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Abstract. We investigate the contributions of three important features
of the human visual system (HVS) — shape, texture, and color — to
object classification. We build a humanoid vision engine (HVE) that ex-
plicitly and separately computes shape, texture, and color features from
images. The resulting feature vectors are then concatenated to support
the final classification. We show that HVE can summarize and rank-
order the contributions of the three features to object recognition. We
use human experiments to confirm that both HVE and humans predom-
inantly use some specific features to support the classification of specific
classes (e.g., texture is the dominant feature to distinguish a zebra from
other quadrupeds, both for humans and HVE). With the help of HVE,
given any environment (dataset), we can summarize the most important
features for the whole task (task-specific; e.g., color is the most impor-
tant feature overall for classification with the CUB dataset), and for each
class (class-specific; e.g., shape is the most important feature to recognize
boats in the iLab-20M dataset). To demonstrate more usefulness of HVE,
we use it to simulate the open-world zero-shot learning ability of humans
with no attribute labeling. Finally, we show that HVE can also simulate
human imagination ability with the combination of different features.
We will open-source the HVE engine and corresponding datasets.

1 Introduction

The human vision system (HVS) is the gold standard for many current com-
puter vision algorithms, on various challenging tasks: zero/few-shot learning
[37,32,52,42,50], meta-learning [2,30], continual learning [45,54,60], novel view
imagination [62,17], etc. Understanding the mechanism, function, and decision
pipeline of HVS becomes more and more important. The vision systems of hu-
mans and other primates are highly differentiated. Although HVS provides us a
unified image of the world around us, this picture has multiple facets or features,
like shape, depth, motion, color, texture, etc. [16,23]. To understand the contri-
butions of the most important three features — shape, texture, and color — in
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Contribution Attribution

Fig. 1. Left: Contributions of Shape, Texture, and Color may be different among dif-
ferent scenarios/tasks. Here, texture is most important to distinguish zebra from horse,
but shape is most important for zebra vs. zebra car. Right: Humanoid Vision Engine
takes dataset as input and summarizes how shape, texture, and color contribute to
the given recognition task in a pure learning manner (E.g., In ImageNet classification,
shape is the most discriminative feature and contributes most to visual recognition).

visual recognition, some research compares the HVS with an artificial convolu-
tional Neural Network (CNN). A widely accepted intuition about the success of
CNNs on perceptual tasks is that CNNs are the most predictive models for the
human ventral stream object recognition [7,61]. To understand which feature
is more important for CNN-based recognition, recent paper shows promising re-
sults: ImageNet-trained CNNs are biased towards texture while increasing shape
bias improves accuracy and robustness [33].

Due to the superb success of HVS on various complex tasks [37,2,45,62,19],
human bias may also represent the most efficient way to solve vision tasks. And
it is likely task-dependent (Fig. 1). Here, inspired by HVS, we wish to find a
general way to understand how shape, texture, and color contribute to a recog-
nition task by pure data-driven learning. The summarized feature contribution is
important both for the deep learning community (guide the design of accuracy-
driven models [33,22,15,6]) and for the neuroscience community (understanding
the contributions or biases in human visual recognition) [35,59].

It has been shown by neuroscientists that there are separate neural pathways
to process these different visual features in primates [1,11]. Among the many
kinds of features crucial to visual recognition in humans, the shape property is
the one that we primarily rely on in static object recognition [16]. Meanwhile,
some previous studies show that surface-based cues also play a key role in our
vision system. For example, [21] shows that scene recognition is faster for color
images compared with grayscale ones and [40,38] found a special region in our
brain to analyze textures. In summary, [9,8] propose that shape, color and texture
are three separate components to identify an object.

To better understand the task-dependent contributions of these features, we
build a Humanoid Vision Engine (HVE) to simulate HVS by explicitly and sep-
arately computing shape, texture, and color features to support image classifica-
tion in an objective learning pipeline. HVE has the following key contributions:
(1) Inspired by the specialist separation of the human brain on different features
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[1,11], for each feature among shape, texture, and color, we design a specific
feature extraction pipeline and representation learning model. (2) To summarize
the contribution of features by end-to-end learning, we design an interpretable
humanoid Neural Network (HNN) that aggregates the learned representation of
three features and achieves object recognition, while also showing the contribu-
tion of each feature during decision. (3) We use HVE to analyze the contribution
of shape, texture, and color on three different tasks subsampled from ImageNet.
We conduct human experiments on the same tasks and show that both HVE and
humans predominantly use some specific features to support object recognition
of specific classes. (4) We use HVE to explore the contribution, relationship,
and interaction of shape, texture, and color in visual recognition. Given any en-
vironment (dataset), HVE can summarize the most important features (among
shape, texture, and color) for the whole task (task-specific) and for each class
(class-specific). To the best of our knowledge, we provide the first fully objective,
data-driven, and indeed first-order, quantitative measure of the respective con-
tributions. (5) HVE can help guide accuracy-driven model design and performs
as an evaluation metric for model bias. For more applications, we use HVE to
simulate the open-world zero-shot learning ability of humans which needs no at-
tribute labels. HVE can also simulate human imagination ability across features.
We open-source the HVE engine and corresponding dataset.

2 Related Works

In recent years, more and more researchers focus on the interpretability and
generalization of computer vision models like CNN [48,24] and vision trans-
former [12]. For CNN, many researchers try to explore what kind of information
is most important for models to recognize objects. Some paper show that CNNs
trained on the ImageNet are more sensitive to texture information [22,15,6]. But
these works fail to quantitatively explain the contribution of shape, texture, color
as different features, comprehensively in various datasets and situations. While
most recent studies focus on the bias of Neural Networks, exploring the bias of
humans or a humanoid learning manner is still under-explored and inspiring.

Besides, many researchers contribute to the generalization of computer vi-
sion models and focus on zero/few-shot learning [37,32,57,50,18,10], novel view
imagination [62,17,20], open-world recognition [3,28,27], etc. Some of them tack-
led these problems by feature learning — representing an object by different
features, and made significant progress in this area [55,39,62]. But, there still
lacks a clear definition of what these properties look like or a uniform design of a
system that can do humanoid tasks like generalized recognition and imagination.

3 Humanoid Vision Engine

The goal of the humanoid vision engine (HVE) is to summarize the contribution
of shape, texture, and color in a given task (dataset) by separately computing
the three features to support image classification, similar to the way that humans
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Fig. 2. Pipeline for humanoid vision engine (HVE). (a) shows how will humans’ vision
system deal with an image. After humans’ eyes perceive the object, the different parts
of the brain will be activated. The human brain will organize and summarize that
information to get a conclusion. (b) shows how we design HVE to correspond to each
part of the human’s vision system.

recognize objects. During the pipeline and model design, we borrow the findings
of neuroscience researchers on the structure, mechanism, and function of HVS
[1,11,16,21,40,38]. We use end-to-end learning with backpropagation to simulate
the learning process of humans and to summarize the contribution of shape, tex-
ture, and color. The advantage of end-to-end training is that we can avoid intro-
ducing human bias, which may influence the objective of contribution attribution
(e.g., we do not introduce handcrafted elementary shapes as done in Recognition
by Components [4]). We only use data-driven learning, a straightforward way
to understand the contribution of each feature from effectiveness perspective,
and we can easily generalize HVE to different tasks (datasets). As shown in
Fig. 2, HVE consists of (1) a humanoid image preprocessing pipeline, (2)
feature representation for shape, texture, and color, and (3) a humanoid
neural network that aggregates the representation of each feature and achieves
interpretable object recognition.

3.1 Humanoid Image Preprocessing and Feature Extraction

As shown in Fig.2 (a), humans (or primates) can localize an object intuitively in
a complex scene before we recognize what it is [29]. Also, there are different types
of cells or receptors in our primary visual cortex extracting specific information
(like color, shape, texture, shading, motion, etc) information from the image [16].
In our HVE (Fig. 2 (b)), for an input raw image I ∈ RH×W×C , we first parse
the object from the scene as preprocessing and then extract our defined shape,
texture, and color features Is, It, Ic, for the following humanoid neural network.
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Image Parsing and Foreground Identification. As shown in the prepro-
cessing part of Fig.2 (b), we use the entity segmentation method [41] to simulate
the process of parsing objects from a scene in our brain. Entity segmentation is
an open-world model and can segment the object from the image without labels.
This method aligns with human behavior, which can (at least in some cases; e.g.,
autostereograms [29]) segment an object without deciding what it is. After we
get the segmentation of the image, we use a pre-trained CNN and GradCam [47]
to find the foreground object among all masks. (More details in Supp.)

We design three different feature extractors after identifying the foreground
object segment: shape extractor, texture extractor, and color extractor, similar
to the separate neural pathways in the human brain which focus on specific
property [1,11]. The three extractors focus only on the corresponding features,
and the extracted features, shape Is, texture It, and color Ic, are disentangled
from each other.

Shape Feature Extractor For the shape extractor, we want to keep both 2D
and 3D shape information while eliminating the information of texture and color.
We first use a 3D depth prediction model [44,43] to obtain the 3D depth informa-
tion of the whole image. After element-wise multiplying the 3D depth estimation
and 2D mask of the object, we obtain our shape feature Is ∈ RH×W . We can
notice that this feature only contains 2D shape and 3D structural information
(the 3D depth) and without color or texture information (Fig. 2(b)).

Texture Feature Extractor In texture extractor, we want to keep both local
and global texture information while eliminating shape and color information.
Fig. 3 visualizes the extraction process. First, to remove the color information,
we convert the RGB object segmentation to a grayscale image. Next, we cut this
image into several square patches with an adaptive strategy (the patch size and
location are adaptive with object sizes to cover more texture information). If
the overlap ratio between the patch and the original 2D object segment is larger
than a threshold τ , we add that patch to a patch pool (we set τ to be 0.99 in
our experiments, which means the over 99% of the area of the patch belongs to
the object). Since we want to extract both local (one patch) and global (whole
image) texture information, we randomly select 4 patches from the patch pool
and concatenate them into a new texture image (It). (More details in Supp.)

Color Feature Extractor We use two methods to represent the color feature
for a given image I. The first method is phase scrambling, which is popular in
psychophysics and in signal processing [36,53]. Phase scrambling transforms the
image into the frequency domain using the fast Fourier transform (FFT). In the
frequency domain, the phase of the signal is then randomly scrambled, which
destroys shape information while preserving color statistics. Then we use IFFT
to transfer back to image space and get Ic ∈ RH×W×C . Ic and I have the same
distribution of pixel color values (Fig. 2(b)).
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(a) (b) (c)

Fig. 3. Pipeline for extracting texture feature: (a) Crop images and compute the over-
lap ratio between 2D mask and patches. Patches with overlap > 0.99 are shown in a
green shade. (b) add the valid patches to the patch pool. (c) randomly choose 4 patches
from the pool and concatenate them to obtain a texture image It.

We also used simple color histograms (see suppl.) as an alternative, but the
results were not as good, hence we focus here on the phase scrambling approach
for color representation.

3.2 Humanoid Neural Network

After preprocessing, we have three features, i.e. shape Is, texture It, color Ic of
an input image I. To simulate the separate neural pathways in humans’ brains
for different feature information [1,11], we design three feature representation
encoders for shape, texture, and color, respectively. Shape feature encoder Es

takes a 3D shape feature Is as input and outputs the shape representation (Vs =
Es(Is)). Similarly, texture encoder Et and color encoder Ec take the texture
patch image It or color phase scrambled image Ic as input, after embedded by
Et (or Ec), we get the texture feature Vt and color feature Vc.

We use ResNet-18 [24] as the backbone for all feature encoders to project the
three types of features to the corresponding well-separated embedding spaces.
It is hard to define the ground-truth label of the distance between features.
Given that the objects from the same class are relatively consistent in shape,
texture, and color, the encoders can be trained in the classification problem
independently instead, with the supervision of class labels. After training our
encoders as classifiers, the feature map of the last convolutional layer will serve
as the final feature representation. (More details in the appendix.)

To aggregate separated feature representations and conduct object recogni-
tion, we freeze the three encoders and train a contribution interpretable aggre-
gation module Aggrθ, which is composed of two fully-connected layers (Fig. 2
(b) right). (More exploration in Appendix B.3 ). We concatenate Vs, Vt, Vc and
send it to Aggrθ. The output is denoted as p ∈ Rn, where n is the number of
classes.

p = Aggrθ (concat(Vs, Vt, Vc)) . (1)

We also propose a gradient-based contribution attribution method to inter-
pret the contributions of shape, texture, and color to the classification decision,
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respectively. Take the shape feature as an example, given a prediction p and the
probability of class k, namely pk, we compute the gradient of pk with respect to
the shape feature V s. We define the gradient as shape importance weights αk

s :

αk
s =

∂pk

∂Vs
αk
t =

∂pk

∂Vt
αk
c =

∂pk

∂Vc
. (2)

Then we can calculate element-wise product between Vs and αk
s to get the

final shape contribution Sk
s . In other words, Sk

s represents the “contribution” of
shape feature to classifying this image as class k.

Sk
s = ReLU

(∑
αk
sVs

)
. (3)

We can do the same thing to get texture contribution Sk
t and color contribu-

tion Sk
c . After getting the feature contributions for each image, we can calculate

the average value of all images in this class to assign feature contributions to each
class (class-specific bias) and the average value of all classes to assign feature
contributions to the whole dataset (task-specific bias).

4 Experiments

In this section, we first show the effectiveness of feature encoders on represen-
tation learning (Sec. 4.1); then we show the contribution interpretation per-
formance of Humanoid NN on different feature-biased datasets in ImageNet
(Sec. 4.2); We use human experiments to confirm that both HVE and humans
predominantly use some specific features to support the classification of specific
classes (Sec. 4.3); Then we use HVE to summarize the contribution of shape,
texture, and color on different datasets (CUB[58] and iLab-20M[5]) (Sec. 4.4).

4.1 Effectiveness of Feature Encoders

To show that our three feature encoders focus on embedding their corresponding
sensitive features, we handcrafted three subsets of ImageNet [31]: shape-biased
dataset (Dshape), texture-biased dataset (Dtexture), and color-biased dataset (Dcolor).
Shape-biased dataset containing 12 classes, where the classes were chosen
which intuitively are strongly determined by shape (e.g., vehicles are defined by
shape more than color). Texture-biased dataset uses 14 classes which we be-
lieved are more strongly determined by texture. Color-biased dataset includes
17 classes. The intuition of class selection of all three datasets will be verified
by our results in Table 1 with further illustration in Sec. 4.2. All these datasets
use 80% / 20% of training and testing data (each class with around 800 training
images and 200 testing images; images are randomly selected in each class). The
details of classes contained in our biased datasets are shown in Fig. 4.

If our feature extractors actually learned their corresponding features with
feature-constructive latent spaces, their T-SNE results will show clear clusters in
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(1) Shape encoder (2) Texture encoder (3) Color encoder

(a) Shape biased 
dataset

(b) Texture biased 
dataset

(C) Color biased 
dataset

Fig. 4. T-SNE results of feature encoders on their corresponding biased datasets

Table 1. The “original” column means the accuracy of Resnet18 on the original images
is our upper bound. “shape”, “texture” and “color” columns represent the accuracy
of feature nets. The “all” column shows results of the Humanoid Neural Network that
combines the 3 feature nets. It approaches the upper bound, suggesting that the split
into 3 feature nets preserved most information needed for image classification.

accuracy original shape texture color all

Shape biased dataset 97% 90% 84% 71% 95%
Texture biased dataset 96% 64% 81% 65% 91%
Color biased dataset 95% 70% 73% 82% 92%

the feature-biased datasets. “Bias” here means we can classify the objects based
on the biased feature easily, but it is more difficult to make decisions based on
the other two features. As shown in Fig. 1, distinguishing horse and zebra is a
texture-biased task, while zebra vs. zebra car is a shape-biased task.

After pre-processing the original images and getting their feature images, we
input the feature images into feature encoders and get the T-SNE results shown
in Fig. 4. Each row represents one feature-biased dataset and each column is
bounded with one feature encoder, each image shows the results of one com-
bination. For instance, row (a) shows that the 12 classes in our shape-biased
dataset are well separated in the embedding space of our shape encoder (column
1), but they are not separated in the embedding space of the texture (column 2)
or color (column 3) encoders. Likewise color and texture encoders, their T-SNE
results are separated perfectly on corresponding datasets (diagonal) but not as
well on others’ datasets (off-diagonal), which shows that our feature encoders
are predominantly sensitive to the corresponding features.
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4.2 Effectiveness of Humanoid Neural Network

We can use feature encoders to serve as classifiers after adding fully-connected
layers. As these classifiers classify images based on corresponding feature repre-
sentation, we call them feature nets. We tested the accuracy of feature nets on
these three biased datasets. As shown in Table 1, a ResNet-18 trained on the
original segmented images (without explicit separated features, e.g. Fig. 2 (b)
tiger without background) provided an upper bound for the task. We find that
feature net consistently obtains the best performance on their own biased dataset
(e.g., on the shape-biased dataset, shape net classification performance is better
than that of the color net or texture net). If we combine these three feature nets
with the interpretable aggregation module, the classification accuracy is very
close to the upper bound, which means our vision system can classify images
based on these three features almost as well as based on the full original color
images. This demonstrates that we can obtain most information of original im-
ages by our feature nets, and our aggregation and interpretable decision module
actually learned how to combine those three features by end-to-end learning.

Table 2 shows the quantitative contribution summary results of Humanoid
NN (Sec. 3.2). For task-specific bias on each dataset, shape plays a dominant role
in shape-biased tasks, and texture, color also contribute most to their related
biased tasks.

Table 2. Contributions of features for different biased datasets.

contribution shape ratio texture ratio color ratio

Shape biased dataset 47% 34% 19%
Texture biased dataset 5% 65% 30%
Color biased dataset 11% 19% 70%

4.3 Human Experiments

Intuitively, we expect that humans may rely on different features to classify
different objects (Fig. 1). To show this, we designed human experiments that
asked participants to classify reduced images with only shape, texture, or color
features. If an object is mainly recognizable based on shape for humans, we
could then check whether it is also the same for HVE, and likewise for color and
texture.

Experiments Design As shown in Table. 1, the three datasets (Fig. 4) have a
clear bias towards corresponding features. We asked the participants to classify
objects in the corresponding dataset based on one single feature image com-
puted by one of our feature extractors (Fig. 5). The reduced image contained
only shape, texture, or color information. To make sure that the participants
understood the class definitions well, we also showed them two example images
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(b)(a)

shape texture color

Jeep

Beach wagon
Convertible

…
(12 classes in total)

Fig. 5. Sample question for the human experiment. (a) A test image (left) is first
converted into shape, color, and texture images using our feature extractors. (b) On a
given trial, human participants are presented with one shape, color, or texture image,
along with 2 reference images for each class in the corresponding dataset (not shown
here, see suppl. for a screenshot of an experiment trial). Participants are asked to guess
the correct object class from the feature image.

of each class at the bottom of the screen with the assigned class label written
below (for instance, some participants may not have been familiar with what the
”beach wagon” ImageNet class is). Participants were asked to choose the correct
class label for the reduced image (from 12/14/17 classes in shape/texture/color
datasets).

Human Performance Results The results here are based on 3270 trials,
109 participants. We publicly posted our questionnaires on the internet and
sent the questionnaire link to the students and machine learning researchers in
different universities. The accuracy for different feature questions on different
biased datasets can be seen in Table 3. Human performance is quite similar to
our feature nets’ performance (compare Table 1 with Table 3). On the shape-
biased dataset, both human and feature nets attain the highest accuracy with
shape. The same for the color and texture biased datasets. Thus, both HVE and
humans predominantly use some specific features to support object recognition of
specific classes. Interestingly, humans can perform not badly on all three biased
datasets with shape feature.

Table 3. Humans’ recognition accuracy of different feature images on different biased
datasets

accuracy shape texture color

Shape biased dataset 90.0% 49.0% 16.8%
Texture biased dataset 33.1% 40.0% 11.1%
Color biased dataset 32.3% 19.7% 46.5%

4.4 Contributions Attribution in Different Tasks

With our vision system, we can summarize the task-specific bias and class-
specific bias for any dataset. This enables several applications: (1) Guide accuracy-
driven model design; e.g.,[33,22,15,6] use dataset bias to guide the model design.
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Table 4. class-specific bias for each class in iLab-20M

ratio boat bus car mil monster pickup semi tank train van

shape 40% 35% 44% 18% 36% 28% 40% 36% 31% 40%
texture 32% 31% 40% 30% 34% 20% 31% 32% 34% 27%
color 28% 34% 16% 52% 30% 53% 29% 32% 35% 33%

Our method provides objective summarization of dataset bias. (2) Evaluation
metric for model bias. Our method can help correct an initially wrong model
bias on some datasets (e.g., that most CNN trained on ImageNet are texture
biased [22,33]). (3) Substitute human intuition to obtain more objective summa-
rization with end-to-end learning. We implemented the biased summarization
experiments on two datasets, CUB [58] and iLab-20M [5]. Fig. 1(b) shows the
task-specific biased results. The results of CUB are reasonable since CUB is a
dataset of birds, which means all the classes in CUB have a similar shape with
feather textures, hence color may indeed be the most discriminative feature. We
show sample images of CUB in Fig. 6 (a).

As for iLab (Fig. 6 (b)), its task-specific bias is so even that we cannot reach
a clear conclusion about which feature is more important. So we implement
the class-specific biased experiments on iLab and summarize the class biases in
Table 4. It is interesting to find that the dominant feature is different for different
classes. Take the boat as an example, it is strongly shape-biased, as indeed the
shape of boats is so distinct in this dataset of vehicles. The results for military
vehicles (mil) also deserve attention. The aggregation module shows that we can
rely on color to distinguish mil. This conclusion is intuitive as the color of the
mil is always green. We show more example images of iLab in the appendix.

(a) CUB dataset (b) iLab-20M dataset

Fig. 6. Overview of CUB and iLab-20M dataset
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From   shape perspective, 
it looks like  horse ,  donkey               .

FEATURE

CLASS 1 CLASS 2

Texture 
Reasoning Aggregation

Reasoning

(a) Open-world Image Description (b) Reasoning for Zero-shot Learning

From   texture perspective, 
it looks like  tiger ,  piano keys .CLASS 1 CLASS 2

FEATURE
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Fig. 7. The zero-shot learning method with HVE. We first describe the novel image
in the perspective of shape, texture, and color. Then we use ConceptNet as common
knowledge to reason and predict the label.

5 More Humanoid Applications with HVE

To further explore more applications with HVE, we use HVE to simulate the
visual reasoning process of humans and propose a new solution for conduct-
ing open-world zero-shot learning without predefined attribute labels (Sec. 5.1).
We also use HVE to simulate human imagination ability through cross-feature
retrieval and imagination (Sec. 5.2).

5.1 Open-world Zero-shot Learning with HVE

Zero-shot learning is a challenging task, where, at test time, a learner needs
to classify samples from classes never seen during training. Most current meth-
ods [37,32,13] need humans to provide detailed attribute labels for each image,
which is costly in time and energy. However, given an image from an unseen
class, humans can still describe it with their learned knowledge. For example, we
may use horse-like shape, panda-like color, and tiger-like texture to describe an
unseen class zebra, if we know horse, panda, and tiger. We use HVE to simulate
this feature-wise open-world image description by feature retrieval and rank-
ing (Sec. 5.1). Based on the image description, humans may conduct further
reasoning or consulting with the help of an outside knowledge pool (e.g., Word-
Net [34]) to predict the class of the given unseen image. Similarly, we propose a
feature-wise open-world zero-shot learning (reasoning) pipeline with the help of
ConceptNet [51] (Sec. 5.1). The whole process can be seen in Fig. 7.

Step 1: Description In this section, we introduce how to use HVE to pro-
vide feature-wise description for any unseen class image without predefined at-
tribute labels. First, to represent learnt knowledge, we use feature extractors
Es, Et, Ec (described in Sec. 3.2) to get the shape, texture, and color representa-

tion V
(k,i)
s , V

(k,i)
t , V

(k,i)
c of the ith image of seen class k. Then, given an unseen
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class image Iun, we use the same feature extractors to get its feature-wise rep-
resentation V ′

s , V
′
t , V

′
c . To retrieve learnt classes as description, we calculate the

average distance dkm between Iun and images of other class k in the latent space
on feature m. Here m ∈ {s, t, c} is “shape”, “texture” or “color”.

dkm =
1

nk

∑
i∈Tk

d(k,i)m =
1

nk

∑
i∈Tk

||V ′
m − V (k,i)

m ||2, (4)

where Tk represents images of seen class k in the training set and nk is the
number of images in class k.

In this way, we can find the top K closest classes of Iun from shape per-
spective, and we call these K classes shape roots Rs. We do the same operation
to texture and color representation and get Rt, Rc. Now, we can describe Iun
using our roots. For example, as shown in Fig. 7(a), for the unseen class zebra,
Rs = {horse,donkey}, Rt = {tiger,piano keys}, Rc = {panda,penguin}, and we
can describe its shape, texture, and color based on these classes.

Step 2: Open-world classification To further predict the actual class of Iun
based on the feature-wise description, we use ConceptNet as common knowledge
to conduct reasoning. As shown in Fig. 7(b), for every feature root Rs, Rt, Rc,
we retrieve their common attribute as Rm

a = {
⋂

r∈Rm
pr} in ConceptNet, where

pr is the neighbors of r in ConceptNet, (e.g., stripe is common attribute root
of Rt = {tiger,piano keys}). We form a reasoning root pool R∗ consisting of
feature roots Rs, Rt, Rc obtained during image description, and shared attribute
roots Rs

a, R
t
a, R

c
a. The reasoning roots will be our evidence for reasoning. For

every root r ∈ R∗, we can search its neighbors in ConceptNet, which are treated
as possible candidate classes for Iun. All candidates form a possible candidate
pool P , which contains all hypothesis classes. Now we have two pools, root pool
R∗ and candidate pool P . For every candidate pi ∈ P , we calculate the ranking
score of pi as:

S̄(pi) =
∑

rj∈R∗

cos(E(pi), E(rj)), (5)

where E(·) is the word embedding in ConceptNet and cos(A,B) means cosine
similarity between A and B.

We choose the candidate having the highest-ranking score as our predicted
label. We build a prototype zero-shot learning dataset with 34 seen classes as
the training set and 5 unseen classes as the test set, using 200 images per class.
We calculate the accuracy of unseen classes (Table 5). Although not perfect,
results are well above the chance level (1/5=20%). The performance of each
feature extractor and encoder in HVE is the core of open-world classification
applications. Fore baseline method, we conduct prototypical networks [49] on
the same open-world zero-shot learning task with the same dataset and same
backbone as our method. It is hard for the prototypical network to direct conduct
zero-shot so we provide one-shot for each test class and use its one-shot setting.
More details are in the appendix.
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Table 5. Accuracy of unseen class for zero-shot learning

Method fowl zebra wolf sheep apple

Prototype (one-shot) 19% 16% 17% 21% 74%
Ours (zero-shot) 78% 87% 63% 72% 98%

5.2 Cross Feature Imagination with HVE

We show HVE has the potential to simulate human imagination ability. We
humans can intuitively imagine an object when seeing one aspect of a feature,
especially when this feature is prototypical (contribute most to classification).
For instance, we can imagine a zebra when seeing its stripe (texture). This pro-
cess is similar but harder than the classical image generation task since the input
features modality here dynamic which can be any feature among shape, texture,
or color. To solve this problem, using HVE, we separate this procedure into two
steps: (1) cross feature retrieval and (2) cross feature imagination. Given
any feature (shape, texture, or color) as input, cross-feature retrieval focuses on
finding the most possible two other features. Cross-feature imagination can then
generate a whole object based on a group of shapes, textures, and color features.

Cross Feature Retrieval In order to reasonably retrieve the most possible
other two corresponding features given only one feature (among shape, texture,
or color), we learn a feature agnostic encoder that projects the three features
into one same feature space and makes sure that the features belonging to the
same class are in the nearby regions.

(a) (b)

Fig. 8. (a) The structure and training process of the cross-feature retrieval model. Es,
Et, Ec are the same encoders in Sec. 3.2. The feature agnostic net then projects them
to shared feature space for retrieval. (b) The process of cross-feature imagination. After
retrieval, we design a cross-feature pixel2pixel GAN model to generate the final image.

As shown in Fig. 8(a), during training, the shape Is, texture It and color Ic are
first sent into the corresponding frozen encoders Es, Et, Ec, which are the same
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Table 6. Cross-features retrieval accuracy on biased datasets (DS).

input shape texture color
retrieval shape texture color shape texture color shape texture color

shape biased DS 86% 81% 74% 76% 77% 66% 64% 61% 60%
texture biased DS 52% 51% 41% 67% 73% 63% 52% 57% 54%
color biased DS 59% 56% 54% 56% 61% 59% 67% 75% 75%

encoders in Sec. 3.2. Then all of the outputs are projected into a cross-feature
embedding space by a feature agnostic net M, which contains three convolution
layers. We also add a fully connected layer to predict the class labels of the
features. We use cross-entropy loss Lcls to regularize the prediction label and a
triplet loss Ltriplet [46] to regularize the projection of M. For any input feature x
(e.g., a bird A shape), positive sample xpos are either same class same modality
(another bird A shape) or same class different feature modality (a bird A texture
or color); negative sample xneg are any features from different class. Ltriplet pulls
the embedding of x closer to that of the positive sample xpos, and pushes it apart
from the embedding of the negative sample xneg. The triplet loss is defined as
follow:

Ltriplet = max(∥F(x)−F(xpos)∥2 − ∥F(x)−F(xneg)∥2 + α, 0), (6)

where F(·) := M(E(·)), E is one of the feature encoders. α is the margin size
in the feature space between classes, ∥ · ∥2 represents ℓ2 norm.

We test the retrieval model in all three biased datasets (Fig. 4) separately.
In the retrieval process, given any feature of any object, we can map it into the
cross feature embedding space by the corresponding encoder net and the feature
agnostic net. Then we apply the ℓ2 norm to find the other two features closest to
the input one as output. The output is correct if they belong to the same class
as the input.

For each dataset, we retrieve the three types of feature pair by pair, and
the accuracy is shown in Table 6. The retrieval performs better when the input
feature is the dominant of the dataset, which again verifies the feature bias in
each dataset.

Cross Feature Imagination To stimulate imagination, we propose a cross-
feature imagination model to generate a plausible final image with the input and
retrieved features. The procedure of imagination is shown in Fig. 8(b). Inspired
by the pixel2pixel GAN[26] and AdaIN[25] in the style transfer, we design a cross-
feature pixel2pixel GAN model to generate the final image. The GAN model
is trained and tested on the three biased datasets. In Fig. 9, we show more
results of the generation model. The results show that our model satisfyingly
generates the object from a single feature. From the comparison between (c)
and (d), we can clearly find that they are alike from the perspective of the
corresponding input feature, but the imagination results preserve the feature
from the retrieval features. The imagination variance also shows the feature
contributions from a generative view: if the given feature is the dominant feature
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(I) Input shape (II) Input texture (III) Input color

Fig. 9. Results of imagination with shape, texture, and color feature input (columns I,
II, III). Line (a) is the input feature. Line (b) is the retrieved features given (a). Line
(c) is the imagination results with HVE and our GAN model. Line (d) is results of
baseline pix2pix GANs, which is only fed with input feature. Line (e) is the original
images to which the input features belong. Our model can reasonably “imagine” the
object given a single feature.

of a class (contribute most in classification. e.g., the stripe of zebra), then the
retrieved features and imagined images have smaller variance (most are zebras);
While non-dominant given feature (shape of zebra) lead to large imagination
variance (can be any horse-like animals). We create a baseline by using three
pix2pix GANs (same structure as ours), where each pix2pix GAN is responsible
for one specific feature (e.g., take one modality of feature as input and imagine
the raw image). FID comparison shows in Table. 7. More details of the GAN
model are in the appendix.

Table 7. Cross-features imagination quality comparison.

FID (↓) shape input texture input color input

Three pix2pix GANs 123.915 188.854 203.527
Ours 96.871 105.921 52.846
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6 Conclusion

To explore the task-specific contribution of shape, texture, and color features in
human visual recognition, we propose a humanoid vision engine (HVE) that ex-
plicitly and separately computes these features from images and then aggregates
them to support image classification. With the proposed contribution attribu-
tion method, given any task (dataset), HVE can summarize and rank-order the
task-specific contributions of the three features to object recognition. We use
human experiments to show that HVE has a similar feature contribution to hu-
mans on specific tasks. We show that HVE can help simulate more complex and
humanoid abilities (e.g., open-world zero-shot learning and cross-feature imag-
ination) with promising performance. HVE is not a perfect simulation of HVS
due to the limited learning ability and complexity of each component. These re-
sults are the first step towards better understanding the contributions of object
features to classification, zero-shot learning, imagination, and beyond.
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Appendix

A Details of Human Vision Engine (HVE)

A.1 Image Parsing and Foreground Identification

As described in the main paper Sec. 3.1, we use entity segmentation and fore-
ground object identification to simulate the preprocessing behavior of the human
vision system. An illustration is shown in Fig. 10.

The entity segmentation can parse an input image and output a set of binary
images masks. Each mask represents a single object or stuff in the image. For an
input raw image Iraw ∈ RH×W×C , we denote the image mask sets as {Imask,k},
where k = 1, 2, ..., denotes each different object. For each image mask Imask,k,

pixel I
(i,j)
mask,k equals to 1 if and only if pixel I

(i,j)
raw belongs to objects k, otherwise

equals to 0.
For foreground identification, we borrow the learned knowledge from a pre-

trained model which already learn the foreground class. As Grad-CAM [47] could
generate class-specific saliency map Mcam given the model’s prediction, which
represent how important each pixel contribute to the specific prediction. So the
pixel with a higher activation value is more likely belong to foreground. We first
use a pretrained model to generate a saliency map Mcam with Grad-Cam, and
then we can get the binary attention map Matt based on Mcam. For mask Matt,

pixel M
(i,j)
att equals to 1 if and only if pixel M

(i,j)
cam > τ (we set τ to be the median

value of Mcam), otherwise equals to 0.
After getting Matt, we can compute Intersection over union (IoU) score of

each image mask Imask,k,

Sk = SUM(Imask,k ∩Matt)/SUM(Imask,k)

Where SUM() calculates the number of pixels. Then we choose the one with
the highest score as the foreground mask.

A.2 Feature Extractor

In HVE, with the preprocessed image I ∈ RH×W×C , we use the three indepen-
dent feature extractors to obtain the corresponding image feature: shape image
(Is), texture image (It), color image (Ic). Here, we will introduce more details
about the texture and color extractor.

Texture Extractor Fig. 11 visualizes the process of extracting texture. First,
to remove the color information, we convert the RGB object segmentation to
a grayscale image. Since we want to get rid of the influence of background and
extract the local texture feature as well as the global texture feature, we compute
the maximum circumscribed rectangle of the object by its 2D mask and resize
this rectangle part to get a 224 × 224 image. In this way, we can eliminate the
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Original images segmentation Selected Foreground Shape Texture Color

Fig. 10. Example of the preprocessing result and feature extraction.
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(b)

(c)

(a)

Fig. 11. The process for extracting texture. We cut the image of the foreground object
into several square patches as shown in (a) and select the patch pool as shown in (b).
(c) is the final texture feature, the concatenation of k randomly selected patches from
the patches pool.

most background and focus on the object. Next, we will cut this new image into
several square patches. Specifically, We first cut this image into several square
patches, as shown in Fig. 11 (a), if the overlap ratio between the patch and the
original 2D object segment is larger than a threshold τ , we will add them to
a patch pool (we set τ to be 0.99 in our experiments, which means the over
99% area of the patch belong to the object), as shown in Fig. 11 (b). Since we
want to extract both local texture information (one patch) and global texture
information (whole image), we randomly select k patches from the patch pool
and concatenate them to a new texture image (It). We set k = 4 because we
want to concatenate those patches to a square image, which means k should be
a square number. If we set k = 1, we can get the maximum square patch of the
object but we lose some small, local texture. If we set k = 9, the patch will be
too small to contain useful information. To dynamically fit the object size and
minimize the texture information loss. The number of patches we cut from the
original image is dynamic. We will first cut the image into 9 square patches, if
we can get k = 4 valid patches that can be added into the patch pool from these
9 patches, we will stop processing this image. However, if we cannot get 4 valid
patches, we will cut the original images into 16, 25, 36... smaller patches until
we can get 4 valid patches. After concatenation, we can get the texture image
It, such as Fig. 11 (c). More results are shown in Fig. 10.
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Fig. 12. 27 Color centers for the color block.

Fig. 13. Example of color block representation. The first row is original images, while
the second row is the color blocks of those images.
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Color Extractor We have two different ways to extract the color feature Ic,
phase scrambling, and color blocks.

Phase scrambling For a given image I ∈ RH×W×C and a random matrix z ∈
RH×W , we use the 2D fast fourier transform (FFT) on channel j of the image
and get the output I∗j ∈ CH×W , where j = 1, 2, ..., C. We then caculate their
modulus rj and angle θj . Similarly, we apply the FTT to the random matrix
z and get the transformed result z∗ ∈ CH×W and its angle φ. With rj , θj , φ,
we can construct a new complex variable Tj = r · ei(θ+pφ), where p ∈ [0, 1] is a
scramble factor. After the mapping backing by 2D inverse fast fourier transform
and rescale the result to range [0, 255], the output will be the channel j of our
color feature Ic ∈ RH×W×C . This process can be described formally as:

I∗j = FFT(Ij) = ri · eiθj (7)

z∗ = FFT(z) = s · eiφ, (8)

Tj = r · ei(θj+pφ), (9)

Ic,j = rescale(IFFT(Tj)), (10)

where j = 1, 2, ..., C and Ic,j is the channel j of Ic. More results are shown in
Fig. 10.

Color Blocks The second method uses statistical color histogram representation
[56,14]. The original RGB color space is a three dimensional cubic {(r, g, b)|r, g, b ∈
[0, 255]}. In order to represent the distribution of color for each image, we first
choose 27 center points which are uniformly distributed in the entire color space.
The colors we choose are shown in Fig. 12. For an input image, we assign each
pixel to its closest center point by calculating their manhattan distance. By
counting how many pixels belong to each color center and calculating the per-
centage, we can summarize the result to a color block image of size 224× 224 as
our color feature Ic (the examples are shown in Fig. 13). The color block con-
sists of various stripes in different widths and colors. The color of stripes comes
from the color center and the width represents how many percent of pixels this
center covered in the input image. For instance, if there are 10% pixels assign to
white and 90% pixels of black, we will generate a image whose 10% pixels are
RGB (255, 255, 255) and 90% pixels are RGB (0, 0, 0). This image (Ic) will not
contain any shape or texture information. Fig. 13 shows some examples of the
color blocks.

Compared with phase scrambling, this method is more intuitive to under-
stand but may lose information when approximating RGB value in color space
to color centers.

A.3 Details about the Humanoid Neural Network

The three encoders (Es, Et, Ec) use ResNet18 as backbone. Es takes shape fea-
ture with size 224 × 224 × 1 as input, while Et takes texture feature with size
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Table 8. Architecture of the humanoid neural network. N is the number of labels,
depending on which dataset is being used.

Layer Input → Output Shape Layer Information

Shape Encoder (224, 224, 1) → (7, 7, 512) ResNet18

Texture Encoder (224, 224, 1) → (7, 7, 512) ResNet18

Color Encoder (224, 224, 3) → (7, 7, 512) ResNet18

Concatenation Layer 3×(7, 7, 512) → (7, 7, 1536) -

Pooling Layer (7, 7, 1536) → (1, 1, 1536) Average Polling-(k7x7, s1, p0)

Flatten Layer (1, 1, 1536) → 1536 -

Hidden Layer 1536 → 512 Linear, ReLU

Output Layer 512 → N Linear, Softmax

224× 224× 1 and Ec takes color feature with size 224× 224× 3. They all pro-
duce the feature with size 7×7×512. When training the encoders, these output
features are then passed into a fully connected layer, which output the vectors
with length N , the number of classes in the dataset.

During training the interpretable aggregation module, we freeze the three
encoders and concatenate their output features along the channel dimension
into a tensor of size 7 × 7 × 1536. This tensor is the input of the interpretable
aggregation module, which is a two-layer MLP. The final output is a vector with
length N , the number of classes in the dataset. The summary of the structure
of the three encoders and the aggregation module is shown in Table 8.

We use Adam optimizer with β1 = 0.9 and β2 = 0.999, and set batch size to
64, learning rate is 0.001.

B Experiments Details

B.1 Influence of Random Selection in Texture Feature Extractor

We re-ran 10 times main paper Table.2 using different random seeds for texture
(patch selections and shuffling the order sequence). The mean and std shown in
Table. 9.

B.2 More quantitative contribution summary results of Humanoid
NN

To further evaluate the contribution of shape texture and color, for each fea-
ture V (e.g., shape feature Vs), we compute the accuracy if we only use the
rest features (e.g., combine texture Vt and color Vc) as input, and calculate the
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Table 9. Influence of Random Selection in Texture Feature Extractor.

contribution Shape Texture Color

Shape-bias DS 47.1% ± 2.7% 34.5% ± 2.2% 18.4% ± 1.4%
Texture-bias DS 5.2% ± 1.8% 62.4% ± 2.3% 32.3% ± 1.6%
Color-bias DS 12.4% ± 2.1% 19.1% ± 1.9% 68.5% ± 3.6%

accuracy drop compared with using all three features as input (last column in
Table 1). That accuracy drop represents the “unsubstitutability” or the “neces-
sity” or “non-redundant contribution” of that feature for visual recognition. The
results (Table. 10) are consistent with our previous results (main paper Table
1) on the contribution/importance of each feature. For example, in the shape
biased dataset, the largest accuracy drop is when we remove the shape feature.

Table 10. More quantitative contribution summary results of Humanoid NN

accuracy Shape + Texture Shape + Color Texture + Color all

Shape biased DS 94% 92% 86% 95%
Texture biased DS 89% 80% 83% 90%
Color biased DS 83% 88% 87% 92%

B.3 Different interpretable aggregation module

We conducted experiments to substitute the non-linear MLP with simple aver-
age pooling followed by an output classification layer. Contributions are shown
in table. 11. While the numerical results differ, the ordering and conclusions re-
main (e.g., shape texture is most important in the shape-biased dataset). The
experiments results show that the contribution result is robust to the aggregation
module.

Table 11. Average pooling interpretable aggregation module

Ave-Pool Shape ratio Texture ratio Color ratio

Shape biased DS 48% 40% 12%
Texture biased DS 1% 79% 20%
Color biased DS 1% 4% 95%
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B.4 Sample Question of Human Experiments

We designed human experiments that asked participants to classify reduced im-
ages with only shape, texture, or color features. Here, as shown in Fig. 14, we
demonstrate a screenshot of an experiment trial in our experiments.

B.5 Contributions of Features in Different Tasks

Table 12. Local bias for CUB classes.

ratio shape texture color

Bewick Wren 44.8% 21.3 33.8%
Gadwall 43.6% 24.2% 32.2%
Brown Pelican 41.6% 33.0% 25.4%
American Pipit 6.8% 72.7% 20.4%
Eared Grebe 5.6% 70.3% 24.1%
Harris Sparrow 13.5% 64.1% 22.4%
Kentucky Warbler 0.1% 0.7% 99.2%
Cape May Warbler 0.3% 1.2% 98.5%
Gray crowned Rosy Finch 1.1% 1.5% 97.4%

Fig. 15 shows more example images of the iLab dataset [5]. In the figure, we
can see that the military vehicles are always in the unique green, which matches
with the result in our experiment that color is the most discriminative feature
to classify military among other vehicles.

We also compute local bias for each class in CUB dataset [58]. For each
feature among shape, texture, and color, we select the top 3 classes whose fea-
ture contributions are the highest, and we show the bias for these 9 classes in
Table. 12. To show more details of these top classes for each feature, we show
the example images in Fig. 16. For the first three-row classes, the shape is the
most discriminative feature to classify them among other birds; for the middle
three-row classes, the texture is the most discriminative feature, while color is
the most discriminative feature to classify the last three-row classes.

C Details of Humanoid Application

C.1 Process of Open-world Zero-shot Learning

As describe in main paper Sec.5.1, we conduct open-world zero-shot learning with
HVE. Here, we describe more details about the experiment. Given an unseen
class image, we can use open world description (Step 1) to get its shape root,
texture root, color root. For example, given a wolf image, we can get Rs =
{hyena, fox, tiger}, Rt = {fox,dog}, Rc = {dog}. We provide more examples in
table.13.
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Fig. 14. A screenshot of an experiment trial in our human experiments.



32 Y. Ge and Y. Xiao et al.

original 
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Fig. 15. Example images for ilab-20M classes.
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Original images shape texture color

Top-3 Shape 
Biased

Top-3 Texture 
Biased

Top-3 Color 
Biased

Fig. 16. Example images for CUB classes. The first 3 rows show the top-3 classes
in CUB whose shape contribution is highest; The middle 3 rows show top-3 classes
whose texture contribution is highest; The last 3 rows show top-3 classes whose color
contribution is highest. Table. 12 shows the quantity biased results for these classes.
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Class zebra fowl wolf sheep apple

shape root horse, donkey
turkey, goose

cock
hyena, fox,

tiger
goat, bull

tomato, orange,
pear

texture root
tiger,

piano keys
turkey, penguin fox, dog dog, goat cherry, tomato

color root panda, penguin turkey dog
elephant,

goat
cherry, tomato

Table 13. More open-world zero-shot learning result.

After we get Rs = {hyena, fox, tiger}, Rt = {fox,dog}, Rc = {dog}, we use
ConceptNet [51] and word embedding to predict its label (Step 2 in main paper
Sec. 5.1). Specifically, if we directly use the candidate pool got from ConceptNet
and calculate their ranking score, the top 5 results are animal, four-legged animal,
mammal, wolf, fox. We can find wolf are the first concrete class we can obtain,
which achieved our open-world zero-shot classification.

To show the quantitative results of our method, we realize that, although
the first 3 results (animal, four-legged animal, mammal) in the previous wolf
example is somewhat correct, we want to get a more concrete answer which is a
wolf. Thus, we design a fixed candidate which excludes these broad words and
only contains unseen classes and some disturbances. In this way, we can get a
quantitative accuracy without the influence of those broad words like animal,
fruit, bird.

Here, we provide the experiment setting of our seen class list and our candi-
date pool. Our seen classes list totally contain 36 classes, they are horse, tiger,
panda, penguin, piano keys, cheetah, hyena, dog, lemon, koala, fur, squirrel, fox,
rabbit, goose, sea lion, elephant, otter, duck, cock, chimpanzee, goat, orange,
ball, bull, tomato, cherry, pear, turkey, seal, porpoise, alpaca, pigeon, lion, don-
key, bear. Our candidate pool totally contains 20 classes which are fowl, zebra,
bear, wolf, husky, swan, giraffe, jackal, peach, sheep, seal, apple, banana, train,
bag, balloon, car, pen, table, eagle. The results are shown in the main paper
Table 5.

C.2 Detail of Prototypical network

As described in the main paper Sec.5.1, we conduct one-shot learning using the
prototypical network [49]. Here, we provide more details about the experiment.
Prototypical network use the same training and test set with HVE. It is not clear
for a prototypical networks to direct conduct zero-shot in the released code, so we
provide a easier mode, one-shot for each test class, and use its one-shot setting.
To train the prototypical network, we set the input image size as 3× 224× 224,
hidden dimension as 64, learning rate as 1e − 3. We use their official code and
follow the same training strategy as [49]. During testing, we use 5-way 1-shot
setting, table.5 in the main paper provide the final result of the prototypical
network.
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C.3 The GAN model in Cross Feature Imagination

shape

texture

color

Shape feature
Color feature

Texture feature
Fusion feature

Residual blocks

Fusion

Fig. 17. The architecture of the GAN generator in cross feature imagination.

As introduced in main paper Sec. 5.2, we design a cross-feature pixel2pixel
GAN model to generate the final image.

Fig. 17 shows the architecture of the generator. In order to ensure the quality
of image generation, we set k = 1 when extracting the texture feature (the
selection of k is introduced in Sec. A.2). Each feature, shape, texture, and color
are encoded by a sequence of convolutions maps to Fs,i, Ft,i, Fc,i, i = 1, 2, ...,K.
These features are fused into Fi by K feature fusion modules. As for fusion
modules, we apply AdaIN and L residual blocks to blend the different features.
The outputs are de-convoluted into Hi, i = 1, 2, ...,K, and then we get the final
result. In our experiments, we use K = 5 and L = 5.

We use the same discriminator and loss function as [26]. In training the
GAN model. We use Adam optimizer with β1 = 0.5 and β2 = 0.999 for both
generator and discriminator, and set batch size to 16. The model is trained for
200 epochs on the training set, and we use the learning rate at 2e−4 in the first
100 epochs and 2e-5 from epoch 100 to 200. To compare our result, we use the
original pix2pix GANs [] as our baseline model. The GAN model takes one type
of feature as input and the original image as output. We trained three separate
pix2pix GANs for each feature.

In Fig. 18, we show more results about the imagination on the test set when
different types of features are given (denoted as sub-image a, b, c). With one
feature (Line I), the retrieval model can find the other two plausible features
(Line II), and then the GAN model can imagine the whole objects (Line III).
Comparing the imagination results and the original images to which the input
features belong (Line-IV), we can find that they have a similar input feature,
while the other two features of the imagination images are decided by the re-
trieved features.
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(a) Given shape, retrieve texture and color, and imagine the whole object.

(b) Given texture, retrieve shape and color, and imagine the whole object.

(c) Given color, retrieve shape and texture, and imagine the whole object.

(I) Input features

(II) Retrieval results

(III) Imagination results

(IV) Original

(I) Input features

(II) Retrieval results

(III) Imagination results

(IV) Original

(I) Input features

(II) Retrieval results

(III) Imagination results

(IV) Original

Fig. 18. Results of the imagination when different types of features are given (see sub-
images a, b, c). Given one feature (Line I), the retrieval model can find the other two
plausible features (Line II), and then the GAN model can imagine the whole objects
(Line III). Line IV shows the original images of the input features.

D Discussion of Limitations and Future Work

As we use Grad-Cam as the foundation for selecting foreground parts, sometimes
models could output the wrong saliency map (for example, the pre-trained mod-
els may regard water as the most important object for classifying a boat. As a
result, our image parsing pipeline would take water as the foreground). So how
to select accurate foreground parts is the first step we need to improve in the
future.

After getting the foreground part of images, we use three feature extractors to
mimic the process of humans perceiving this world. Our feature extractors are far
away from perfect. In this work, we concatenate four square patches to get It, but



Contributions of Shape, Texture, and Color in Visual Recognition 37

this introduced two lines in the It (the line between different squares). These lines
may cause confusion to the neural networks. What’s more, 4 patches may not be
the best choice to represent the object’s texture. Some classes are too complex
to be represented by only 4 patches. For example, cars have windows, metal,
rubber, paint, and plastic. Different parts of cars could have different textures. 4
square patches can represent the texture of cars to some degree, but if we want to
get the representation of all texture information without any omission, we need
to improve the work process of the texture extractors. However, the main goal
of our model design is to summarize the contributions by end-to-end learning,
with minimal human-introduced bias and assumptions in the architecture design.
We mainly provide the first fully objective, data-driven, and indeed first-order,
measure of the respective contributions.

In the open-world zero-shot learning experiment, we use a prototype dataset
that contains limited classes, we will explore this direction with a larger dataset.

We think our HVE take a small but important step towards, from a humanoid
perspective, better understanding the contributions of shape, texture, color to
classification, zero-shot learning, imagination, and beyond.

Dataset copyright. We used publically available data. ImageNet, CUB, iLab-
20M.

Imagenet license: Researcher shall use the Database only for non-commercial
research and educational purposes We use a subset of the ILSVRC2012 dataset
(ImageNet) and iLab-20M. The object in iLab-20M is toy vehicles, under Cre-
ative Commons CC-BY license. They do not contain any personally identifiable
information offensive content.
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