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Abstract. Estimating 3D human pose and shape from 2D images is
a crucial yet challenging task. While prior methods with model-based
representations can perform reasonably well on whole-body images, they
often fail when parts of the body are occluded or outside the frame.
Moreover, these results usually do not faithfully capture the human sil-
houettes due to their limited representation power of deformable models
(e.g., representing only the naked body). An alternative approach is to
estimate dense vertices of a predefined template body in the image space.
Such representations are effective in localizing vertices within an image
but cannot handle out-of-frame body parts. In this work, we learn dense
human body estimation that is robust to partial observations. We ex-
plicitly model the visibility of human joints and vertices in the x, y,
and z axes separately. The visibility in x and y axes help distinguishing
out-of-frame cases, and the visibility in depth axis corresponds to occlu-
sions (either self-occlusions or occlusions by other objects). We obtain
pseudo ground-truths of visibility labels from dense UV correspondences
and train a neural network to predict visibility along with 3D coordi-
nates. We show that visibility can serve as 1) an additional signal to
resolve depth ordering ambiguities of self-occluded vertices and 2) a reg-
ularization term when fitting a human body model to the predictions.
Extensive experiments on multiple 3D human datasets demonstrate that
visibility modeling significantly improves the accuracy of human body
estimation, especially for partial-body cases. Our project page with code
is at: https://github.com/chhankyao/visdb.

1 Introduction

Estimating 3D human pose and shape from monocular images is a crucial task
for various applications such as performance retargeting, virtual avatars, and
human action recognition. It is a fundamentally challenging problem due to the
depth ambiguity and the complex nature of human appearances that vary with
articulation, clothing, lighting, viewpoint, and occlusions. To represent the com-
plicated 3D human bodies via compact parameters, model-based methods like
SMPL [24] have been widely used in the community. However, SMPL param-
eters represent human bodies in a holistic manner, causing their limited flexi-
bility to fit real-world images faithfully via direct regression. More importantly,
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Fig. 1. Dense human body estimation with/without visibility modeling. We
propose to learn dense visibility to improve human body estimation in terms of faith-
fulness to the input image and robustness to truncation (top) or occlusions (bottom).
We show the estimated meshes without/with visibility modeling in columns 2-3 and
the vertex visibility labels in columns 4-5 (purple:visible, orange:invisible).

the regression-based methods tend to fail when a human body is not fully vis-
ible in the image, e.g., occluded or out of frame [16]. In this work, we aim to
learn human body estimation that is faithful to the input images and robust to
partial-body cases.

Instead of directly regressing SMPL parameters, we train a neural network
to predict the coordinate heatmaps in three dimensions for each human joint
and mesh vertex. The dense heatmap-based representation can preserve the spa-
tial relationship in the image domain and model the uncertainty of predictions.
It is shown to be effective in localizing visible joints/vertices and flexible to fit
an input image faithfully [39,27,28,29]. Nonetheless, the x and y-axis heatmaps
are defined in the image coordinates, which cannot represent the out-of-frame
(i.e., truncated by image boundaries) body parts. In addition, occlusions by ob-
jects or the human body itself could cause ambiguity for depth-axis predictions.
Without knowing which joints/vertices are visible, the network tends to produce
erroneous outputs on partial-body images. To address this, we propose Visibility-
aware Dense Body (VisDB), a heatmap-based dense representation augmented
by visibility. Specifically, we train a network to predict binary truncation and
occlusion labels along with the heatmaps for each human joint and vertex. With
the visibility modeling, the proposed network can learn to make more accurate
predictions based on the observable cues. In addition, the vertex-level occlusion
predictions can serve as a depth ordering signal to constrain depth predictions.
Finally, by using visibility as the confidence of 3D mesh prediction, we demon-
strate that VisDB is a powerful intermediate representation which allows us
to regress and/or optimize SMPL parameters more effectively. In Figure 1, we
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show examples of truncation and occlusions as well as the dense human body
estimations with and without visibility modeling.

Considering that most existing 3D human datasets lack dense visibility an-
notations, we obtain pseudo ground-truths from dense UV estimations [8]. Given
the estimated UV map of an image, we calculate the pixel-to-vertex correspon-
dence by minimizing the distance of their UV coordinates. Each vertex mapped
to a human pixel is considered visible, and vice versa. Note that this covers the
cases of truncation, self-occlusions, and occlusions by other objects. We further
show that the dense vertex-to-pixel correspondence provides a good supervisory
signal to localize vertices in the image space. Since dense UV estimations are
based on part-wise segmentation masks which are robust to partial-body images,
the dense correspondence loss can mitigate the inaccurate pseudo ground-truth
meshes and better align the outputs with human silhouettes. To demonstrate
the effectiveness of our method, we conduct extensive experiments on multiple
human datasets used by prior arts. Both qualitative and quantitative results on
the Human3.6M [12], 3DPW [25], 3DPW-OCC [25,45], and 3DOH [45] datasets
show that learning visibility significantly improves the accuracy of dense human
body estimation, especially on images with truncated or occluded human bodies.

The main contributions of our work are:

– We propose VisDB, a heatmap-based human body representation augmented
with dense visibility. We train a neural network to predict the 3D coordinates
of human joints and vertices as well as their truncation and occlusion labels.
We obtain pseudo ground-truths of visibility labels from image-based dense
UV estimates, which are also used as additional supervision signal to better
align our predictions with the input image.

– We show how the dense visibility predictions can be used for robust human
body estimation. First, we exploit occlusion labels to supervise vertex depth
predictions. Second, we regress and optimize SMPL parameters to fit VisDB
(partial-body) outputs by using visibility as confidence weighting.

2 Related Work

Model-based human body estimation. Most existing methods on human
body estimation adopt a model-based representation. For instance, SMPL [24]
is a widely-used statistical human body model that maps a set of pose θ ∈ R72

and shape β ∈ R10 parameters to a 3D human mesh V ∈ R6890×3. In SMPL, θ
represents the axis-angle 3D rotations of 24 joints, and β is the top-10 PCA co-
efficients of a statistical human shape space. Early methods iteratively optimize
the SMPL parameters to fit the estimated 2D keypoints [2] or silhouettes [20].
Several recent works [13,35,31,34,17,19] train a deep neural network to directly
regress SMPL parameters from an input image. However, the SMPL represen-
tation is not always informative enough for a network to learn as it embeds the
articulated body shapes in a low dimensional space. The regression-based meth-
ods often fail on truncation and occlusion cases since the networks tend to make
holistic predictions based on certain body parts only [16]. Instead, we show that
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localizing 3D vertices is a more suitable task to learn for such scenarios. The
network needs to learn the relationship between the parameters and the shape
as well in order to estimate accurate SMPL parameters.
Dense human body representations. To fit the complicated shapes more
faithfully, dense human body representations have been proposed, including vol-
umetric space [41], occupancy field [37,38], dense UV correspondence [1,44], and
3D mesh [18,4,29,21,22]. Among these methods, I2L-MeshNet [29] proposes an
efficient heatmap representation to estimate human joints and vertices in the
image space and root-relative depth axis. It can fit the input images accurately
since heatmaps preserve the spatial relationship in image features extracted by a
convolutional neural network (CNN). Nonetheless, even when certain body parts
are not visible in the image, this model is designed to localize all the joints and
vertices within the image frame. We show that it can negatively affect the model
performance and emphasize the importance of additional visibility information.
Occlusion-aware methods. Several methods have been proposed to deal with
the challenging scenarios where human bodies are partially truncated or oc-
cluded. Muller et al. [30] and Hassan et al. [9] introduce explicit modeling of hu-
man body self-contact and human-scene interactions, respectively. These meth-
ods require ground-truth annotations which are hard to obtain. Other methods
leverage human-centric heatmaps, part segmentation masks, or dense UV esti-
mations [8], to increase the model robustness on truncated images [36], crowded
scenes (occluded by other people) [40] or general occlusions [43,7,45,16]. Al-
though effective in particular scenarios, most of them directly regress SMPL pa-
rameters which still suffer from the limited representation strength. To the best
our our knowledge, the proposed VisDB representation is the first to explicitly
model dense human body visibility (including truncation and all occlusion sce-
narios), which is trained with pseudo ground-truth visibility labels from dense
UV estimates.

3 Approach

We illustrate our overall framework in Figure 2. In Section 3.1, we describe
a heatmap-based representation which we build our method upon. Then, we
introduce the proposed Visibility-aware Dense Body (VisDB) in Section 3.2.
Each human joint and mesh vertex is represented by 1) three 1D heatmaps
(x, y, z dimensions) which define its 3D coordinate and 2) three binary labels
indicating its visibility in three dimensions. We train a network model to predict
the dense heatmaps and visibility, which represents a partial body faithful to
the input image. The visibility estimations can be interpreted as depth ordering
signals or prediction confidence. In Section 3.3, we design a visibility-guided
depth ordering loss to self-supervise depth estimation. In Section 3.4, we show
that VisDB outputs can be used to fit SMPL models accurately and efficiently.
We train a regression network to estimate SMPL parameters based on the joint
and vertex coordinates as well as their visibility labels. During inference, we
initialize the SMPL parameters by the regressor and further optimize them to
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Fig. 2. VisDB framework overview (best viewed in color). Given an input image,
the network extracts features in the image and depth coordinates, from where we
predict the x, y, z heatmaps for each human joint and vertex. In addition, we predict a
binary visibility label (purple:visible, orange:invisible) of each axis, i.e., x-truncation,
y-truncation, To obtain a more regularized and complete human body, we train a
regression network to estimate SMPL parameters based on the dense 3D coordinates
and visibility. At test time, we can further optimize the regressed SMPL parameters
to fit the partial-body predictions from heatmaps.

align with the VisDB predictions. Finally, in Section 3.5, we exploit dense UV
correspondence to obtain robust pseudo labels of visibility and weakly supervise
vertex localization in the image space.

3.1 Preliminaries: Heatmap-based Representation

Given an input image, a prior heatmap-based method [29] estimates three 1D
heatmaps H = {Hx, Hy, Hz} for each human joint and mesh vertex. The x and
y-axis heatmaps Hx, Hy are defined in the image space, and the z-axis heatmaps
Hz are defined in the depth space relative to root joint. We denote the joint
heatmaps as HJ ∈ RNJ×D×3 and vertex heatmaps as HV ∈ RNV ×D×3, where
NJ is the number of joints, NV is the number of vertices, and D is the heatmap
resolution. The heatmaps are predicted based on image features F ∈ Rc×h×w

extracted by a backbone network as follows:

Hx = f 1D,x(avgy(f up(F ))),

Hy = f 1D,y(avgx(f up(F ))),

Hz = f 1D,z(ψ(avgx,y(F )))),

(1)

where f1D,i is 1-by-1 1D convolution for the i-th axis heatmaps, avgi is i-axis
marginalization by averaging, f up denotes up-sampling by deconvolution, and ψ
is a 1D convolution layer followed by reshaping operation. Finally, the continuous
3D coordinates of joints J ∈ RNJ×3 and vertices V ∈ RNV ×3 can be obtained by
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applying soft-argmax on the discrete heatmaps HJ and HV , respectively. More
details can be found in [29] and supplementary material.

3.2 Visibility-aware Dense Body

Heatmap-based representations are shown effective in estimating human bodies
in the image space. However, they often fail when the human bodies are occluded
or truncated since the predictions are based on spatial image features and limited
by the image boundaries. Without knowing which joints/vertices are invisible,
fitting a SMPL model on the entire body tends to generate erroneous outputs. To
deal with more practical scenarios where only partial bodies are visible, we make
the following adaptations to a heatmap-based representation: 1) To augment the
x and y-axis heatmaps, we predict binary truncation labels Sx, Sy, indicating
whether a joint or vertex is within the image frame, 2) For the z-axis heatmaps,
we predict a binary occlusion label Sz which specifies the depth-wise visibility.
The visibility labels are predicted in a similar fashion as the heatmaps in Eq. (1):

Sx = σ(avgx(g1D,x(avgy(f up(F ))))),

Sy = σ(avgy(g1D,y(avgx(f up(F ))))),

Sz = σ(avgz(g1D,z(ψ(avgx,y(F ))))),

(2)

where g1D is a 1-by-1 1D convolutional layer similar to f1D and σ is a sigmoid op-
erator. We then concatenate the {Sx, Sy, Sz} predictions to obtain joint visibility
SJ ∈ RNJ×3 and vertex visibility SV ∈ RNV ×3. By applying the soft-argmax op-
erators to the predicted 1D heatmaps, the final output of our network becomes
{J, V, SJ , SV }, referred to as Visibility-aware Dense Body (VisDB). With the
visibility information, the network model can learn to focus on the visible body
parts and push the invisible parts towards the image boundaries. In our exper-
iments (Table 3), we demonstrate that visibility modeling significantly reduces
the errors of visible vertices. Moreover, the visibility labels can be seen as the
confidence of coordinate predictions, which are essential to mesh regularization
and completion via SMPL model fitting as described in Section 3.4.

We denote the ground-truth VisDB as {J∗, V ∗, SJ
∗, SV

∗} and train the net-
work by using the following losses. The joint coordinate loss Ljoint is defined as:

Ljoint = ∥J − J∗∥1. (3)

The vertex coordinate loss Lvert is defined as:

Lvert = ∥V − V ∗∥1. (4)

We also regress the joints from vertices using a pre-defined regressor W ∈
RNV ×NJ and calculate a regressed-joint loss Lr−joint:

Lr−joint = ∥WV − J∗∥1. (5)
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Similar to [29], we apply losses on the mesh surface normal and edge length as
shape regularization. The normal loss Lnorm and edge loss Ledge are:

Lnorm =
∑
f

∑
{vi,vj}⊂f

∣∣∣〈 vi − vj
∥vi − vj∥2

, nf
∗
〉∣∣∣, (6)

Ledge =
∑
f

∑
{vi,vj}⊂f

∣∣∣∥vi − vj∥2 − ∥vi∗ − vj
∗∥2

∣∣∣, (7)

where f is a mesh surface, nf is the unit normal vector of f, and vi, vj are the
coordinates of vertex i and j, respectively. Finally, we define the joint and vertex
visibility loss Lvis with binary cross entropy (BCE):

Lvis = BCE(SJ , SJ
∗) + BCE(SV , SV

∗). (8)

The VisDB prediction is illustrated in Figure 2 (left).

3.3 Resolving Depth Ambiguity via Visibility

Vertex-level visibility can not only be seen as model confidence for SMPL fitting
but also provide depth ordering information. Intuitively, visible vertices should
have lower depth value compared to the invisible vertices projected to the same
pixel. We observe that VisDB network generally predicts accurate 2D coordinates
and visibility, but sometimes fails at depth predictions when the human body
occludes itself and the pose is less common in the training datasets. To resolve
the depth ambiguity in self-occlusion cases, we propose a depth ordering loss
Ldepth based on vertex visibility as follows:

Ldepth =
∑
x

∑
y

ReLU
(

max
v∈Q(x,y)

vz − min
v∈Q(x,y)

vz
)
, (9)

where Q(x, y) is the set of vertices projected to a discretized image coordinate
(x, y) which belong to the front (occluding) part, and Q contains the vertices of
the back (occluded) part(s). The definition can be written as:

Q(x, y) =
{
v
∣∣v 7→ (x, y) ∧ P (v) = p∗(x, y)

}
Q(x, y) =

{
v
∣∣v 7→ (x, y) ∧ P (v) ̸= p∗(x, y)

}
,

(10)

where 7→ denotes the discrete projection and P (v) is the part label of vertex v
defined in DensePose [8]. We define the front part p∗(x, y) by finding the vertex
with highest z-axis visibility score sz as:

p∗(x, y) = P
(
argmax
v 7→(x,y)

sv
z
)
. (11)

Ldepth is designed to push the self-occluded part(s) Q to the back and non-
occluded part Q to the front, where the occlusion information is given by the
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z-axis visibility. Note that we compare the maximum depth (back side) of Q and
the minimum depth (front side) of Q, and thus Ldepth will be nonzero if the
depth ordering disagrees with occlusion prediction and zero if the parts do not
overlap anymore. Since this loss depends on accurate visibility estimations, we
only apply it during the fine-tuning stage.

3.4 SMPL Fitting from Visible Dense Body

From the VisDB predictions, we can obtain the 3D coordinates and visibility
of human joints and vertices. While the partial-body outputs are faithful to the
input image from the front view, they sometimes look abnormal from a side
view or contain rough surfaces. To regularize the body shape and complete the
truncated parts, we perform model fitting on the visible dense body predictions.
Given the coordinates and visibility of joints and vertices, we train a regression
network to estimate SMPL pose θ ∈ R72 and shape β ∈ R10 parameters. The
regressed parameters are then forwarded to the SMPL model to generate the
mesh coordinates denoted as SMPL(θ, β) ∈ RNV ×3. Unlike prior art [29] which
regresses a SMPL model from all the joints regardless of their visibility, our
VisDB representation allows us to fit the visible partial body only. The training
objectives of the SMPL regressor include SMPL parameter error, vertex error,
joint error, and the negative log-likelihood of a pose prior distribution. The
SMPL parameter loss Lsmpl is defined as:

Lsmpl = ∥θ − θ∗∥1 + ∥β − β∗∥1, (12)

where θ∗ and β∗ are the ground-truth pose and shape parameters. The SMPL
vertex loss Lsmpl−vert and joint loss Lsmpl−joint are defined similarly as in Eq. (4)
and (5) but weighted by visibility SV , SJ as:

Lsmpl−vert = SV ⊙ ∥SMPL(θ, β)− Vc
∗∥1, (13)

Lsmpl−joint = SJ ⊙ ∥WSMPL(θ, β)− Jc
∗∥1, (14)

where⊙ denotes element-wise multiplication, and (Vc
∗, Jc

∗) are the ground-truth
root-relative coordinates of vertices and joints in the camera space. Ideally, the
VisDB network makes more confident predictions on the clearly visible joints
and vertices. Hence, we see the visibility labels as prediction confidence and use
them to weight the coordinate losses. In addition, we apply a pose prior loss
Lprior using a fitted Gaussian Mixture Model (GMM) provided by [33]:

Lprior = −log
(∑

i

Gi(θ)
)
, (15)

where Gi is the i-th component of GMM.
We observe that the regressed SMPL meshes roughly capture the human

pose and shape but do not always align with the VisDB predictions in details.
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Fig. 3. Dense UV correspondence and visibility labels. Given an input image,
we obtain a fitted SMPL mesh and dense UV estimation from off-the-shelf algorithms.
To acquire the dense visibility labels for training, we identify the truncated vertices
from the fitted mesh. From the dense UV map, we calculate the pixel-to-vertex corre-
spondence to obtain pseudo ground-truths of vertex occlusions as well as image-space
coordinates for weak supervision.

Therefore, we use the regressed parameters as initialization and propose efficient
test-time optimization to further optimize the SMPL parameters against VisDB
predictions. For this optimization, we apply similar losses as in Eq. (13)-(15),
except that the ground-truths {Vc∗, Jc∗} are replaced by the VisDB predictions
converted into root-relative coordinates in the camera space. Please refer to the
supplemental material for details on estimating the root joint coordinate in the
camera space. Since we initialize the SMPL parameters by the regression net-
work and the use strong supervisory signal, i.e., 3D joint and vertex coordinates,
the test-time optimization only takes around 100 iterations to converge using an
Adam optimizer [14]. We illustrate the process of SMPL regression and opti-
mization in Figure 2 (right).

3.5 Exploiting Dense UV Correspondence

Most existing 3D human datasets do not provide joint visibility labels, and
none annotates vertex visibility. To train our VisDB network, we obtain pseudo
ground-truths from the fitted SMPL meshes and dense UV estimations. For x
and y-axis truncation, we can simply identify the truncated joints/vertices by
projecting the fitted mesh onto the image plane. Occlusion, however, cannot be
easily inferred from the input image or fitted mesh alone. One can estimate self-
occlusion by rendering a fitted mesh, but this does not capture occlusions by
other objects. More importantly, the fitting algorithm used to get the pseudo
ground-truth meshes is not robust to partial-body cases. To address this, we
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propose to exploit dense UV correspondence between the input image and a
SMPL mesh. Dense UV estimation provides the part-based segmentation mask
of a human body as well as continuous UV coordinates of each human pixel,
which are robust to truncation and occlusions. We calculate the UV coordinate
of each pixel by applying an off-the-shelf dense UV estimation method [8]. For
each human pixel p, we then find the corresponding mesh vertex v whose UV
coordinate is closest to the pixel. The pixel-to-vertex MP and vertex-to-pixel
MV mappings can be expressed as:

MP =
{
p→ v

∣∣v = argminv′

∥∥UV(v′)−UV(p)
∥∥
2
∀p

}
MV =

{
v → {p′}

∣∣MP (p
′) = v∀v

}
.

(16)

A vertex mapped to at least one pixel is labeled as visible or occluded otherwise.
Similar to [7,43,44], we also utilize the dense vertex-pixel correspondence

as weak supervision for better alignment with the human silhouettes. For each
vertex v, we calculate the center of its corresponding pixels MV (v) and define a
UV correspondence loss Luv as:

Luv =
∑
v

sv
z
∥∥∥vx,y − ∑

p∈MV (v)

p

|MV (v)|

∥∥∥
1
, (17)

where vx,y is the 2D projection of vertex v and sv
z is the binary occlusion label

with sv
z = 1 indicating that the vertex v is visible. The UV correspondence loss

can not only mitigate the inaccurate pseudo ground-truth meshes, but improve
the faithfulness to human silhouettes since it is based on segmentation mask
predictions. We empirically discover that this direct vertex-level supervision is
more efficient and effective for VisDB training compared to rendering-based
losses [43,6]. The proposed vertex-pixel correspondence and visibility labeling
are illustrated in Figure 3.

3.6 Model Training and Inference

We first train the VisDB network on 3D data with mesh annotations, then fine-
tune it on all training data by adding the depth ordering and UV correspondence
losses. The regressor network is trained to estimate the SMPL parameters based
on the estimated coordinates and visibility of joints and vertices. During infer-
ence, we apply optional optimization on the regressed SMPL parameters to best
align with the VisDB predicted mesh. For the VisDB network backbone, we use
a ResNet50 [11] model pre-trained on the ImageNet dataset [5]. The weights are
updated by the Adam optimizer [14] with a mini-batch size of 64. We represent
a human body by NJ = 30 joints and NV = 6890 vertices, and the heatmap
resolution D = 64. In addition, we use the ground-truth bounding boxes to crop
the human region from an input image and resize it to 256×256. The bounding
boxes of testing data are estimated by a pre-trained Mask R-CNN [10] model if
not available in the dataset. We apply common data augmentations such as ran-
dom scaling (±25%), rotation (±45°), horizontal flip, and color jittering (±20%)
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Table 1. Quantitative evaluations on Human3.6M [12] and 3DPW [25]. To
align the settings, we train our baseline, I2L-MeshNet [29], on the same datasets, and
denote it by I2L-MeshNet†. Both our mesh and SMPL parameter outputs perform
favorably against the prior state-of-the-arts.

Human3.6M 3DPW

Method Output MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPVE↓

GraphCMR [18] Mesh - 50.1 - 70.2 -
Pose2Mesh [4] Mesh 64.9 47.0 89.2 58.9 109.3
I2L-MeshNet [29] Mesh 55.7 41.1 93.2 57.7 109.2

I2L-MeshNet† [29] Mesh - - 84.5 51.1 98.2
METRO [21] Mesh 54.0 36.7 77.1 47.9 88.2
Mesh Graphormer [22] Mesh 51.2 34.5 74.7 45.6 87.7
VisDB (mesh) Mesh 51.0 34.5 73.5 44.9 85.5

NBF [31] Param - 59.9 - - -
HMR [13] Param 88.0 56.8 - 81.3 -
DenseRaC [43] Param 76.8 48.0 - - -
I2L-MeshNet [29] Param - - 100.0 60.0 121.5
OOH [45] Param - 41.7 - - -
SPIN [17] Param - 41.1 - 59.2 116.4

I2L-MeshNet† [29] Param - - 88.0 55.5 102.3
DSR [6] Param 60.9 40.3 85.7 51.7 99.5
VIBE [15] Param 65.6 41.4 82.0 51.9 99.1
TCMR [3] Param 62.3 41.1 - - -
DecoMR [44] Param 60.6 39.3 - - -
PARE [16] Param - - 79.1 46.4 94.2
VisDB (param) Param 50.0 33.8 72.1 44.1 83.5

during training. Considering that truncation and occlusion examples are rare in
most 3D human datasets, we include random occlusion masks and bounding box
shifting (±25%) as additional augmentations to increase the partial-body/whole-
body ratio. Our models are implemented with PyTorch [32] and trained with
NVIDIA Tesla V100 GPUs. More implementation details are presented in the
supplemental material.

4 Experiments

4.1 Datasets and Metrics

Following most prior arts, we adopt mixed 2D-3D training on the MSCOCO [23],
Human3.6M [12], MuCo-3DHP [26], and 3DPW [25] datasets. The pseudo ground-
truth meshes of Human3.6M and MSCOCO are obtained by applying SMPLify-
X [33] to fit the joint annotations. We evaluate our models on the Human3.6M,
3DPW, 3DPW-OCC [25,45], and 3DOH [45] testing sets. Note that 3DOH is
composed of images with object occlusions and 3DPW-OCC contains a subset
of 3DPW sequences where the human bodies are partially occluded. For quanti-
tative evaluation, we calculate the common joint and vertex error metrics in the
camera space and report them in millimeters (mm), including MPJPE (mean
per-joint position error) [12], PA-MPJPE (Procrustes-aligned mean per-joint po-
sition error) [46], and MPVE (mean per-vertex error) [35].
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Table 2. Quantitative evaluations on 3DOH [45] and 3DPW-OCC [25,45].
We compare VisDB with prior occlusion-aware methods to demonstrate its robustness
on partial-body cases. For VisDB and I2L-MeshNet† [29], We report both the mesh
and SMPL parameter (mesh/param) results.

3DOH 3DPW-OCC

Method MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPVE↓

OOH [45] - 58.5 - 72.2 -

I2L-MeshNet† [29] 67.0/69.3 46.3/47.9 96.5/98.0 61.0/62.6 120.2/127.0
PARE [16] 63.3 44.3 91.4 57.4 115.3
VisDB 62.1/60.9 43.2/42.7 90.3/87.3 57.1/56.0 114.0/110.5

4.2 Quantitative Comparisons

Human3.6M and 3DPW. In Table 1, we compare the performance of our
method and prior arts on the Human3.6M [12] and 3DPW [25] datasets. For
VisDB and I2L-MeshNet [29], we report the results of both heatmap-based mesh
outputs (mesh) and SMPL parameters (param). Our SMPL parameters are ob-
tained from regression and test-time optimization. Note that each method uses
different network backbone, human body representation, training datasets, and
inference strategy. For instance, METRO [21] and Mesh Graphormer [22] adopt a
transformer-based [42] network while the others use CNN backbones. VIBE [15]
and TCMR [3] are video-based approaches whereas the others only take im-
ages as input. Despite these differences, VisDB performs favorably against prior
methods in term of most evaluation metrics. Particularly, our method achieves
larger performance gains on the 3DPW dataset since it contains more trunca-
tion and occlusion cases. The VisDB performance is most directly comparable
with I2L-MeshNet [29] as we adopt similar training settings. For fair compar-
isons, we re-train its model on the same datasets and denote it as I2L-MeshNet†.
The results demonstrate that our visibility learning improves both the mesh and
SMPL outputs significantly. In prior literature, SMPL parameters generally lead
to higher errors compared to dense mesh outputs, which we conjecture is caused
by the difficulty to directly regress low-dimensional parameters. On the con-
trary, VisDB is a powerful intermediate representation that provides dense 3D
information of visible partial body, allowing us to regress and optimize SMPL
parameters more accurately. In our experiments, we observe that VisDB (mesh)
captures the human silhouettes better but VisDB (param) produces lower errors
since the ground-truth meshes are also regularized by SMPL representation.

3DPW-OCC and 3DOH. To emphasize the robustness on partial-body im-
ages, we further evaluate on two occlusion datasets: 3DPW-OCC [25,45] and
3DOH [45]. As shown in Table 2, VisDB produces lower errors on both datasets
compared to prior occlusion-aware methods. While I2L-MeshNet† performs con-
siderably worse on these images, the errors by our model remain relatively low.
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Table 3. Ablation studies of VisDB. We compare the joint/vertex errors of VisDB
mesh outputs on 3DPW [25] with/without individual components. The results show
that truncation modeling (Lvis

x,y), occlusion modeling (Lvis
z), depth ordering loss

Ldepth, and UV correspondence loss Luv each reduces the errors by a clear margin.

Lvis
x,y Lvis

z Ldepth Luv MPJPE PA-MPJPE MPVE

84.5 51.1 98.2
✓ ✓ ✓ 79.4 47.8 91.1

✓ ✓ ✓ 75.8 45.5 88.0
✓ ✓ ✓ 77.3 46.3 88.9
✓ ✓ ✓ 74.9 45.6 87.1
✓ ✓ ✓ ✓ 73.5 44.9 85.5

Table 4. Ablation studies of SMPL models. We report the performance of SMPL
outputs on the 3DPW dataset [25], which shows the effectiveness of our optimization
and the importance of visibility in both regression and optimization work flows.

Regression Optimization MPJPE PA-MPJPE MPVE

- - 73.5 44.9 85.5
w/o vis - 79.0 48.8 96.2
w/o vis w/o vis 77.6 47.0 93.9
w/ vis - 74.9 45.3 87.3
w/ vis w/ vis 72.1 44.1 83.5

4.3 Ablation Studies

VisDB network training. To evaluate the contribution of individual compo-
nents in our method, we perform ablation studies on the 3DPW dataset [25].
Table 3 shows the performance of VisDB mesh outputs with/without trunca-
tion modeling Lvis

x,y, occlusion modeling Lvis
z, depth ordering loss Ldepth, and

dense UV correspondence loss Luv. Without Lvis
x,y, Lvis

z, Ldepth, and Luv, the
vertex error increases by 6.3mm, 3.1mm, 3.9mm, and 1.9mm, respectively. These
results show that both visibility modeling and depth ordering loss play a crucial
role in VisDB training.
SMPL parameter fitting. In Table 4, we quantitatively compare the SMPL
models obtained from different methods. Given an estimated VisDB mesh, we
can regress the SMPL parameters and/or optimize them during inference, and
each process can be done with/without dense visibility weighting (Eq. (13)
and (14)). By using visibility, the mean vertex error of regressed SMPL mod-
els drops by 8.7mm. With the proposed test-time optimization, we can further
reduce the error by 3.8mm.

4.4 Qualitative Results

Figure 4 shows sample results by VisDB and I2L-MeshNet [29] on the 3DPW
dataset [25]. I2L-MeshNet [29] regresses SMPL parameters from the entire heatmap-
based mesh output, which leads to erroneous output meshes on truncated or
occluded examples. VisDB predicts accurate vertex visibility labels, improving
both the image-space dense body estimation and SMPL parameter optimization.
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Input I2L-MeshNet [29] VisDB VisDB Visibility Visibility
(param) (mesh) (param) (front view) (side view)

Fig. 4. Qualitative results on the 3DPW dataset [25]. For each example, we
show the results of I2L-MeshNet [29] SMPL model, our VisDB mesh, our optimized
SMPL model, as well as visibility predictions in the front and side views (purple:visible,
orange:invisible). When the human body is occluded (top two rows) or truncated (bot-
tom two rows), both our VisDB output and optimized SMPL mesh capture the human
silhouettes faithfully (e.g., the left hand in row 1 and the head region in rows 2,3,4).

The results show that VisDB (mesh) outputs can fit the human silhouettes faith-
fully, and VisDB (params) further regularizes and smooths the mesh surfaces.
More qualitative results are shown in the supplemental material.

5 Conclusions

In this work, we address the problem of dense human body estimation from
monocular images. Particularly, we identify the limitations of existing model-
based and heatmap-based representations on truncated or occluded bodies. As
such, we propose a visibility-aware dense body representation, VisDB. We ob-
tain visibility pseudo ground-truths from dense UV correspondences and train a
network to predict 3D coordinates as well as truncation and occlusion labels for
each human joint and vertex. Extensive experimental results show that visibility
modeling can facilitate human body estimation and allow accurate SMPL fitting
from partial-body predictions.
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