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Abstract. Point clouds are an increasingly ubiquitous input modality
and the raw signal can be efficiently processed with recent progress in
deep learning. This signal may, often inadvertently, capture sensitive in-
formation that can leak semantic and geometric properties of the scene
which the data owner does not want to share. The goal of this work
is to protect sensitive information when learning from point clouds; by
censoring the sensitive information before the point cloud is released for
downstream tasks. Specifically, we focus on preserving utility for percep-
tion tasks while mitigating attribute leakage attacks. The key motivating
insight is to leverage the localized saliency of perception tasks on point
clouds to provide good privacy-utility trade-offs. We realise this through
a mechanism called Censoring by Noisy Sampling (CBNS), which is com-
posed of two modules: i) Invariant Sampler: a differentiable point-cloud
sampler which learns to remove points invariant to utility and ii) Noisy
Distorter: which learns to distort sampled points to decouple the sensi-
tive information from utility, and mitigate privacy leakage. We validate
the effectiveness of CBNS through extensive comparisons with state-of-
the-art baselines and sensitivity analyses of key design choices. Results
show that CBNS achieves superior privacy-utility trade-offs on multiple
datasets.

1 Introduction

Proliferation of 3D acquisition systems such as LiDARs, ToF cameras, structured-
light scanners has made it possible to sense and capture the real-world with high
fidelity. Point clouds are emerging as the preferred mode to store the outputs
of these 3D sensors given that they are lightweight in memory and simple in
form. Recent advances in deep learning have allowed to directly process the
raw sensor output; which has enabled use of point clouds for diverse perception
tasks across classification [1,2,3,4,5,6], semantic segmentation [7,8,9,10], object
detection [11,12,13,14], and registration [15,16]. This is facilitating algorithms for
critical applications across autonomous navigation, precision surgery and secure
authentication.

The deployment of downstream algorithms in these critical domains implies
that the sensor often captures sensitive information, which the user would like to
keep private. This is then inadvertently encoded in representations learned from
the signal [17], leaking several semantic and geometric properties of the scene.
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Consider for instance, the robotic vacuum cleaners which use LiDAR sensors
to efficiently navigate inside the house. The captured signal is also sufficient
to localize and map the entire house (via SLAM) as well as track and surveil
individuals (via object detection). Similarly, this is also valid for the popular
face-id experience in recent smartphones which use structured light to capture
point clouds of the owner(s) face and use it for authentication, locally on-device.
It is well understood that a lot of semantic information (age, gender, expression
etc.) can be perceived from the point cloud - which the user may not be willing
to share. With the emergence of strict regulations on data capture and sharing
such as HIPAA [18], CCPA 3, capturing such sensitive information can create
legal liabilities. The goal of this paper is to alleviate such privacy concerns, while
preserving utility, by transforming the point cloud to censor sensitive information
before it is released for downstream utility tasks.

In practice, the design of such transformation functions depends upon the
definition of the utility task and privacy attack. Most prior work has focused
on preserving the utility of geometric tasks (image-based localization, SLAM,
SfM, etc.) while protecting against input reconstruction attacks [19]. For these
setups, the dominant idea is to transform the point cloud into 3D line cloud [20]
which obfuscates the semantic structure of the scene while preserving utility
for camera localization [21], SLAM [22], SfM [23] etc. In contrast, we focus
on providing utility for perception tasks (classification, detection, segmentation
etc.) while mitigating sensitive attribute leakage [24]. We posit that projecting
to line clouds is an infeasible transformation for perception tasks because: i) line
clouds disintegrates the semantic structure of the scene required for perception
which worsens the utility. This is visualized in [20] and validated by our analysis
in section 6; and ii) line clouds are now also vulnerable to inversion attacks,
as recently shown in [25], which worsens the privacy. We propose Censoring
by Noisy Sampling (CBNS) as an alternate transformation for censoring point
clouds, which provides improved privacy-utility trade-offs.

The motivating insight for CBNS is that performance on perception tasks
(utility) only depends upon only a small subset of points (critical points) such
that removing (or sampling) other non-critical points does not change predic-
tion. Leveraging this for censoring point clouds presents two challenges: First,
conventional point cloud sampling methods are designed to improve compute
efficiency while retaining maximal information about a specific task. Hence, we
need to design methods that can jointly sample critical points for the utility task
and remove information invariant to utility. Second, this invariant sampling is
necessary but not sufficient, as critical points for task and sensitive attributes can
overlap; as we observe through quantitative analysis in section 3.1. We develop
CBNS to overcome these challenges - i) by introducing an invariant sampler that
balances privacy-utility trade-off in its sampling via an adversarial contrastive
objective (`aco); ii) by designing a noisy distortion network that adds sample-
specific noise to minimize the overlap between task and sensitive information in

3 https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=

201720180AB375
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an utility conducive manner. We demonstrate the effectiveness of our solution
in section 4.

Contributions: Our CBNS is an end-to-end learning framework for pro-
tecting sensitive information in perception tasks by dynamically censoring point
clouds. CBNS is composed of: i) an invariant sampler that learns to sample
non-sensitive points in a task-oriented manner by balancing privacy-utility, ii)
a noisy distorter that learns to randomize sampled points for utility conducive
removal of sensitive information. We demonstrate the effectiveness of our frame-
work through extensive comparisons against strong baselines and analyses of key
design choices. Results show that CBNS significantly improves privacy-utility
trade-offs on multiple datasets.

2 Problem Formulation

This section formalises the notation for our task, the threat and attack models,
and our privacy definition.
Notation: Consider a data owner O with a point cloud dataset DO = (P, Y )
of N datapoints and (p, y) denotes a paired sample, for p ∈ P and y ∈ Y .
Specifically, p ∈ Rm×d is a point cloud defined as an unordered set of m elements
with d features; and y is a label set of k attributes describing p. For instance, p
can be a 3D point cloud representing a human face (p ∈ Rm×3) with the set y
containing categorical attributes that indicate the {age, gender, expression} (k =
3) of the individual. For every pair (p, y) ∈ DO, certain attributes in the label set
y represent sensitive information which the data owner (O) wants to keep private
(ys) but is comfortable sharing the non-sensitive (or task) information (yt), such
that (y = ys∪yt). The risk of leaking this sensitive information prevents the data
owner from sharing DO with untrusted parties; especially with recent progress in
deep learning where attackers can efficiently learn functions (F ) that can directly
map the raw point cloud p to any attribute a ∈ y, where a = F (p) [14,6]. Trivially
omitting ys from y to share the dataset of paired samples {(p, yt)} is not enough
since the sensitive information is encoded in p and can be inferred by attackers
(e.g. using pre-trained models or auxilliary datasets). Hence, to facilitate data
sharing with untrusted parties, it is essential to censor the sensitive information
in p (that leaks ys) before the dataset can be released. Our goal is to learn such a
transformation function (T (θT ; ·)) that censors each sample in DO by generating
p̂ = T (p). This allows to release (p̂, yt) instead of (p, yt). Henceforth, we denote
this censored dataset as (P̂ , Ŷ ). The key challenge for T is to preserve utility
of the task information (yt) while protecting privacy of sensitive information
(ys). In practice, the design of T depends upon definition of the utility task
and privacy attack. We focus on providing utility for perception tasks while
mitigating attribute leakage attacks [24].
Threat Model: We assume that the attacker gains access to a subset of censored
point clouds (P̂ , Y ) intending to infer sensitive attributes (ys). This is practical
since data owners typically share data with external entities for storage and also
for monetary incentives. Further, the threat is also valid if the attacker gains
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Fig. 1: Premise Validation. (Left) - perception on point clouds depends upon
few critical points. (Right - bottom) table shows overlap of critical points for sen-
sitive (Pc) and task (Uc) attributes; (Right - top) goal of a censoring mechanism
is to remove T −Uc and reduce Pc∩Uc. We bridge these ideas in section 3.1 and
introduce CBNS in section 3.2 to accomplish both goals.

access to the learned censoring function T which can be used to simulate a
dataset that mimics the censored point cloud distribution. This is practical if
the attacker is one of the data owners that has access to T . We note that unlike
differential privacy [26] that protects identifiability, our threat model protects
sensitive attribute leakage [24].

Attack Model: We model an attacker that uses the released dataset to train
state-of-the-art DNN models that can directly predict the sensitive attribute
from the point cloud. This attacker may use arbitrary models which are not
accessible during training, and hence we mimic a proxy attacker for learning the
censoring transformation. We represent the proxy attacker by a state-of-the-art
DNN parameterized as fA(θA; ·) and trained on censored point clouds P̂ .

Privacy: Following the setup described by Hamm et al. [27], we define privacy
as the expected loss over the estimation of sensitive information by the attacker.
This privacy loss Lpriv, given `p norm, for an attacker can be stated as:

Lpriv(θT , θA) , E[`p(fA(T (p; θT ); θA), ys)]

Under this definition, releasing sensitive information while preserving privacy
manifests as a min-max optimization between the data owner and the attacker.
However, for training the model parameters, we use a proxy adversary from
which gradients can be propagated. We refer to the attack performed by this
proxy attacker as an online attack and note that this allows mimicking worst-
case setups where the attacker can also dynamically adapt using protected data
and sensitive label information [28]. We note that our definition of privacy sig-
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nificantly differs from differential privacy [26] since we aim to protect sensitive
attributes instead of the identity of the data owner.

3 Methodology

In this section, we introduce Censoring by Noisy Sampling (CBNS) - a mech-
anism to censor point clouds for enabling utility of perception tasks while pro-
tecting leakage attack on sensitive attributes. We begin by discussing our key
motivating insight and then delineate the proposed CBNS mechanism.

3.1 Premise Validation

State-of-the-art DNN models such as PointNet [1], PointNet++ [2], DGCNN [3]
have successfully handled the irregularity of the raw point cloud and achieved
remarkable progress on perception tasks such as classification, segmentation etc.
Extensive empirical analysis of these networks shows that classification perfor-
mance depends upon only a small subset of points (critical points) such that
removing other non-critical points does not change prediction. Figure 1 visu-
alizes the critical points for perceiving the category (plant, person, bed, sofa)
and super-type (living, non-living) of a few ModelNet dataset samples [29] by
training PointNet. The observed localized (i.e. depends on critical points) and
task-oriented (different across category and super-type) saliency is a key moti-
vating insight for censoring point clouds for privacy-utility release.

Assume a privacy-utility scenario where the super-type is task (utility) and
the category is the sensitive attribute (privacy). In principle, we achieve good
utility (predicting super-type) by only keeping the necessary critical points. Since
critical points are visualized via post-training analysis, in practice, this presents
two challenges for data release: First, conventional point cloud sampling methods
are designed to improve compute efficiency while retaining maximal information
for a specific task. Hence, we need to design methods that can jointly sample
critical points for the utility task and remove information invariant to utility.
Second, this invariant sampling is necessary but not sufficient, as critical points
for task and sensitive attributes can overlap. For instance, the top-100 critical
points for super-type and category in ModelNet have mIoU of 31% (table in
figure 1). Hence we also need to distort the sampled points to decouple the
sensitive and task attributes. The venn-diagram in figure 1 helps visualize this
constraint. Intuitively, we want to learn a censoring transformation that can
concurrently remove T − Uc and reduce Pc ∩ Uc. With this motivation, next we
describe our proposed mechanism to censor point clouds.

3.2 Censoring by Noisy Sampling

The task of censoring to mitigate information leakage involves three key entities:
i) Data Owner (O), ii) User (U) and iii) Attacker (A). O censors each sample in
the dataset to protect sensitive information and releases it for U , an untrusted
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Fig. 2: Censoring by Noisy Sampling through a a three-player game: i) Data
Owner (O), ii) User (U) and iii) Attacker (A). O censors every sample in the
dataset and shares it with U to train a model on the task information. A inter-
cepts the released dataset and attempts to leak the sensitive information. We
design CBNS, composed of two modules: a) Invariant Sampler and b) Noise
Distorter, to help O enable U ’s task and avert A’s attack. The design of the
mechanism is delineated in section 3.2.

but honest entity, to learn a model on the non-sensitive information. A intercepts
the released dataset and queries it to leak the sensitive information. We design
Censoring by Noisy Sampling (CBNS) to help O facilitate the task of U and
prohibit the task of A. This three-player game [30] is summarized in figure 2 and
described below:

a) Owner owns the point cloud dataset (P, Y ) which is to be released. This
entity censors the sensitive information in each sample (p, y) for p ∈ P and
y ∈ Y . CBNS is composed of two parametric modules, applied sequentially: i)
Invariant Sampler (fS(θS ; ·)), ii) Noisy Distorter (fD(θD; ·)).

First, p ∈ Rm×d is passed through fS(θS ; ·), differentiable DNN sampler built
upon [31], which selects a subset of r points relevant for encoding task informa-
tion to generate an intermediate point cloud ps ∈ Rr×d, where r << m. In
contrast to conventional sampling methods which are aimed at improving com-
pute efficiency while preserving all information, fS is a lossy sampler designed to
remove points invariant to utility. The extent and quality of censoring depends
upon design of fS , which we analyse in section 6. Releasing this ps may still
leak sensitive attribute through points which overlap with utility (mIoU table in
fig 1). Next, ps is passed through fD(θD; ·) which generates task-oriented noise
to distort ps. This is done to decouple overlapping sensitive (privacy) and task
(utility) information and executed in the following steps: i) µ, σ = fD(ps; θD),
ii) zs ∼ N (µ, σ2), iii) p̂ = ps + zs where the sampled noise zs ∈ Rr×d. All the
censored point cloud samples (p̂, ŷ) are aggregated into the dataset (P̂ , Ŷ ) and
then released for use by untrusted parties.

b) User is an untrusted but honest entity that receives the released dataset

(P̂ , Ŷ ) and uses it to infer the non-sensitive task attributes. The User trains a
state-of-the-art DNN model that can learn to directly map the raw point cloud
signal to the task attribute (yt). For training CBNS, we mimic the real user
using a proxy user which is parameterized with fU (θU ; ·) that consumes p̂ ∈ P̂
to predict yt ∈ Ŷ .
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c) Attacker is an untrusted semi-honest entity that acquires access to (P̂ , Y )
with the intention to leak sensitive information about the data owner. The at-
tacker is parameterized with (fA(θA; ·)) which is not accessible during design of
CBNS. Hence, for training, we use a proxy attacker that consumes p̂ ∈ P̂ to
predict the sensitive attribute (ys). We note that fA is a proxy attacker used
for training CBNS, while a distinct offline attacker (f), not used for training, is
employed for evaluation tasks.

Training: The utility loss is approximated based on the performance of the
proxy user which depends upon parameters θT (θT = θS ∪ θD) and θU that are
learned during training. The objective function is given by:

Lutil(θS , θD, θU ) , E[`u(fU (fD(fS(p; θS)θD); θU ), yt)] (1)

where, θS , θD are parameters of CBNS and θU are parameters of the the proxy
user network; and `u is the cross entropy loss (`cce).

The privacy loss is approximated based on the performance of the proxy
attacker which depends upon parameters θT , θA learned during training. The
objective function is given by:

Lpriv(θS , θD, θA) , E[`a(fA(fD(fS(p; θS)θD); θA), ys)] (2)

where, θS , θD are parameters of CBNS and θA are parameters of the proxy
attacker; and `a denotes the attacker loss. For training CBNS, we define `a with
the following objective function:

`a = α ∗ (`cce(fA(fD(ps)), ys)) + (1− α) ∗ `aco(fD(ps), ys, yt) (3)

where `cce is categorical cross-entropy and `aco is an adversarial contrastive loss,
inspired from [32]; and α is a scalar hyperparameter.
Adversarial Contrastive Loss (`aco): Our analysis in section 6 shows that
using `aco significantly improves privacy-utility trade-offs. Consider, for instance,
age (ys) to be the sensitive attribute. In the conventional contrastive loss, we en-
courage to pull positive samples (same age) closer within the local neighborhood
and negative samples (different age) apart. In contrast, `aco pulls negative sam-
ples closer (different age) and positive samples (same age) apart. The goal here
is to map all different ages within a very small neighborhood of each other, to de-
ter the attacker from learning discriminative representations of age. Intuitively,
this guides CBNS to transform the released point cloud to introduce ambiguity
in representations used by an attacker to correctly discriminate between ages,
resulting in better privacy. In other words, the `aco forces to map the different
ages to a single point in the embedding space.

The proxy attacker and proxy user have access to supervised data and at-
tempt to minimize their losses Lutil and Lpriv respectively. CBNS is trained to
minimize Lutil and maximize Lpriv, simulating an implicit min-max optimization
for these two components. Furthermore, CBNS also minimizes a soft-projection
loss [31] (Lsample) to improve stability of fS and ensure that the sampler is
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constrained to select points from the input set (instead of interpolating). This
overall objective can be summarized as:

min
θS ,θD

[
max
θA

Lpriv(θS , θD, θA) + λ min
θS ,θD,θU

Lutil(θS , θD, θU ) + min
θS

Lsample(θS)

]
(4)

Here, λ is a chosen hyperparameter to help regulate the trade-off between
privacy and utility.

Inference: A data owner with access to a point cloud dataset (P, Y ) can use
CBNS to generate the censored dataset (P̂ , Ŷ ) and release it for use by untrusted
parties. This released dataset can be used for either: i) training new models or
ii) running inference using pre-trained models. This is possible only because the
output space of the censoring mechanism is same as the input space. In other
words, censoring a point cloud using CBNS also generates a point cloud. In
contrast: i) most work for censoring images requires releasing neural activations
which cannot be processed by arbitrary designed networks [28,33,32] and ii) prior
work for censoring point clouds releases line clouds [21,20] which, while useful
for geometric tasks, are incompatible for off-the-shelf perception networks.

4 Experiments

In this section, we specify the datasets and baselines used, define the evaluation
protocols and summarize implementation details for the results presented in this
work. Details about the code are included in the appendix.

Datasets: a) FaceScape [34] consists of 16,940 textured 3D faces, captured
from 938 subjects each with multiple categorical labels for age (100), gender
(2) and expression (20). For our experiments, we sample 1024 3D points from
the surface of each face mesh using Pytorch 3D [35]. To simulate privacy-utility
analysis, we use the expression as the task attribute (utility) and gender as the
sensitive attribute (privacy). We choose this configuration because the default
critical points for the two attributes overlap (need for noisy distorter) and are
also distributed across the point cloud (need for invariant sampling), but human
performance motivates that they are can be inferred independently. This provides
a good benchmark for testing the efficacy of CBNS. b) ModelNet [29] consists
of 12,311 CAD-generated meshes across 40 categories (object types) of which
9,843 training and 2,468 testing data points. For our experiments, we uniformly
sample 2048 3D points from the mesh surface and then project them onto a unit
sphere. Since each input sample only has one attribute (object type), we adapt
the strategy used by [30] to simulate our privacy-utility analysis. Specifically, to
identify an additional attribute, we divide the 40 classes into two super-types:
living and non-living. We anticipate living objects to have visually discriminative
features instead of geometric shapes of non-living objects. For example, the task
of classifying an object as living (person, plant) or non-living (sofa, bed) should
not reveal any information about its underlying identity (person, plant, sofa,
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bed). We use super-types as task attribute and object type as sensitive attribute.

Baselines: Prior work in censoring point clouds has largely focused on geometric
tasks (image-based localization, SLAM, SfM, etc) via line clouds [20,21,23,22].
However, our analysis (section 6) shows that line clouds are a weak baseline
for perception tasks (classification, detection, etc). To ensure rigorous analysis,
we define multiple baselines inspired by work in 2D vision that has focused on
censoring images (and their activations) for perception tasks while mitigating at-
tribute leakage. The baselines differ in the design of sampling and noisy distorter
modules - which may be task-oriented (learned using data) or task-agnostic (de-
terministic). Our mechanism CBNS is equivalent to the Oriented Sampling -
Oriented Noise (OS-ON) configuration. The baselines are summarized below,
with more details in the appendix:

– Agnostic Sampling - Agnostic Noise (AS-AN): Uses farthest point
sampling (FPS) with fixed gaussian distribution for noise. This is inspired
from [36] which formalises differential privacy for images through Gaussian
noise, without any learning. While [36] adds noise to images, we add it to a
sampled point cloud obtained via FPS.

– Agnostic Sampling - Oriented Noise (AS-ON): Uses FPS and learns
parameters of the gaussian distribution for noise (as in CBNS) using max-
imum likelihood attacker training. This is inspired from [33] which learn a
noise distribution to obfuscate image activations. While [33] adds noise to
image activations, we add it to a sampled point cloud obtained via FPS.

– Oriented Sampling - Agnostic Noise (OS-AN): Uses differentiable
point cloud sampling (as in CBNS) with fixed gaussian distribution for noise.
This is inspired from [28] which does channel pruning of image activations
to remove sensitive information. While [28] trains a DNN to prune neural
activations, we train a DNN to sample point clouds [31].

Evaluation Protocol: We evaluate different techniques by comparing the privacy-
utility trade-off. For each technique, utility is a measure of User ’s performance
by training on the censored dataset and privacy is of the Attacker ’s performance
(as described in section 2). Specifically, we quantify information leakage from the
dataset by comparing the performance of an attacker to correctly infer sensitive
information from the censored dataset. For this analysis, we simulate a worst
case attacker that dynamically adapts to the privatization scheme. This adap-
tation is modeled using a pretrained attacker model that is fine-tuned on the
censored dataset and then evaluated on a censored test set. Inspired by [30], we
quantify privacy-utility trade-offs curves by different techniques using area under
the pareto-optimal curve denoted as the normalized hypervolume (NHV) [37].
Higher NHV value indicates a better privacy-utility trade-off.
Implementation Details: Unless stated otherwise, we use 3D-point clouds
(d = 3) with the Invariant Sampler producing 64 points (m = 64) and with
PointNet [1] as the backbone architecture for both fU and fA. For FaceScape,
n = 1024 and the dataset split is 80% training and 20% testing examples. For
ModelNet, n = 2048 and we restrict experimentation to a smaller set of 4 classes:
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(a) FaceScape [34] (b) ModelNet [29]

Fig. 3: Privacy-Utility trade-off comparison for different techniques by inter-
polating their best performing points. The oracle point refers to the best possible
censoring mechanism. We note that the line cloud [20,22] techniques do not yield
any trade-off due to its incompatibility with perception tasks.

2 living and 2 non-living to ensure ease of analysis and avoid data imbalance
issues (ModelNet has 2 living and 38 non-living objects). All experiments are
implemented using Pytorch and conducted on 2 TITAN-X GPUs. We will release
both our code and dataset splits for reproducibility.

5 Results

We report performance comparison with baselines on ModelNet and FaceScape,
in Table 1. For completeness, apart from the baselines defined in section 4, we
also benchmark with two extreme scenarios: i) No-privacy: default case where
the data is released without any censoring and, ii) Oracle: best possible case with
some ideal censoring mechanism which does not exist. Results show that CBNS
significantly outperforms all baselines, on both datasets; as evident from higher
NHV. First, CBNS consistently provides the best privacy leakage - often very
close to random chance. Specifically, privacy leakage with CBNS is 0.5890 for 2-
way classification in FaceScape and 0.2657 for 4-way classification in ModelNet.
Second, the peak privacy-utility trade-off for CBNS is closest to the oracle, on
both datasets. Specifically, when CBNS is used for data release on FaceScape,
the User achieves a utility of 0.4013 (88% of the oracle) while the Attacker
performance is close to random chance (0.5890). This corresponds to 13% less
privacy leakage while also providing 4% more utility than the closest baseline
(OS-AN). However, a higher fall in utility is observed on ModelNet, which can
be attributed to the fact that the task and sensitive attributes are more strongly
coupled, than in FaceScape. Finally, these observations are corroborated visually
by the privacy-utility trade-off curves in Figure 3 where CBNS has the highest
area-under-curve (correlated with the hyper-volume).
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Method FaceScape ModelNet

Privacy (↓) Utility (↑) NHV (↑) Privacy (↓) Utility (↑) NHV (↑)

No-privacy 0.9515 0.4549 - 0.95 0.9625 -

Line Cloud [20,22] 0.5000 0.0500 - 0.2500 0.5000 -
AS-AN [36] 0.9511 0.4122 0.1524 0.9469 0.9612 0.6113
AS-ON [33] 0.9391 0.3875 0.1250 0.5281 0.7781 0.6088
OS-AN [28] 0.7143 0.3602 0.1439 0.3125 0.6187 0.6356

CBNS (Ours) 0.5890 0.4013 0.1885 0.2657 0.6750 0.6492
Oracle 0.5000 0.4549 - 0.2500 0.9625 -

Table 1: Comparison for sensitive attribute leakage. We compare our
approach on sensitive attribute leakage with the existing works and baseline.
CBNS outperforms Line Cloud [20,22], AS-AN [36], AS-ON [33], OS-AN [28] and
achieves the best privacy-utility trade-off on FaceScape and ModelNet datasets.
For the FaceScape, sensitive attribute is gender and task attribute is expression;
and for the ModelNet, sensitive attribute is underlying object type and task
attribute is super-types (living or non-living).

Technique Privacy (↓) Utility (↑) NHV (↑)

AS-ON [33] (`cce) 0.9297 0.3954 0.1322
OS-AN [28] (`cce) 0.6942 0.3602 0.1439

CBNS (`me) 0.6839 0.413 0.1596
CBNS (`cce) 0.5787 0.3638 0.1615
CBNS (`a) 0.5707 0.3997 0.1885

Table 2: Design of Invariant Sampler. Privacy-utility trade-off is influenced
by whether transformation is learned, and how it is learned. For FaceScape,
sensitive attribute is gender and task attribute is expression. lcce, lme and la
denotes cross entropy loss, max-entropy loss and CBNS loss respectively.

6 Discussion

We analyse the impact of key design choices for censoring by noisy sampling.
Specifically, we study the characterization of both CBNS modules: i) Invariant
Sampler and ii) Noisy Distorter; and impact of the perception network. For
completeness, we also analyse the viability of line clouds for perception tasks.
For ease of exposition, we restrict the scope of this analysis to FaceScape dataset.

− Design of Invariant Sampler: We study the role of two design choices: i)
learning a task-oriented sampler and ii) the attacker loss that is used to optimize
the parameters of the learned sampler. Results are presented in Table 2. Please
note that we follow the baselines from section 4 and explicitly mention (Lpriv)
the attacker objective in parenthesis. Specifically, lcce is the cross-entropy loss,
la is our proposed loss (equation 3) and lme is a max-entropy loss used in [30].
We observe the following: First, using a learned task-oriented sampler reduces
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Technique Privacy (↓) Utility (↑) NHV (↑)

OS (`cce) 0.5787 0.3638 0.1615
OS-AN [28] (`cce) 0.6942 0.3602 0.1439

CBNS (shared, `cce) 0.9051 0.4532 0.1586
CBNS (shared, `a) 0.8600 0.4217 0.1625

CBNS (pointwise, `cce) 0.5689 0.4013 0.1530
CBNS (pointwise, `a) 0.5707 0.3997 0.1885

Table 3: Design of Noisy Distorter. Privacy-utility trade-off is influenced
by the learned noise and the granularity of the noise parameters (shared v.s
pointwise). For FaceScape, sensitive attribute is gender and task attribute is
expression. lcce and la denotes cross entropy loss and CBNS loss respectively.

privacy-leakage by 35% without any loss to utility (row 1 vs 4 and 5) in contrast
to a task-agnostic sampler. Second, using the proposed adversarial contrastive
loss in Lpriv improves privacy-utility trade-off by increasing utility by 3% without
any additional privacy leakage (row 4 vs 5). Third, using lme improves utility
but with a significant increase in privacy-leakage; as evident from lower NHV.
lme is successful for images [30] but fails to generalize to point clouds, which can
be attributed to the irregularity in the data structure.

− Design of Noisy Distorter: We study the role of three design choices: i)
learning task-oriented noise, ii) the attacker loss used to optimize parameters
of the learned noise (la or lcce) and iii) the granularity of the noise parameters
(shared v.s pointwise). Shared implies that each point is distorted using noise
from the same learned distribution (i.e. zs ∈ R1) and Pointwise implies that each
point is distorted from a unique independently learned distributions (i.e. zs ∈
Rr). Results are presented in Table 3. We follow the baselines from section 4 and
define OS (row 1) as additional baseline which only uses sampling (without noisy
deformation). We observe the following: First, using noise task-agnostic (row 1
vs 2), or ii) shared task-oriented (row 1 vs 3, 4) does not provide benefit; and are
infact worse than no noise baseline (SO). Second, pointwise noise distributions
significantly improves performance. (row 3 vs 5; 4 vs 6). This increase in NHV as
well as peak privacy-utility trade-offs can be attributed to improved flexibility for
adapting to characteristics of sensitive, task attributes and their relationship..
Third, the objective function used for learning noise is also important where
using laco in la improves privacy-utility trade-off (row 3 vs 4; row 5 vs 6).

− Impact of Perception Network: In our threat model, the Owner releases
dataset for post-hoc access by the User and Attacker. Hence, the censoring mech-
anism should be independent of the type of perception networks used by these
entities for downstream tasks. We analyse this sensitivity by comparing two dif-
ferent proxy attacker and user networks. Specifically, we use DGCNN [3] which
is a recent state-of-the-art network with higher capacity and distinct saliency
properties than PointNet [38]. Results are presented in Table 4. We observe the
following: First, increasing capacity of proxy networks further improves learning
of CBNS as evident from better privacy-utility trade-offs (row 1 vs 2; row 3 vs
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Technique Backbone Privacy (↓) Utility (↑) NHV (↑)

OS-AN [28]
PointNet 0.6942 0.3602 0.1439
DGCNN 0.7056 0.4718 0.2136

CBNS (Ours)
PointNet 0.5707 0.3997 0.1885
DGCNN 0.4848 0.4100 0.2361

Line Cloud [20,22]
PointNet 0.5000 0.0500 -
DGCNN 0.5000 0.0500 -

Table 4: Impact of Perception Network and Incompatibility of Line
Clouds. For FaceScape, sensitive attribute is gender and task attribute is ex-
pression. CBNS is invariant to the type of attacker network. Using stronger
perception network (DGCNN) further improves performance over PointNet and
helps achieve near optimal trade-off with our proposed CBNS. Resampling line
clouds provides poor (random chance) privacy-utility trade-off.

4). For instance, when CBNS is trained with DGCNN (as against PointNet),
the censored dataset provides a better utility of 0.4100 (vs 0.3997) while also
significantly reducing privacy leakage to 0.4848 (vs 0.5707). Second, importantly,
we see that noisy sampling is independent of the downstream network and can
generalize to multiple perception networks. Specifically, this is very encouraging
since CBNS can concurrently mitigate stronger attackers from leaking informa-
tion by improving the utility of users with the stronger perception backbones.

− Incompatibility of Line Clouds: We posit that line clouds are an incom-
patible baseline for perception tasks because i) they destroy semantic structure
of the input point cloud which is essential for perception (see visualizations
in [20]), and ii) any off-the-shelf perception network: used by both User and
Attacker cannot train on line clouds. To benchmark the performance of line
clouds, we generate point clouds by re-sampling line clouds and evaluate perfor-
mance on our perception queries. Results in Table 4 show that: i) re-sampling
line clouds provides extremely poor utility (random chance), and ii) the privacy-
utility trade-off cannot be tuned (hence no NHV). Specifically, we observe that
resampled line cloud obtain privacy leakage of 0.5000 (for 2-way classification)
and utility of 0.05 (on a 20-way classification). Finally, we acknowledge recent
work has attacked line clouds to reconstruct point clouds [25] but note that this
is equivalent to our No-Privacy baseline which can improve utility but requires
mechanisms like noisy sampling to provide privacy.

7 Related Work

Private Imaging. A majority of the existing works in privately sharing data
focus on identifiability and anonymization [39,26,40]. In contrast to this line of
work, we focus on protecting sensitive attributes. Among the techniques that
focus on protecting sensitive attributes [33,28,41,32,42], their tasks are typ-
ically limited to image datasets. More recently, privacy for 3D point clouds
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has emerged with a focus on geometric queries protecting privacy by releas-
ing line clouds [20,23]. However, To the best of our knowledge, this is the first
work in protecting sensitive information leakage for perception tasks in point
clouds. Adjacent to research in privately sharing data, privately sharing ML
model [43,44,45,46,47] has received interest recently. However, unlike protecting
sensitive attributes, model sharing aims to protect the identifiability of training
data.
Learning on Point Clouds. Recent advances in deep learning (DL) have al-
lowed to learn directly on raw point clouds; enabling use in diverse perception
tasks such as classification, semantic segmentation, object detection, registration
etc. Various DL architectures have been proposed starting with PointNet [1],
PointNet++ [2] and follow-up works in [48,8,49,50,51,52,53,5,4] that improve
the performance over a given task by capturing task-oriented representations.
Zheng et al. [38] observe that saliency of the point cloud networks is localized
and network rely on a small subset of the signal for the task. This observation
has led to extensive work in privacy and security [54,55,56,57] utilizing the lo-
calized saliency used to design adversarial attack (and defence) mechanisms on
the trained models. We note that our setting significantly differs from adversar-
ial attack work since we protect the dataset that can be used to train arbitrary
models while adversarial methods focus on attacking/protecting the robustness
of model predictions.
Sampling of Point Clouds. Processing point clouds can be computation-
ally intensive making sampling a popular pre-processing step to alleviate this
challenge. Classical methods such as random sampling and FPS [2,4] are task-
agnostic and deterministic algorithms for sampling point sets. However, not uti-
lizing task knowledge when sampling hinders performance. Recent techniques [58,31]
introduce task-oriented mechanisms for sampling through differentiable approx-
imations. The focus is to improve compute efficiency while preserving the entire
signal in the sampled subset. In contrast, our goal is to censor sensitive infor-
mation during the sampling process. We build upon prior work to introduce a
task-oriented point-cloud sampler that censors sensitive information.
Noisy Sampling for Censoring. While not motivated for point clouds, similar
intuition has been used for tabular datasets for private coresets [59,60] combines
subset (coreset) selection and differentially-private noise to achieve good privacy
utility trade-off. Our work is different because: i) our queries involve neural
networks so computing sensitivity for DP-noise is infeasible, ii) we only want to
protect sensitive attribute. We empirically validate privacy-utility trade-off using
benchmark metrics, as described in section 4 and present results in section 5.

8 Conclusion

This focus of this paper is to censor point clouds to provide utility for perception
tasks while mitigating attribute leakage attacks. The key motivating insight is
to leverage the localized saliency of perception tasks on point clouds to provide
good privacy-utility trade-offs. We achieve this through our mechanism called
censoring by noisy sampling (CBNS ), which is composed of two modules: i)
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Invariant Sampling - a differentiable point-cloud sampler which learns to remove
points invariant to utility and ii) Noise Distorter - which learns to distort sampled
points to decouple the sensitive information from utility, and mitigate privacy
leakage. We validate the effectiveness of CBNS through extensive comparisons
with state-of-the-art baselines and sensitivity analyses of key design choices.
Results show that CBNS achieves superior privacy-utility trade-offs.
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