the
interaction of wind farms is also considered. However, due to the imprecision of the
model, the effectiveness of the control needs to be further verified.

This paper proposes an adaptive back-stepping controller for theMMC-basedHVDC
system to overcome the challenges mentioned above. The BSC is used to control ac gird
d-q frame currents. The capacitor energy stored in MMC’s sub-modules is used as the
upper layer control that generates the corresponding set-point for the d-axis grid current.
The reactive grid side power is used to deliver the desired value to the q-axis current.
Additional adaptive terms are introduced for each controlling loop to ensure resiliency
to the influence of the angular frequency and minimize the steady-state variation. With
proper construction of Lyapunov functions and control laws, the system stability is
guaranteed. The RTDS device is used as the testing environment, and the simulation
results present the robustness and effectiveness of the proposed controller.

The outline of this paper is as follows. Section 2 briefly introduces the state variables
of the MMC system. Section 3 presents a detailed design approach of the adaptive BSC.
Section 4 introduces the studied digital twin in theRTDS environment. Section 5 presents
the results of the transient case studies. Finally, meaningful conclusions are provided in
Sect. 6.

2 System Description of MMC

As a basis for the MMC model, the classical MMC configuration is briefly recalled
in Fig. 1, and the stationary reference frame using � − � vector representation is
introduced. For the adaptive BSC method design, this section aims at obtaining the
MMC state variables through simplified steady-state analysis.

In Fig. 1 with N is denoted the number of H-bridge submodules (SMs) in one
arm, the equivalent losses are represented as series inductance Larm and resistance Rarm

forming the connection between DC-terminals and AC-side output. Two identical arms
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are connected to the upper (denoted as U) and lower (denoted as L) DC-terminals,
forming one leg of each phase j ∈ {a, b, c}. The AC-side interface is assumed as an
equivalent resistance and inductance, denoted as Rr and Lr , respectively. Each H-bridge
SM consists of four semiconductor switches (S1, S2, D1 and D2) with the antiparallel
connected capacitor. The voltage across the capacitor of each SM is recorded as vU ,L

Cj ,
where items U and L stand for upper and lower, respectively.

Combined with the switching status, each SM can be controlled in three working
modes: inserted, bypassed, and blocked. With proper control of switching conditions
of all SMs at each phase, one can obtain the multi-level output voltage. In general, the
more inserted SMs, the higher the arm-voltage level.

Sub-modules are considered with their average equivalents, and thus, the modulated
currents iU ,L

Mj and voltages vU ,L
Mj , of the upper and lower arm of a generic phase j, are here

given by the following equations,

vU ,L
Mj = mU ,L

j · vU ,L
Cj , iU ,L

j = mU ,L
j · iU ,L

Cj , (1)

where mU ,L
j are called the modulation indices of the upper and lower arms for all three

phases. Values vU ,L
Cj and iU ,L

Cj are the voltages and currents of the upper and lower arm
equivalent capacitances.

As mentioned before, the state-space modeling adopted in this work uses the � −�

representation instead of commonly used Upper-Lower (U-L) form. More precisely,
under the � − � nomenclature, it is possible to propose four state- and four control
variables for the presented MMC topology. It is worthwhile mentioning that the � vari-
ables are associated with the fundamental angular frequency ω, and the third harmonic
3ω components. In comparison, the

∑
variables are associated with −2ω harmonics

and contain a DC component.
For this converter’s model, the aforementioned � − � variables in the upper and

lower arms can be represented as follows [8],

v�
Cj = (vUCj − vLCj)

/
2, v

∑

Cj = (vUCj + vLCj)
/
2,

m�
j = mU

j − mL
j , m

∑

j = mU
j + mL

j ,

v�
Mj = (−vUMj + vLMj)

/
2 = −(m�

j v
∑

Cj + m
∑

j v�
Cj)

/
2,

v
∑

Mj = (vUMj + vLMj)
/
2 = (m

∑

j v
∑

Cj + m�
j v

�
Cj)

/
2.

(2)

For the MMC configuration in Fig. 1, we define the AC-gird currents dynamics i�j and

circulating currents dynamics i
∑

j for three-phase as:

i�j = iUj − iLj , i
∑

j = (iUj + iLj )
/
2. (3)

Applying the Kirchhoff voltage law (KVL) to the MMC equivalent circuit depicted
in Fig. 1, we immediately obtain the grid currents and circulating currents dynamics as:

Laceq
d
dt (

�i�j ) = �v�
Mj − Rac

eq
�i�j − �vGj ,

Larm
d
dt (

�i�j ) = vdc
2 − �v�

Mj − Rarm�i�j ,
(4)
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where, Laceq and R
ac
eq are the equivalent inductor and resistor in the AC control loop, which

can be expressed as Laceq = Larm
/
2 + Lr and Rac

eq = Rarm
/
2 + Rr , respectively. �v�

Mj is

the modulated voltage at the interfacing point between MMC and AC-grid side, and �vGj
are the balanced AC-grid voltages.

Fig. 1. Schematic diagram of MMC topology.

The Park’s transformation and the inverse Park’s transformation at ω angular fre-
quency are applied to determine the dynamics of the state variables in d-q frame, which
are given with formula as,

Pnω(t) = 2
3

⎡

⎣
cos(nωt) cos(nωt − 2π

/
3) cos(nωt − 4π

/
3)

sin(nωt) sin(nωt − 2π
/
3) sin(nωt − 4π

/
3)

1
2

1
2

1
2

⎤

⎦,

P−1
nω (t) = 3

2P
T
nω(t) + 1

2

⎡

⎣
0 0 1
0 0 1
0 0 1

⎤

⎦,

(5)

where n = 1 for the “�” variables, whereas n = 2 for the “
∑

” variables.
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By Park’s transformation, one can obtain the dynamics of grid current �i�dq and
circulating currents:

d
dt (

�i�dq) = 1
Laceq

(�v�
Mdq − (ωLaceqJ2 + Rac

eqI2)�i�dq − �vGdq),
d
dt (

�i
∑

dq) = − 1
Larm

(�v
∑

Mdq + (RarmI2 − 2ωLarmJ2)�i
∑

dq),
, (6)

where, �v�
Mdq and �v

∑

Mdq are themodulated voltages in grid current controller and circulating
current controller, respectively. I2 is the identity matrix with size 2×2, and J2 is defined
as:

J2 =
[

0 1
−1 0

]

. (7)

3 Modeling of the Proposed Adaptive Backstepping Control

This section covers the modeling of the MMC’s output current controlling loop utilizing
the proposed adaptive BSC methods. Furthermore, the Lyapunov stability analysis is
provided as a measure of the system’s stability.

3.1 Output Current Control

This control layer contains two control targets, which are the d-q frame grid currents
i�d and i�q . It is worthwhile to highlight that the energy stored in the capacitor of each
MMC’s sub-module can be used as an exchanged energy between the DC and AC sides
and provide a virtual reference for the state variable i�d . Therefore, the state variables
vector �x and control variables vector �u can be defined as follows,

�x = [
x1 x2 x3

]T= [Wz i�d i�q ]T ,

�u = [
u1 u2

]T =
[
v�
Md v�

Mq

]T
,

(8)

where Wz represents the sum of the stored energy in SMs and can be calculated as
Wz = 3C(Vdc)

2
/
N , and C is the capacitance of each sub-module.

Then, the MMC’s dynamics described in Sect. 2 can be presented as,

ẋ1 = Pac − Pdc = 3
2u

G
d i

�
d − Pdc,

ẋ2 = 1
Laceq

(v�
Md − Rac

eqi
�
d − ωLaceqi

�
q − vGd ),

ẋ3 = 1
Laceq

(v�
Mq − Rac

eqi
�
q + ωLaceqi

�
d − vGq ).

(9)

To analyze the system Lyapunov stability, the error variables e and their time
derivatives are defined as follows,

e = [
e1 e2 e3

]T = [
Wzref − Wz ev − x2 e3 − x3

]T
,

ė = [
ė1 ė2 ė3

]T = [
Ẇzref − Ẇ ėv − ẋ2 ė3 − ẋ3

]T
,

(10)



Robust Adaptive BSC Approach Using Quadratic Lyapunov Functions 131

where ev is the virtual control variable, which corresponds to the desired value of the
state variable x2.

Now let us define the following Lyapunov function:

V(x) = 1

2
e21 + 1

2
e22 + 1

2
e23. (11)

It is straightforward to conclude that V(x) is positive for all e1, e2, e3 �= 0, and
V(x) = 0 is met only in the condition that e1, e2, e3 = 0, which means that the system
is operating in a steady-state. According to Lyapunov’s direct method [10], the transient
stability analysis is used to determine whether the Lyapunov function is decreasing along
the system’s trajectories. Given that the constructed Lyapunov function is differentiable
everywhere, we need to prove that the time derivative of Lyapunov function is negative
everywhere except in the origin (steady-state) where it is zero.

The negative derivatibe V̇(x) can be expressed as follows,

V̇(x) =e1ė1 + e2ė2 + e3ė3. (12)

Let us first consider the item e1ė1. The ė1 can be expressed as ė1 = Ẇzref −
3vGd i

�
d

/
2+Pdc according to Eq. (9). Notice that theWzref is a constant, which gives its

derivative Ẇzref being 0. To ensure e1ė1 is strictly negative, we can define the item ė1 as
−k1e1. Thus, the desired value of i�d , which refers to the variable ev, should be:

ev = 2(k1e1 + Pdc)
/
3vGd . (13)

Therefore, e1ė1 is always negative and can be expressed as −k1e21 for k1 > 0, where
one can obtain:

V̇(x) = e1(−3vGd (ev − e2)
/

2 + Pdc) + e2ė2 + e3ė3

= − k1e
2
1 + e2(ė2 − 3e1v

G
d

/
2) + e3(i̇

�
qref − (v�

Mq − Rac
eqi

�
q + ωLaceqi

�
d − vGq )

/
Laceq) (14)

If the following conditions are satisfied and we guarantee that k2,k3 > 0, then
V̇(x) < 0 if:

ė2 − 3e1vGd
/
2 = −k2e2,

i̇�qref − (v�
Mq − Rac

eqi
�
q + ωLaceqi

�
d − vGq )

/
Laceq = −k3e3.

(15)

Up to this point, we have proved the time derivative of Lyapunov function is strictly
negative everywhere, which can be expressed as: V̇(x) = −k1e21 − k2e22 − k3e23 < 0.
The control variables v�

Md and v�
Mq are then:

v�
Md = Laceq(i̇

�
dref + k2e2 − 3e1vGd

/
2) + Rac

eqi
�
d + ωLaceqi

�
q + vGd ,

v�
Mq = (i̇�qref + k3e3)Laceq + Rac

eqi
�
q − ωLaceqi

�
d + vGq .

(16)

However, when the system is subjected to AC/DC faults or sudden changes of
active/reactive power, the angular frequency ω of the AC system will be affected to
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some extent, which affects the accuracy of the Lyapunov function and affects the track-
ing ability of the BSC controller. Therefore, adaptive control is introduced in our work.
We can use the estimated value ω̂dq as the adaptive rate of the system frequency to
replace ω. The corresponding tracking errors of the frequency ω can be defined as:

eωdq = ω − ω̂dq, ėωdq = ω̇ − ˙̂ωdq, (17)

where ω̇ is considered 0 in this paper. This gives the new condition for v�
Md and v�

Mq:

v�
Md = Laceq(i̇

�
dref + k2e2 − 3e1vGd

/
2) + Rac

eqi
�
d + ω̂Laceqi

�
q + vGd ,

v�
Mq = (i̇�qref + k3e3)Laceq + Rac

eqi
�
q − ω̂Laceqi

�
d + vGq .

(18)

Then, the time derivative of the updated Lyapunov function can be expressed as,

V̇(x) =e1ė1 + e2ė2 + e3ė3 + eωd ėωd + eωqėωq

= − k1e
2
1 − k2e

2
2 − k3e

2
3 + e2(ω̂d − ω)Laceqi

�
q + eωd ėωd + e3(ω̂q + ω)Laceqi

�
d + eωqėωq

= − k1e
2
1 − k2e

2
2 − k3e

2
3 − eω( ˙̂ωd + e2L

ac
eqi

�
q ) − eω( ˙̂ωq − e3L

ac
eqi

�
d ). (19)

In this case, we canmake sure that the items ˙̂ωd +e2Laceqi
�
q and ˙̂ωq−e3Laceqi

�
d are zero.

Thus, the derivative V̇(x) is negative semi-definte (NSD), which is V̇(x) ≤ 0, where one
can obtain that:

ω̂d = −
∫

e2L
ac
eqi

�
q dt, ω̂q =

∫

e3L
ac
eqi

�
d dt. (20)

Up to this point, the instability brought by the transient frequency of the system
ω has been eliminated. To further eliminate the steady-state errors, additional adaptive
terms θd and θq are considered [1], which can be expressed as,

θd = −kdi

∫

e2dt, θq = −kqi

∫

e3dt, (21)

where the kdi and kqi are the control gains of the adaptive terms. It is noted that all
adaptive terms would be zero in the steady-state.

With the adaptive terms, the BSC method can bring the system to a new steady-state
with fewer overshoots and undershoots. Therefore, the control variables v�

Md and v�
Mq

with the proposed adaptive BSC method are obtained:

v�
Md = Laceq(i̇

�
dref + k2e2 − 3e1vGd

/
2) + Rac

eqi
�
d − Laceqi

�
q (

∫
e2Laceqi

�
q dt) + vGd θd − kdi

∫
e2dt,

v�
Mq = (i̇�qref + k3e3)Laceq + Rac

eqi
�
q − Laceqi

�
d (

∫
e3Laceqi

�
d dt) + vGq − kqi

∫
e3dt.

(22)

The OCC is carefully designed and its design guarantees stability because the time
derivative of Lyapunov function V̇(x) is strictly negative.
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3.2 Other Controlling Loops

Since the BSC method is more suitable for higher-order systems, the circulating current
suppression controller (CCSC) in this paper implements traditional PI control. TheCCSC
is constructed to set the circulating current to its reference, which is assumed to be
�i
∑

dq,ref = [0 0]T . The specific equations of CCSC adopted in this paper are presented as
follows [6],

�̇ξ
∑

dq = �i
∑

dq,ref −�i
∑

dq ,

�v
∑

Mdq,ref = −K
∑

I
�ξ
∑

dq − K
∑

P (�i
∑

dq,ref −�i
∑

dq) + 2ωLarmJ2�i
∑

dq ,
(23)

where the proportional gain KP is set to 0.8 p.u., the integral gain KI is set to 0.0125 p.u.
[6] in this paper.

The reference value i�q,ref for the q-axis grid current is provided by variation of the
reactive power Qac of AC gird. The reactive power control can be designed using the
equations as follows,

ξ̇Q = Qac,ref − Qac,

i�q,ref = −KP,Q(Qac,ref − Qac) + KI ,QξQ,
(24)

where the KP and KI are the control gain of the reactive power controller.
Up to this point, the overall control scheme for the MMC is described in Fig. 2.

DC Side 
Connection

AC Side 
Connection

Insertion indices 
calculation 

MMC 
Converter

,U L
jm

dq0/abc
Mjv
Mjv

dcvdcv

Back-stepping 
controller

Mdqv

CCSC Eq.(23)

Energy 
controller

dcP

Mdqv

dq0/abc

ji ji
dqi

,dq refi

PI Eq.(24)
,q refi

G
jv

G
dqv

1( )zW x

1( )di x 2( )qi x

acQ

PLL

jv

zrefW
, 1( )d ref vi e

Fig. 2. Schematic diagram of a back-stepping controller for MMC.

4 Studied HVDC Digital Twin

To demonstrate the capabilities of the proposed adaptive BSC method, a point-to-point
±525 kV HVDC system is modeled in the RTDS test platform as a digital twin. The
configuration of the system is given in Fig. 3.
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ac grid1
MMC1 MMC2

ac grid2

Bus C1 Bus C2

Cable 200km

400/250
Y/D

250/400
D/Y

1000MW 1000MW

Back-stepping 
Control

P/Q Control

±525kV

Fig. 3. Topology of the HVDC digital twin

Among the different models provided in RSCAD, the “rtds_vsc_MMC5” model is
specified to evaluate the proposed controller in this paper. The chosen MMC RSCAD
model is the Average ArmModel (AAM) with H-bridge configuration [9]. The specified
model is suitable for testing outer control strategies [5]. The model consists of the
automatic balancing algorithm for submodule capacitor voltages, which runs a small
time-step between 1.2–1.5 µs.

The AC grid is linked with the MMC through a star/delta transformer, where the AC
grid1 is working as sending end with nominal active power of 1000 MVA and AC grid2
as the receiving end. The AC transformer’s star point is solidly grounded. The parameter
rating of the transformer can be seen in Table 1. The series current limiting inductors are
positioned at the outlets of DC cable lines, with the same inductance of 120 mH. The
sampling frequency is standardized as 96 kHz following the recommendation of IEC
61869-9 1 [1]. The detailed parameters and nominal values of the studied HVDC digital
twin are given in Table 1.

Table 1. Parameters of point-to-point MMC-HVDC verification system

Item MMC1 MMC2

Rated active power/MW 1000 1000

Nominal DC voltage/kV ±525 ±525

Nominal frequency/Hz 60 60

Transformer ratio (Yg/D) 400/250 400/250

Transformer reactance/pu 0.18 0.18

Number of SMs per arm 512 512

Arm resistance/� 0.08 0.08

Arm reactor/mH 0.042 0.042

DC inductor/mH 120 120

In this paper, only MMC1 is simulated with the proposed BSC method and taken
as the studied converter in the analysis. The MMC2 is regulated using classical PI
controllers with an active/reactive power control strategy. The control modes of each
MMC converter and control gains of the studied system are presented in Table 2.
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Table 2. Control mode and parameters of converters

Converter Control mode Parameters

MMC1 Adaptive back-stepping control (p.u.) K1 = 13

K2 = 10 Kdi = 0.01

K3 = 5 Kqi = 0.125

Q-control (p.u.) KP = 2.0 KI = 0.3

MMC2 P-control (p.u.) KP = 2.0 KI = 0.15

Q-control (p.u.) KP = 2.0 KI = 0.3

5 Effectiveness of the Proposed Control Method

In this section, we present the simulation results when the proposed BSC method is
applied for the control of MMC. In addition, we compare the transient response of the
proposed adaptive BSC with the classical PI methods to illustrate the major contribution
of this paper. For a typical application of the HVDC system, active and reactive power
reference signals are requested to be constant in a steady state. The test case carried out
in the RTDS environment is the step change in active power from 0 p.u. to 0.5 p.u. at t0
= 0.2 s and increases to 0.7 p.u. at t1 = 1.2 s.

The detailed results are presented in Figs. 4 and 5. Figure 4(a) provides the results
of energy controller. The capacitor energy Wz initials at 0.9 p.u. since the active power
equals zero at this time instance. At the instant t = t0, the active power reference expe-
riences a step increase to 0.5 p.u., the SM capacitors of MMC1 start to charge, and the
energy Wz gradually increases to the rated value. During the two-step changes, Wz is
always comprised near the reference value, and hence, no energy overshoots are notice-
able, which demonstrates the desired ability of the energy controller of delivering a
precise reference signal to the d-axis gird current. Figure 4(b) is a good illustration
of the tracking performance of i�d and its virtual reference signal ev1. It is concluded
that the current i�d and error ev1 are well controlled during these transients at the time
instances t0 and t1, which completely overlap with each other without perceptible under-
shoots or overshoots. This constitutes the strength of the proposed BSC method, as the
fast response is ensured for the grid currents. The entire transient process of each step
changes only last for 10 ms. According to Fig. 4(b), the results strongly confirm the
BSC method’s superiority over the PI controller in control accuracy and tracking speed.
Figure 4(c) provides the results of the q-axis current i�q and its reference signal i�qref .
Due to the decoupling control design, the step changes in active power will not cause a
significant impact on i�q , and after a short transient process, i

�
q is tuned in alignment with

its rated value. Since the reference signal for the q-axis current is provided by the upper
reactive power controller, the BSC method has similar results with the PI control. The
simulation results of control variables can be observed in Fig. 4(d). The active power
step-changes at the time instants t0 and t1 will not cause noticeable changes in voltages
v�
Md and v�

Mq, and their values are equal to rated values.
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1t
0t

Fig. 4. Simulation results. (a) Energy controller (b) d-axis current (c) q-axis current (d) Control
variables.

1t
0t

Fig. 5. Simulation results. (a) Active power (b) Reactive power (c) DC side voltage (d) AC grid
voltage.

Figure 5(a) provides the active power on theACgrid, which has initial value 0 p.u and
increases smoothly to the new steady-state without the phenomenon of oscillations and
overshoots. However, it is obvious that the transient response of active power controlled
by PI is slower and contains noticeable oscillations, which is caused by the inaccurate
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control of i�d presented in Fig. 5(b). The reactive power presented in Fig. 5(b) only
exhibits a small decay at the instant of step-change and restores to 1 p.u. promptly. It is
also marked that the DC voltage in Fig. 5(c) is aligned with the trends of active power,
the value is always around the 1 p.u., and the BSC method causes smaller fluctuations.
The Root-Mean-Square (RMS) value of AC gird observed in Fig. 5(d) is less affected
by the step changes of active power, and hence, no saturation effects are evident.

In Fig. 6, the steady state operation during time interval 1.8 s–1.85 s is presented. It
is observed that all the values of errors variables and Lyapunov function are clearly very
small during the operation in steady state, which shows the accuracy of the designed
controller.

Fig. 6. Simulation results. (a) Error e1 (b) Error e2 (c) Error e3 (d) Lyapunov function.

6 Conclusion

In this article, a non-linear control strategy relying on an adaptive BSC method was
proposed. The Lyapunov theory is applied to stabilize theMMC’s operation with several
strict-feedback structures. These feedback structures includeDCvoltage, reactive power,
andMMCarm capacitor energy controllers. To simplify the controller designing, the abc
frame is transformed into decoupled d-q representation, which simplifies the proposed
approach. A virtual control parameter is designed as the reference signal for the d-
axis grid current, which is provided by the upper layer energy controller. Numerous
simulations are carried out in the RTDS simulation environment for determining the
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control laws. The proposed adaptive BSC method is comprehensively evaluated for a
classic point-to-point HVDC power system digital twin. In addition, the robustness of
the proposed BSCmethod was precisely evaluated through a specific transient case. The
results strongly support the superiority of the control strategy in stabilizing the MMC
operation during transients.
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