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Abstract. Deep neural network quantization with adaptive bitwidths
has gained increasing attention due to the ease of model deployment on
various platforms with different resource budgets. In this paper, we pro-
pose a meta-learning approach to achieve this goal. Specifically, we pro-
pose MEBQAT, a simple yet effective way of bitwidth-adaptive quantization-
aware training (QAT) where meta-learning is effectively combined with
QAT by redefining meta-learning tasks to incorporate bitwidths. After
being deployed on a platform, MEBQAT allows the (meta-)trained model
to be quantized to any candidate bitwidth with minimal inference accu-
racy drop. Moreover, in a few-shot learning scenario, MEBQAT can also
adapt a model to any bitwidth as well as any unseen target classes by
adding conventional optimization or metric-based meta-learning.
We design variants of MEBQAT to support both (1) a bitwidth-adaptive
quantization scenario and (2) a new few-shot learning scenario where
both quantization bitwidths and target classes are jointly adapted. Our
experiments show that merging bitwidths into meta-learning tasks re-
sults in remarkable performance improvement: 98.7% less storage cost
compared to bitwidth-dedicated QAT and 94.7% less back propagation
compared to bitwidth-adaptive QAT in bitwidth-only adaptation scenar-
ios, while improving classification accuracy by up to 63.6% compared to
vanilla meta-learning in bitwidth-class joint adaptation scenarios.

1 Introduction

Recent development in deep learning has provided key techniques for equipping
resource-constrained devices with larger networks by reducing neural network
computational costs. To this end, several research directions have emerged such
as network optimization [23,25], parameter factorization [28,34], network prun-
ing [33,42], and quantization [5,16,43,45]. In particular, quantization can signif-
icantly reduce model size, computational requirements and power consumption
by expressing model weights and activations in lower precision. For example,
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Fig. 1. Overview of MEBQAT on bitwidth-only adaptation (above) and bitwidth-class
joint adaptation (below) scenarios.

quantizing a model from FP32 to Int8 with devices equipped with fast arith-
metic hardware units for low-precision operands can reduce inference delay by
up to 5× [20].

However, one challenge associated with quantization is the difficulty of tai-
loring models to various bitwidths to compensate for platforms with different
resource constraints. This is especially important in situations where a quan-
tized model is deployed to platforms with different battery conditions, hardware
limitations, or software versions. In order to solve this problem, a recent trend
in quantization gave rise to adaptive bitwidths, which allows models to adapt to
bitwidths of varying precision [2,17,31].

In this paper, we provide a different perspective on this research direction
by considering a modified formulation of bitwidth-adaptive quantization-aware
training (QAT) with meta-learning [9], as shown in Figure 1. In typical meta-
learning scenarios, a meta task is defined as a subset of training data, divided on
the basis of class [9] or data configuration [12,4]. With this task definition, the
meta-training phase requires a tailored, large-scale dataset for a model to expe-
rience many meta tasks while the meta-testing phase needs the model to be re-
trained with few-shot data for a target task. To apply meta-learning in bitwidth-
adaptive QAT, we propose MEBQAT by newly defining a meta task to incor-
porate a bitwidth setting, a model hyperparameter independent of the dataset.
Thus, our meta task definition enables dataset-agnostic meta-learning: meta-
learning without the need for few-shot-learning-specific datasets. In the meta-
testing phase, the model is not retrained but quantized immediately with any
target bidwidth, resulting in fast adaptation. Experiments show that MEBQAT
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performs comparably to state-of-the-art bitwidth-adaptive QAT schemes. The
results suggest that bitwidth-adaptive QAT can be categorized as a meta learn-
ing problem.

In addition, to show that MEBQAT is synergistically combined with typical
meta-learning scenarios, we also investigate a new meta-learning scenario where
quantization bitwidths and target classes are jointly adapted. In this scenario,
we define a meta task as a combination of bitwidth setting and target classes.
With these modified tasks, we show that MEBQAT can be merged with both
optimization-based meta-learning (Model-Agnostic Meta-Learning (MAML) [9])
and metric-based meta-learning (Prototypical Networks [30]) frameworks. Ex-
periments show that MEBQAT produces a model that is not only adaptable to
arbitrary bitwidth settings, but also robust to unseen classes when retrained with
few-shot data in the meta-testing phase. MEBQAT significantly outperforms
both vanilla meta learning and the combination of dedicated QAT and meta
learning, demonstrating that MEBQAT successfully merges bitwidth-adaptive
QAT and meta learning without losing their own advantages. With this new
scenario given by MEBQAT, a model can be deployed on more various plat-
forms regardless of their resource constraints and classification tasks.

To summarize, our contributions are three-fold:

– We propose MEta-learning based Bitwidth-adaptive QAT (MEBQAT), by
newly defining meta-learning tasks to include bitwidth settings and averaging
gradients approximated for different bitwidths over those tasks to incorpo-
rate the essence of quantization-awareness.

– We show that our method can obtain a model robust to various bitwidth
settings by conducting extensive experiments on various supervised-learning
contexts, datasets, model architectures, and QAT schemes. In the traditional
classification problem, MEBQAT shows comparable performance to exist-
ing bitwidth-adaptive QAT methods and dedicated training of the model
to a given bitwidth, but with higher training efficiency (94.7% less back-
propagations required).

– We define a new few-shot classification context for MEBQAT where both
bitwidths and classes are jointly adapted using few-shot data. MEBQAT well
fits both optimization- and metric-based meta-learning frameworks. In terms
of classification accuracy, MEBQAT outperforms vanilla meta-learning by up
to 63.6% and a näıve combination of dedicated QAT and meta learning by
up to 27.48%, while also adding bitwidth adaptability comparable to state-
of-the-art bitwidth-adaptive QAT methods.

2 Related Work

Quantization-Aware Training. Existing approaches to quantization can be
broadly split into Post-Training Quantization (PTQ) and QAT. PTQ quantizes
a model trained without considering quantization, and requires sophisticated
methods such as solving optimization problems [1,5,8,3] and model reconstruc-
tion [15,21]. However, given that most platforms that utilize a quantized model
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are resource constrained, these methods can incur significant computational bur-
den. To reduce post-training computation, we instead focus on QAT, which trains
a model to alleviate the drop of accuracy when quantized. QAT methods usually
define a formula for approximating a gradient of a quantization function output
w.r.t. the input. To this end, recent works suggest integer-arithmetic-only quan-
tization methods [16,43,19,7] and introduce differentiable asymptotic functions
for non-differentiable quantization functions [11].

However, conventional QAT is limited in that a model is trained for a single
dedicated bitwidth, showing significant performance degradation when quantized
to other bitwidths. In other words, supporting multiple bitwidths would require
training multiple copies of the model to each bitwidth.

Bitwidth-adaptive QAT. In order to overcome such shortcomings, some
QAT-based approaches aim to train a model only once and use it on various
bitwidth settings. A number of studies [38,36,13,6,37,29,1] use Neural Architec-
ture Search (NAS) to train a super-network involving multiple bitwidths in a
predefined search space and sample a sub-network quantized with the target
bitwidth setting given or searched taking the hardware into account. However,
NAS-based approaches usually suffer from difficult training, heavy computation,
and collapse on 8-bit precision without special treatment.

AdaBits [17] was the first to propose another research direction, namely
the concept of training a single model adaptive to any bitwidth. Specifically, the
model is trained via joint quantization and switchable clipping level. As a similar
approach, Any-precision DNN [41] enables adaptable bitwidths via knowledge
distillation [14] and switchable Batch Normalization (BN) layers. The authors
in [31] utilize wavelet decomposition and reconstruction [24] for easy bitwidth
adjustment by adjusting hyperparameters. Furthermore, Bit-mixer [2] aims to
train a mixed-precision model where its individual layers can be quantized to
an arbitrary bitwidth. Although these methods allow a single model to train
for multiple bitwidths, some parts of the model (e.g., BN layers) still need to
be trained dedicated to each precision candidate which increases the number of
parameters w.r.t. the number of bitwidth candidates [6]. Moreover, prior work
solely focuses on model quantization and ignores the possibility that users require
slightly different tasks that the pretrained model does not support.

Meta learning. Meta learning has recently attracted much attention in the
research community due to its potential to train a model that can flexibly adapt
to different tasks, even with a few gradient steps and limited amounts of labeled
data, making it ideal for resource-constrained platforms [9,32].

One of the most common approaches to meta learning is optimization-based
meta learning that trains a base model from which a model starts to be adapted
to a given task by using experience from many different tasks. Model-Agnostic
Meta Learning (MAML) [9] suggests to learn from multiple tasks individually,
evaluate the overall adaptation performance, and learn to increase it. Many vari-
ants of MAML have emerged to improve upon this method[22,10,40,27,26,35,44].
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Fig. 2. Illustration of meta-training phase in MEBQAT, MEBQAT-MAML, and
MEBQAT-PN. GD stands for Gradient Descent. c denotes prototypes. BS represents
a support set. Illustration of adaptation and inference phase is provided in appendix.

Another approach to meta learning is metric-based meta learning, which at-
tempts to learn an embedding function such that an unseen class can be pre-
dicted by seeking the label with minimum distance. Prototypical Networks [30]
calculates prototypes as a milestone for each label by averaging the correspond-
ing embeddings. While meta learning provides a personalizable model robust to
unseen classes, there is still a lack of research concerning the applicability of
meta learning in quantization.

To the best of our knowledge, this work is the first to show that bitwidth-
adaptive QAT and meta learning can be merged synergistically without sacrific-
ing their own advantages. Specifically, our proposal MEBQAT provides bitwidth-
adaptive QAT with zero-copies of any part of the model. In addition, by defining
a meta task as a combined set of bitwidth setting and target classes, MEBQAT
produces a model that quickly adapts to arbitrary bitwidths as well as target
classes.

3 Meta-Learning Based Bitwidth-Adaptive QAT

In this section, we introduce MEta-learning based Bitwidth-adaptive QAT
(MEBQAT), a once-for-all method that aims to provide a model adaptable
to any bitwidth setting by synergistically combining QAT with meta-learning
methodologies. Similar to conventional meta-learning schemes, MEBQAT op-
erates in two phases: a meta-training and a meta-testing phase. In the meta-
training phase, MEBQAT trains a base model by experiencing various tasks
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Table 1. Summary of notations.

Notation in Fig. 1 Meaning

BS/BQ Support data for adaptation / Query data for inference
bw/ba Test bitwidth of weights / activations

Notation in Fig. 2 Meaning

BS/BQ Support data for adaptation / Query data for inference
θi Model parameters after i-th optimization or update
M Number of inner-loop (task)s per outer-loop (i.e., meta batch size)
bwj /b

a
j Training bitwidth of weights / activations in j-th meta-task (j = 1, 2, · · · ,M)

c Prototype in PN framework, differentiated by colors
Lj Loss in j-th meta-task
LKD

j′ Distillation loss in j′-th meta-task (j′ = 2, · · · ,M)

∇̃j Gradients in j-th meta-task, approximated according to the bitwidth (bwj , b
a
j )

to improve its adaptability. Importantly, the meta-training phase performs QAT
with the task definition including bitwidth settings to support bitwidth-adaptive
QAT. In the meta-testing phase, the meta-trained base model is deployed at a
platform and tailored for a platform-specific target task.

We consider two practical scenarios for MEBQAT, (1) bitwidth adaptation
scenario and (2) bitwidth-class joint adaptation scenario. The former scenario
is the main problem that bitwidth-adaptive QAT methods target, and as such,
we aim to provide similar performance to state-of-the-art schemes but with less
complexity, using our meta-learning-based approach. The bitwidth-class joint
adaptation scenario is a new scenario in which a model can adapt to not only
an arbitrary target bitwidth but also unseen target classes. To support these
scenarios, we provide three variants of MEBQAT, called MEBQAT, -MAML,
and -PN, as shown in Figure 2. Following convention in [9], MEBQAT, -MAML,
-PN aim to optimize Equations 1-3, respectively.

minθ
∑

j
Lj =

∑
j
L(fQuantize(θ;bwj ,baj )

) (1)

minθ
∑

j
LQ
j =

∑
j
LQ(fQuantize({θ−α∇̃θLS(fθ;bwj ,baj )};bwj ,baj )

) (2)

minθ
∑

j
LQ
j =

∑
j
LQ(fQuantize(θ;bwj ,baj )

, cS(fQuantize(θ;bwj ,baj )
)) (3)

3.1 Bitwidth Adaptation Scenario

In this scenario, we assume that users’ target classes are the same as those used
for model training; in other words, both meta-training and meta-testing phases
have the same classification task. However, each user may have different target
bitwidths considering its own resource budget. Therefore in the meta-testing
phase, a user immediately quantizes the base model using its own bitwidth set-
ting without the need for fine-tuning.

To support this scenario, we define a bitwidth task set Tb that consists of var-
ious tuples (bw, ba) where bw and ba are bitwidths for weight quantization and
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Algorithm 1 MEBQAT, meta-training phase

Initialize base model parameters θ0, bitwidth task set Tb, training set D comprising
(x, y), and step size β
for epoch i = 1 to E do
B ← random sample from D
ŷx ← fθi−1(x) for all x ∈ B ▷ Get soft labels using full precision
for j = 1 to M do

(bwj , b
a
j )← random sample from Tb ▷ Sample a bitwidth task

ϕ← Quantize(θi−1; b
w
j , b

a
j )

Lj ← 1
|B|

∑
(x,y)∈B L(fϕ(x), y) ▷ Get task-specific supervised loss

LKD
j ← 1

|B|
∑

(x,y)∈B L(fϕ(x), ŷx) ▷ Get task-specific KD loss

∇̃j ← ∇̃θi−1(Lj + LKD
j ; bwj , b

a
j ) ▷ Get task-specific, quant-aware gradient

end for
θi ← θi−1 − β

M

∑M
j=1 ∇̃j ▷ Update base model

end for

activation quantization, respectively. Assuming that fθ is a base model param-
eterized by θ, MEBQAT aims to meta-train θ by experiencing many bitwidth
tasks. In contrast to typical meta-learning scenarios, task-specific data samples
are not needed because data is decoupled from task definition. Therefore, in
each epoch i, MEBQAT samples a (common) batch of data B from training
set D that all of M sampled tasks share. In addition, before entering into task-
specific operation, MEBQAT gets soft labels ŷx for the batch B using the current
full precision model parameters θi−1 to utilize knowledge distillation [14] as in
Any-precision DNN [41]. The idea is that the full precision model has more
information and can teach a quantized model.

MEBQAT samples M bitwidth tasks in each epoch i. For each selected
bitwidth tuple (bwj , b

a
j ), the full precision model θi−1 is quantized to ϕ using

the tuple (bwj , b
a
j ) and two types of task-specific losses are calculated based on

the quantized model ϕ: supervised loss Lj and knowledge distillation loss LKD
j .

Note that when (bwj , b
a
j ) happens to be (FP,FP) (full precision), LKD

j becomes

zero. Using the loss Lj + LKD
j , task-specific gradients ∇̃j are calculated in a

quantization-aware manner. Quantization-aware gradient calculation considers
the sample bitwidth (bwj , b

a
j ) and detailed method depends on which QAT scheme

is combined with MEBQAT. Lastly, model parameters are updated to θi using
gradient descent with step size β· Algorithm 1 illustrates this process.

3.2 Bitwidth-Class Joint Adaptation Scenario

In this section, we propose a new meta-learning scenario for bitwidth-class joint
adaptation where users may have their own target bitwidths and classification
tasks. Each user is assumed to have a small local dataset for their classification
tasks, which is used in the meta-testing phase to retrain the base model. Specif-
ically, we consider N -way K-shot tasks where N is the number of target classes
and K is the number of data samples per each of N classes. Assuming that Y is
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Algorithm 2 MEBQAT-MAML, meta-training phase

Initialize base model parameters θ0, bitwidth task set Tb, training set D comprising
(x, y), and step sizes α, β.
for epoch i = 1 to E do

for j = 1 to M do
(bwj , b

a
j )← random sample from Tb ▷ Sample a bitwidth task

Yj ← a set of randomly selected N classes ▷ Sample a data task
DYj ← Subset of D where y ∈ Yj

BS ← random sample from DYj ▷ N -way K-shot support set
ϕ0 ← θi−1

for u = 1 to U do ▷ Gradient decent with quantization
ϕq
u−1 ← Quantize(ϕu−1; b

w
j , b

a
j )

LS
j ← 1

|BS |
∑

(x,y)∼BS
L(fϕq

u−1
(x), y)

ϕu ← ϕu−1 − α∇̃ϕu−1(L
S
j ; b

w
j , b

a
j )

end for
ϕq
U ← Quantize(ϕU ; b

w
j , b

a
j )

BQ ← random sample from DYj \ BS ▷ N -way K-shot query set

LQ
j ← 1

|BQ|
∑

(x,y)∼BQ
L(fϕq

U
(x), y)

∇̃j ← ∇̃θi−1(L
Q
i ; b

w
j , b

a
j ) ▷ Get task-specific, quant-aware gradient

end for
θi ← θi−1 − β

M

∑M
j=1 ∇̃j ▷ Update base model

end for

a set of randomly selected N classes, a single joint task including both bitwidths
and classes is defined as (bw, ba,Y).

To support this new scenario, we design two types of MEBQAT: (1) MEBQAT-
MAML, which adopts a representative optimization-based meta-learning frame-
work MAML [9] and (2) MEBQAT-PN, which adopts a representative metric-
based meta-learning framework called Prototypical Networks (PN) [30].

MEBQAT-MAML. The main difference between MEBQAT-MAML andMEBQAT
lies in the inner-loop operation for each task. In each iteration j of the inner
loop, MEBQAT-MAML samples both a bitwidth task (bwj , b

a
j ) and a data task

Yj . Note that the bitwidth task is newly added to the original MAML opera-
tion. Assuming that the current model in epoch i is θi−1, the model is updated
to a task-specific quantized model ϕq

U by using U -step gradient decent and a
QAT method with the bitwidth setting (bwj , b

a
j ) and a task-specific support set

BS . Given the task-specific model ϕq
U and a query set BQ, task-specific loss LQ

j

and gradient ∇̃j are calculated in a quantization-aware manner. Given that ∇̃j

requires second-order gradient calculation which is computationally expensive,
we instead adopt a first-order approximation of MAML, called FOMAML. Al-
gorithm 2 illustrates the process.

In the meta-testing phase, a user retrains the base model using a local support
set of its own classification task and quantizes the model using its own bitwidth
setting. Then the model performance is evaluated by inferencing data points in
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Algorithm 3 MEBQAT-PN, meta-training phase

Initialize base model parameters θ0, bitwidth task set Tb, training set D comprising
(x, y), and step sizes β.
for epoch i = 1 to E do
Yi ← a set of randomly selected N classes ▷ Sample a data task
BS ← random sample from DYi ▷ N -way K-shot support set
BQ ← random sample from DYi \ BS ▷ N -way K-shot query set
for j = 1 to M do

(bwj , b
a
j )← random sample from Tb ▷ Sample a bitwidth task

ϕ← Quantize(θi−1; b
w
j , b

a
j )

for n ∈ Yi do ▷ Get prototypes using support set
cn ← 1

K

∑
(x,y)∈BS ,y=nfϕ(x)

end for
LQ

j = 0
for n ∈ Yi do ▷ Get task-specific loss using query set

for (x, y) ∈ BQ where y = n do
LQ

j = LQ
j + 1

NK
[d(fϕ(x), cn) + log

∑
n′exp(−d(fϕ(x), cn′))]

end for
end for
∇̃j ← ∇̃θi−1(L

Q
j ; b

w
j , b

a
j ). ▷ Get task-specific, quant-aware gradient

end for
θi ← θi−1 − β

M

∑M
j=1 ∇̃j ▷ Update base model

end for

a local query set. Given that a user platform is likely to be resource constrained,
the number of gradient decent updates in the meta-testing phase can be smaller
than U , as in the original MAML.

MEBQAT-PN. A limitation of MEBQAT-MAML arises from the necessity of
gradient decent-based fine-tuning in the meta-testing phase, which can become a
computational burden to resource-constrained platforms. In contrast to MAML,
Prototypical Network (PN) trains an embedding function such that once data
points are converted into embeddings, class prototypes are calculated using a
support dataset and query data is classified by using distance from each class
prototype. Therefore in the meta-testing phase, MEBQAT-PN does not require
gradient descent but simply calculates class prototypes using a local support set,
which significantly reduces computation overhead.

Algorithm 3 illustrates MEBQAT-PN’s meta-training phase. Unlike original
PN, to include a bitwidth setting in a task in each epoch i, MEBQAT samples
bitwidths (bwi , b

a
i ) as well as target classes Yi, quantizes the current model θi−1

to ϕ using the selected bitwidths, and calculates class prototypes cn for n ∈ Yi

using the quantized model ϕ and a support set BS . Then task-specific loss LQ
j is

calculated using distance between embeddings for query data points in BQ and

class prototypes. Lastly, task-specific gradient ∇̃i is computed in a quantization-
aware manner.
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3.3 Implementation

We also include specific implementation details to improve the training process of
MEBQAT. First, in each epoch of MEBQAT (Algorithm 1), we fix the bitwidth
task in the first inner-loop branch to full-precision (FP,FP) instead of a random
sample. This implementation is required for the base model to experience full
precision in every epoch, thus improving accuracy. Second, while sampling ran-
dom bitwidth settings, we exclude unrealistic settings such as (FP,1) and (1,FP)
because these settings not only are impractical and improbable, but also hinder
convergence. Third, when there are some minor bitwidth settings that a QAT
scheme treats differently from other bitwidths (e.g., 1-bit of DoReFa-Net [45]),
we sample the minor settings more frequently (e.g. at least once in each epoch).

4 Evaluation

To demonstrate the validity of MEBQAT, we conduct extensive experiments on
multiple supervised-learning contexts, datasets, model architectures, and config-
urations of quantization.

4.1 Experiments on the Bitwidth Adaptation Scenario

In the bitwidth adaptive scenario with shared labels, we compare MEBQAT with
(1) (bitwidth-dedicated) QAT and (2) existing bitwidth-adaptive QAT methods
(AdaBits [17] and Any-precision DNN (ApDNN) [41]).

MEBQAT adopts multiple quantization configurations depending on the
compared scheme. When compared with AdaBits, MEBQAT quantizes a tensor
and approximates its gradient using the same Scale-Adjusted Training (SAT) [18]
that AdaBits adopts, with Tb = {2, 3, 4, 5, 6, 7, 8, 16,FP} where FP denotes full-
precision Float32. Furthermore, just as in AdaBits, we quantize the first and last
layer weights into 8-bits with BN layers remaining full-precision. When compared
with Any-precision DNN, MEBQAT quantizes a tensor and approximates its
gradient in a DoReFa-Net based manner, with Tb = {1, 2, 3, 4, 5, 6, 7, 8, 16,FP}.
Note that we differentiate the formula for 1-bit and other bitwidths as DoReFa-
Net [45] does. In this case, we do not quantize the first, last, and BN layers. The
number of inner-loop tasks per task is set to 4.

Optimizer and learning rate scheduler settings depend on the model archi-
tecture and dataset used. For MobileNet-v2 on CIFAR-10, we use an Adam
optimizer for 600 epochs with an initial learning rate 5×10−2 and a cosine an-
nealing scheduler without restart. For pre-activation ResNet-20 on CIFAR-10,
we use an AdamW optimizer for 400 epochs with an initial learning rate 10−3

divided by 10 at epochs {150, 250, 350}. Finally, for the 8-layer CNN in [41] on
SVHN, we use a standard Adam optimizer for 100 epochs with an initial learning
rate 10−3 divided by 10 at epochs {50, 75, 90}.

Finally, as in MAML, all BN layers are used in a transductive setting and
always use the current batch statistics.
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Table 2. Comparison of accuracy (%) with 95% confidence intervals (10 iterations)
with bitwidth-dedicated and bitwidth-adaptive QAT methods. † denotes results from
[6]. ‡ denotes results from a non-differentiated binarization function. FP stands for
32-bit Full-Precision. ’-’ denotes results not provided.

(bw, ba)
CIFAR-10, MobileNet-v2 CIFAR-10, Pre-activation ResNet-20 SVHN, 8-layer CNN

QAT AdaBits MEBQAT QAT ApDNN MEBQAT QAT ApDNN MEBQAT

(1, 1) - - - 92.28 (±0.116) 92.15‡ 91.32 (±0.202) 97.27 (±0.025) 88.21‡ 96.60 (±0.060)
(2, 2) 84.40 (±0.691) 58.98† 78.50 (±0.544) 92.72 (±0.146) 93.97 92.52 (±0.151) 97.51 (±0.043) 94.94 97.25 (±0.052)
(3, 3) 90.08 (±0.233) 79.30† 88.04 (±0.255) 92.61 (±0.066) - 92.65 (±0.225) 97.57 (±0.024) - 97.58 (±0.041)
(4, 4) 90.44 (±0.152) 91.84† 89.30 (±0.336) 92.69 (±0.195) 93.95 92.77 (±0.157) 97.44 (±0.068) 96.19 97.62 (±0.043)
(5, 5) 90.83 (±0.193) - 89.58 (±0.243) 92.64 (±0.117) - 92.80 (±0.179) 97.53 (±0.028) - 97.64 (±0.050)
(6, 6) 91.10 (±0.146) - 89.46 (±0.275) 92.66 (±0.120) - 92.83 (±0.188) 97.50 (±0.032) - 97.63 (±0.056)
(7, 7) 91.06 (±0.138) - 89.48 (±0.303) 92.65 (±0.110) - 92.79 (±0.171) 97.56 (±0.034) - 97.64 (±0.043)
(8, 8) 91.20 (±0.171) - 89.36 (±0.243) 92.57 (±0.124) 93.80 92.89 (±0.147) 97.52 (±0.055) 96.22 97.63 (±0.047)

(16, 16) 91.19 (±0.145) - 89.53 (±0.209) 92.67 (±0.192) - 92.75 (±0.190) 97.51 (±0.042) - 97.65 (±0.056)
(FP, FP) 93.00 (±0.221) - 89.24 (±0.253) 93.92 (±0.107) 93.98 92.90 (±0.133) 97.67 (±0.079) 96.29 97.40 (±0.043)

Table 3. Comparison of training computation and storage costs.

Methods Training computation cost Storage cost

Dedicated QAT 1 backprop per update TΘ
AdaBits/ApDNN T backprops per update (1− ζ)Θ + TζΘ
MEBQAT M backprops per update Θ

Performance of MEBQAT. Table 2 shows the (meta-)test accuracy after
(meta-)trained by QAT/bitwidth-adaptive QAT/MEBQAT in multiple model
architectures and datasets. Here, bw, ba are bitwidths used during testing. For
each bitwidth setting, accuracy is averaged over one test epoch. Results of vanilla
QAT come from individually trained models dedicated to a single bitwidth.
All other results come from a single adaptable model, albeit with some prior
work containing bitwidth-dedicated parts. Results show that MEBQAT achieves
performance comparable to or better than the existing methods.

We also tackle the limitations of prior bitwidth-adaptive QAT methods in
scalability to the number of target bitwidths. Table 3 shows an overview of
training and storage costs of various methods when compared with MEBQAT.
Here, T (≃|Tb|2) represents the number of (test) bitwidths, Θ denotes the total
model size, and ζ indicates the ratio of batch normalization layers respective to
the entire model. Because MEBQAT is a meta-learning alternative to bitwidth
adaptive learning, our method exhibits fast adaptation, requiring only a few train
steps M . In evaluation scenarios, 1 < M(= 4) ≪ T (= 73 or 75), showing that
MEBQAT is up to 18 times more cost-efficient than other methods since it trains
a single model with a single batch normalization layer for all different tasks. Note
that computation costs are the same for all non-few-shot methods during testing
since inference directly follows quantization. In other words, MEBQAT requires
zero additional training during inference. Thus, MEBQAT exhibits much more
training efficiency than other adaptive methods in non-few-shot scenarios.



12 J. Youn et al.

Table 4. Comparison of accuracy (%) to vanilla FOMAML and FOMAML + QAT,
using 5-layer CNN in [9].

(bw, ba)
Omniglot 20-way 1-shot, 5-layer CNN Omniglot 20-way 5-shot, 5-layer CNN

FOMAML FOMAML+QAT MEBQAT-MAML FOMAML FOMAML+QAT MEBQAT-MAML

(2, 2) 25.97 62.09 89.57 35.24 84.03 96.94
(3, 3) 75.29 65.24 91.46 83.29 83.29 97.58
(4, 4) 84.43 63.84 91.62 88.19 84.73 97.61
(5, 5) 89.51 67.35 91.65 93.28 97.78 97.61
(6, 6) 91.47 92.95 91.66 96.43 97.53 97.61
(7, 7) 90.94 92.40 91.65 96.61 97.41 97.61
(8, 8) 91.92 93.00 91.66 97.20 97.86 97.61

(16, 16) 93.13 92.82 91.65 97.47 97.41 97.69
(FP, FP) 93.12 93.12 92.39 97.48 97.48 97.88

MiniImageNet 5-way 1-shot, 5-layer CNN MiniImageNet 5-way 5-shot, 5-layer CNN

(2, 2) 34.96 42.35 46.00 47.49 62.25 61.65
(3, 3) 43.89 42.11 47.45 59.02 63.16 63.82
(4, 4) 47.14 48.75 47.56 63.40 64.76 63.54
(5, 5) 48.19 47.07 47.45 64.09 65.54 63.69
(6, 6) 48.56 48.66 47.46 64.31 64.09 63.67
(7, 7) 48.62 48.10 47.43 64.41 64.57 63.72
(8, 8) 48.60 48.26 47.43 64.53 64.65 63.70

(16, 16) 48.65 48.17 47.36 64.48 65.17 63.81
(FP, FP) 48.66 48.66 47.68 64.51 64.51 64.28

4.2 Experiments on the Bitwidth-Class Joint Adaptation Scenario

To the best of our knowledge, there is no prior work on multi-bit quantization in
a few-shot context. Therefore, we compare MEBQAT-MAML and MEBQAT-PN
to two types of compared schemes: (1) vanilla meta-learning without quantization-
awareness and (2) meta-learning combined with bitwidth-dedicated QAT. In (2),
by using fake-quantized b-bit models in conventional meta-learning operations,
the model shows solid adaptable performance in b-bits. Just as in section (4.1),
we conduct experiments with much more various bitwidth candidates than ex-
isting QAT-based methods.

When using the MAML framework, there are 16/4 inner-loop tasks using
Omniglot/MiniImageNet, respectively. In an inner-loop, the 5-layer CNN in [9]
is updated by a SGD optimizer with learning rate 10−1/10−2 at 5 times with
a support set. In an outer-loop, the base model is trained by Adam optimizer
with learning rate 10−4. In the meta-testing phase, fine-tuning occurs in 5/10
times, with an optimizer same as inner-loop optimizer in the previous phase.
When using the PN framework, a model is optimized by Adam with learning
rate 10−3. We use Euclidean distance as a metric for classification. MEBQAT-PN
has 4 inner-loop tasks per outer-loop.

Performance of MEBQAT-MAML and MEBQAT-PN. Table 4 shows
the meta-testing accuracy after meta-trained by FOMAML, FOMAML + QAT
and MEBQAT-MAML. For each bitwidth setting, accuracy is averaged over 600
different sets of N target classes unseen in the previous phase. It is noteworthy
that in some cases, MEBQAT-MAML exceeds the postulated upper bound of
accuracy. In other words, although we hypothesized applying bitwidth-dedicated
QAT directly to train individual models would have the highest accuracy, we
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Table 5. Comparison of accuracy (%) to vanilla PN and PN + QAT, using 4-layer
CNN in [30].

(bw, ba)
Omniglot 20-way 1-shot, 4-layer CNN Omniglot 20-way 5-shot, 4-layer CNN
PN PN+QAT MEBQAT-PN PN PN+QAT MEBQAT-PN

(2, 2) 31.58 95.46 94.87 50.86 98.71 98.32
(3, 3) 81.21 95.90 95.55 93.87 98.77 98.56
(4, 4) 93.73 95.97 95.60 98.37 98.76 98.58
(5, 5) 95.40 95.95 95.60 98.77 98.61 98.58
(6, 6) 95.83 95.82 95.60 98.83 98.65 98.58
(7, 7) 95.84 95.95 95.60 98.87 98.62 98.58
(8, 8) 95.88 95.97 95.60 98.88 98.85 98.58

(16, 16) 96.89 95.55 95.60 98.89 98.93 98.58
(FP, FP) 95.88 95.88 96.06 98.89 98.89 98.70

MiniImageNet 5-way 1-shot, 4-layer CNN MiniImageNet 5-way 5-shot, 4-layer CNN

(2, 2) 26.29 50.06 47.66 30.64 67.45 65.34
(3, 3) 37.51 50.16 48.57 46.74 67.71 66.16
(4, 4) 45.59 50.38 48.38 60.52 67.35 66.22
(5, 5) 48.33 50.18 48.54 64.75 65.95 66.16
(6, 6) 49.77 50.01 48.55 65.81 65.63 66.19
(7, 7) 49.52 49.90 48.55 65.68 66.06 66.19
(8, 8) 49.29 48.35 48.55 65.90 65.86 66.19

(16, 16) 49.75 47.86 48.55 65.94 66.39 66.19
(FP, FP) 49.61 49.61 48.33 65.82 65.82 66.03

found that in some cases, MEBQAT-MAML achieves performance exceeding
the baseline.

Table 5 shows the meta-testing accuracy after meta-trained by PN, PN +
QAT and MEBQAT-PN. For each bitwidth setting, accuracy is averaged over
600 different sets of N target classes unseen in the previous phase. The results
prove that MEBQAT is also compliant to metric-based meta-learning such that
the base model can fit into any target bitwidth as well as target classes without
fine-tuning in the test side.

5 Discussion

Although this paper focuses on quantizing the entire model into a single bitwidth,
and increasingly growing area of research focuses on quantizing each layer or
block of the model into different optimal bitwidths. When MEBQAT is directly
applied to this mixed-precision setting, this might require many diverse tasks,
which poses heavier computational burdens both during training and when find-
ing an optimal bitwidth for each platform during inference. Development of an
efficient meta-learning method for both adaptive- and mixed-precision quanti-
zation would be an interesting future work.

A limitation of our current experiments comes from the fact that in our
method, QAT does not consist solely of integer-arithmetic-only operations. More-
over, MEBQAT-MAML stipulates fine-tuning at meta-testing phase for adap-
tation, where the gradient descent during this process is mostly done in full
precision. In this case, future work can include applying integer-only methods
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such as in HAWQ-v3 [39] as a quantization(-aware training) method to further
test the feasibility of our method. We can also proceed to use COTS edge devices
such as a Coral development board to evaluate the applicability of our method.

Increasing the performance of adaptability of our work is another future work.
This is especially true since FOMAML and Prototypical Networks are methods
that have been tried and tested for several years. Using other sophisticated
meta-learning methods can improve the adaptability performance of our model
or reduce the computational complexity of fine-tuning our model at a resource-
constrained device.

6 Conclusion

To the best of our knowledge, this paper is the first to attempt training a
model with meta-learning which can be independently quantized to any arbi-
trary bitwidth at runtime. To this end, we investigate the possibility of incorpo-
rating bitwidths as an adaptable meta-task, and propose a method by which the
model can be trained to adapt into any bitwidth, as well as any target classes
in a supervised-learning context. Through experimentation, we found that our
proposed method achieves performance greater than or equal to existing work on
adaptable bitwidths, showing that incorporating meta-learning could become a
viable alternative. We also found that our method is robust to a few-shot learning
context, showing better performance than models trained with dedicated meta-
learning techniques and quantized using PTQ or QAT. Thus, we demonstrate
that MEBQAT can potentially open up an interesting new avenue of research in
the field of bitwidth-adaptive QAT.
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