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Abstract

In order to address real-world problems, deep learning
models are jointly trained on many classes. However, in
the future, some classes may become restricted due to pri-
vacy/ethical concerns, and the restricted class knowledge
has to be removed from the models that have been trained
on them. The available data may also be limited due to
privacy/ethical concerns, and re-training the model will not
be possible. We propose a novel approach to address this
problem without affecting the model’s prediction power for
the remaining classes. Our approach identifies the model
parameters that are highly relevant to the restricted classes
and removes the knowledge regarding the restricted classes
from them using the limited available training data. Our
approach is significantly faster and performs similar to the
model re-trained on the complete data of the remaining
classes.

1. Introduction

There are several real-world problems in which deep
learning models have exceeded human-level performance.
This has led to a wide deployment of deep learning models.
Deep learning models generally train jointly on a number of
categories/classes of data. However, the use of some of these
classes may get restricted in the future (restricted classes),
and a model with the capability to identify these classes may
violate legal/privacy concerns. Individuals and organizations
are becoming increasingly aware of these issues leading to
an increasing number of legal cases on privacy issues in re-
cent years. In such situations, the model has to be stripped of
its capability to identify these categories (Class-level Forget-
ting). Due to legal/privacy concerns, the available training
data may also be limited. In such situations, the problem be-
comes even more difficult to solve in the absence of the full
training data. Real world problems such as incremental and
federated learning also suffer from this problem as discussed
in Sec. 3. We present a “Restricted Category Removal from
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Model Representations with Limited Data” (RCRMR-LD)
problem setting that simulates the above problem. In this
paper, we propose to solve this problem in a fast and efficient
manner.

The objective of the RCRMR-LD problem is to remove
the information regarding the restricted classes from the net-
work representations of all layers using the limited training
data available without affecting the ability of the model to
identify the remaining classes. If we have access to the full
training data, then we can simply exclude the restricted class
examples from the training data and perform a full training
of the model from scratch using the abundant data (FDR -
full data retraining). However, the RCRMR-LD problem set-
ting is based on the scenario that the directive to exclude the
restricted classes is received in the future after the model has
already been trained on the full data and now only a limited
amount of training data is available to carry out this process.
Since only limited training data is available in our RCRMR-
LD problem setting, the FDR model violates our problem
setting and is therefore, not a solution to our RCRMR-LD
problem setting. Simply training the network from scratch
on only the limited training data of the remaining classes
will result in severe overfitting and significantly affect the
model performance (Baseline 2, as shown in Table 1).

Another possible solution to this problem is to remove
the weights of the fully-connected classification layer of
the network corresponding to the excluded classes such that
it can no longer classify the excluded classes. However,
this approach suffers from a serious problem. Since, in this
approach, we only remove some of the weights of the classifi-
cation layer and the rest of the model remains unchanged, the
model still contains the information required for recognizing
the excluded classes. This information can be easily accessed
through the features that the model extracts from the images
and, therefore, we can use these features for performing clas-
sification. In this paper, we use a nearest prototype-based
classifier to demonstrate that the model features still contain
information regarding the restricted classes. Specifically, we
use the model features of the examples from the limited train-
ing data to compute the average class prototype for each class
and create a nearest class prototype-based classifier using
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them. Next, for any given test image, we extract its features
using the model and then find the class prototype closest
to the given test image. This nearest class prototype-based
classifier performs close to the original fully-connected clas-
sifier on the excluded classes as shown in Table 1 (Baseline
1). Therefore, even after using this approach, the result-
ing model still contains information regarding the restricted
classes. Another possible approach can be to apply the stan-
dard fine-tuning approach to the model using the limited
available training data of the remaining classes (Baseline
8). However, fine-tuning on such limited training data is not
able to sufficiently remove the restricted class information
from the model representations (see Table 1), and aggres-
sive fine-tuning on the limited training data may result in
overfitting.

Considering the problems faced by the naive approaches
mentioned above, we propose a novel “Efficient Removal
with Preservation” (ERwP) approach to address the RCRMR-
LD problem. First, we propose a novel technique to identify
the model parameters that are highly relevant to the restricted
classes, and to the best of our knowledge, there are no ex-
isting prior works for finding such class-specific relevant
parameters. Next, we propose a novel technique that opti-
mizes the model on the limited available training data in such
a way that the restricted class information is discarded from
the restricted class relevant parameters, and these parameters
are reused for the remaining classes.

To the best of our knowledge, this is the first work that
addresses the RCRMR-LD problem. We also propose sev-
eral baseline approaches for this problem (see Sec. 5.1).
Our proposed approach significantly outperforms all the pro-
posed baseline approaches. Our proposed approach requires
very few epochs to address the RCRMR-LD problem and
is, therefore, very fast (∼ 200× on ImageNet) and efficient.
The model obtained after applying our approach forgets the
excluded classes to such an extent that it behaves as though
it was never trained on examples from the excluded classes.
The performance of our model is very similar to the full data
retraining (FDR) model (see Sec. 7.1 in the main paper and
Fig. 5 in the Appendix). We also propose the performance
metrics needed to evaluate the performance of any approach
for the RCRMR-LD problem.

2. Problem Setting
In this work, we present the restricted category removal

from model representations with limited data (RCRMR-LD)
problem setting, in which a deep learning model Mo trained
on a specific dataset has to be modified to exclude infor-
mation regarding a set of restricted/excluded classes from
all layers of the deep learning model without affecting its
identification power for the remaining classes (see Fig. 1).
The classes that need to be excluded are referred to as the
restricted/excluded classes. Let {Ce

1 , C
e
2 , ..., C

e
Ne
} be the re-

stricted/excluded classes, where Ne refers to the number of
excluded classes. The remaining classes of the dataset are the
remaining/non-excluded classes. Let {Cne

1 , Cne
2 , ..., Cne

Nne
}

be the non-excluded classes, whereNne refers to the number
of remaining/non-excluded classes. Additionally, we only
have access to a limited amount of training data for the re-
stricted classes and the remaining classes, for carrying out
this process. Therefore, any approach for addressing this
problem can only utilize this limited training data.

3. RCRMR-LD Problem in Real World Scenar-
ios

A real-world scenario where our proposed RCRMR-LD
problem can arise is the incremental learning setting [25,
17], where the model receives training data in the form of
sequentially arriving tasks. Each task contains a new set
of classes. During a training session t, the model receives
the task t for training and cannot access the full data of
the previous tasks. Instead, the model has access to very
few exemplars of the classes in the previous tasks. Suppose
before training a model on training session t, it is noticed that
some classes from a previous task (< t) have to be removed
from the model since those classes have become restricted
due to privacy or ethical concerns. In this case, only a limited
number of exemplars are available for all these previous
classes (restricted and remaining). This demonstrates that the
RCRMR-LD problem is present in the incremental learning
setting. We experimentally demonstrate in Sec. 7.3, how
our approach can address the RCRMR-LD problem in the
incremental learning setting.

Let us consider another example. The EU GDPR laws
require a data provider to remove information about an indi-
vidual from a dataset upon that individual’s request. In face
recognition, this may lead to cases where the model has to be
retrained from scratch, leaving out the training data for the
restricted classes. In many such cases, it may be highly im-
practical and inefficient for the model creators to retrain the
entire model from scratch. The RCRMR problem simulates
this problem setting. Other examples of this problem in-
clude ethical AI concerns where protected classes (pregnant
women, prisoners, children, etc.) need to be removed.

There can also be other real-world scenarios, such as
federated learning [22], where our RCRMR-LD problem
can arise. In the federated learning setting, there are multiple
collaborators that have a part of the training data stored
locally, and a model is trained collaboratively using these
private data without sharing or collating the data due to
privacy concerns. Suppose organization A has a part of the
training data, and there are other collaborators that have other
parts of the training data for the same classes. Organization
A collaboratively trains a model with other collaborators
using federated learning. After the model has been trained, a
few classes may become restricted in the future due to some

2



Figure 1: The RCRMR-LD problem
setting aims to remove the informa-
tion regarding the restricted/excluded
classes ({Ce

1 , .., C
e
Ne
}) from all lay-

ers of a trained model Mo while pre-
serving its predictive power for the re-
maining classes ({Cne

1 , .., Cne
Nne
}) us-

ing limited training data. The category
removal (denoted by a red cross) has
to take place at the classifier level (de-
noted as squares for each output logit)
and at the feature/representation level
(denoted as a circle)

Figure 2: ERwP identifies those pa-
rameters in the model that are highly
relevant to the restricted classes. To
obtain these parameters, ERwP modi-
fies training images from a restricted
class using a data augmentation f and
performs backpropagation using the
classification loss on these training im-
ages. ERwP then studies the gradient
update that each parameter receives
in this process in order to identify the
highly relevant parameters for the re-
stricted classes (denoted by dotted cir-
cles)

Figure 3: ERwP only optimizes the re-
stricted class relevant parameters in the
model (denoted by dotted circles). ERwP
uses Le

c, Lne
c and Lkd losses to remove the

restricted class information from the model
while preserving its performance on the re-
maining classes. Le

c and Lne
c denote the clas-

sification loss on the restricted class train-
ing examples and the remaining class train-
ing example, respectively. Lkd denotes the
knowledge distillation-based regularization
loss that preserves the logits corresponding
to only the remaining classes for all the train-
ing examples

ethical or privacy concerns, and these classes should be
removed from the model. However, the other collaborators
may not be available or may charge a huge amount of money
for collaborating again to train a fresh model from scratch.
In this case, organization A does not have access to the full
training data of the non-excluded/remaining classes that it
can use to re-train a model from scratch in order to exclude
the restricted classes information. This clearly shows that
the RCRMR-LD problem is present in federated learning.

4. Proposed Method

4.1. Method Description

Let, B refer to a mini-batch (of size S) from
the available limited training data, and B contains
training datapoints from the restricted/excluded
classes ({(xei , yei )|(xe1, ye1), ..., (xeSe , y

e
Se

)}) and
from the remaining/non-excluded classes
({(xnej , ynej )|(xne1 , yne1 ), ..., (xneSne , y

ne
Sne

)}). Here, (xei , y
e
i )

refers to a training datapoint from the excluded classes
where xei is an image, yei is the corresponding label

and yei ∈ {Ce
1 , C

e
2 , ..., C

e
Ne
}. (xnej , ynej ) refers to a

training datapoint from the non-excluded classes where
xnej is an image, ynej is the corresponding label and
ynej ∈ {Cne

1 , Cne
2 , ..., Cne

Nne
}. Here, Se and Sne refer to the

number of training examples in the mini-batch from the
excluded and non-excluded classes, respectively, such that
S = Se +Sne. Ne and Nne refer to the number of excluded
and non-excluded classes, respectively. Let M refer to the
deep learning model being trained using our approach and
Mo is the original trained deep learning model.

In a trained model, some of the parameters may be highly
relevant to the restricted classes, and the performance of
the model on the restricted classes is mainly dependent on
such highly relevant parameters. Therefore, in our approach,
we focus on removing the excluded class information from
these restricted class relevant parameters. Since the model is
trained on all the classes jointly, the parameters are shared
across the different classes. Therefore identifying these class-
specific relevant parameters is very difficult. Let us consider
a model that is trained on color images of a class. If we now
train it on grayscale images of the class, then the model has
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to learn to identify these new images. In order to do so, the
parameters relevant to that class will receive large gradient
updates as compared to the other parameters (see Sec. 9.3.1
in the Appendix). We propose a novel approach for identify-
ing the relevant parameters for the restricted classes using
this idea. For each restricted class, we choose the training
images belonging to that class from the limited available
training data. Next, we apply a grayscale data augmentation
technique/transformation f to these images so that these
images become different from the images that the original
model was earlier trained on (assuming that the original
model has not been trained on grayscale images). We can
also use other data augmentation techniques that are not seen
during the training process of the original model and that
do not change the class of the image (refer to Sec. 9.3.6 in
the Appendix). Next, we combine the predictions for each
training image into a single average prediction and perform
backpropagation. During the backpropagation, we study the
gradients for all the parameters in each layer of the model.
Accordingly, we select the parameters with the highest abso-
lute gradient as the relevant parameters for the corresponding
restricted class. Specifically, for a given restricted class, we
choose all the parameters from each network layer such
that pruning (zeroing out) these parameters will result in
the maximum degradation of model performance on that
restricted class. We provide a detailed description of the
process for identifying the restricted class relevant parame-
ters in Sec. 9.1 of the Appendix. The combined set of the
relevant parameters for all the excluded classes is referred to
as the restricted/excluded class relevant parameters Θexrel

(see Fig. 2). Please note that we use this process only to
identify Θexrel, and we do not update the model parameters
during this step.

Pruning the relevant parameters for a restricted class can
severely impact the performance of the model for that class
(see Sec. 9.3.1 in the Appendix). However, this may also
degrade the performance of the model on the non-excluded
classes because the parameters are shared across multiple
classes. Therefore, we cannot address the RCRMR-LD
problem by pruning the relevant parameters of the excluded
classes. Finetuning these parameters on the limited remain-
ing class data will also not be able to sufficiently remove
the restricted class information from the model. Based on
this, we propose to address the RCRMR-LD problem by
optimizing the relevant parameters of the restricted classes
to remove the restricted class information from them and to
reuse them for the remaining classes.

After identifying the restricted class relevant parameters,
our ERwP approach uses a classification loss based on the
cross-entropy loss function to optimize the restricted class
relevant parameters of the model on each mini-batch (see
Fig. 3). We know that the gradient ascent optimization algo-
rithm can be used to maximize a loss function and encourage

the model to perform badly on the given input. Therefore,
we use the gradient ascent optimization on the classification
loss for the limited restricted class training examples to re-
move the information regarding the restricted classes from
Θexrel. We achieve this by multiplying the classification
loss for the training examples from the excluded classes by
a constant negative factor of -1. We also optimize Θexrel

using the gradient descent optimization on the classification
loss for the limited remaining class training example, in
order to reuse these parameters for the remaining classes.
We validate using this approach through various ablation
experiments as shown in Sec. 9.3.2 in the Appendix. The
classification loss for the examples from the excluded and
non-excluded classes and the overall classification loss for
each mini-batch are defined as follows.

Le
c =

Se∑
i=1

−1 ∗ `(yei , ye∗i ) (1)

Lne
c =

Sne∑
j=1

`(ynej , yne∗j ) (2)

Lc =
1

S
(Le

c + Lne
c ) (3)

Where, ye∗i and yne∗j refer to the predicted class labels for
xei and xnej , respectively. `(., .) refers to the cross-entropy
loss function. Le

c and Lne
c refer to the classification loss for

the examples from the excluded and non-excluded classes in
the mini-batch, respectively. Lc refers to the overall classifi-
cation loss for each mini-batch.

Since all the network parameters were jointly trained on
all the classes (restricted and remaining), the restricted class
relevant parameters also contain information relevant to the
remaining classes. Applying the above process alone will
still harm the model’s predictive power for the non-excluded
classes (as shown in Sec. 9.3.2, Table 5 in the Appendix).
This is because the gradient ascent optimization strategy will
also erase some of the relevant information regarding the
remaining classes. Further, applyingLne

c on the limited train-
ing examples of the remaining classes will lead to overfitting
and will not be effective enough to fully preserve the model
performance on the remaining classes. In order to ensure that
the model’s predictive power for the non-excluded classes
does not change, we use a knowledge distillation-based reg-
ularization loss. Knowledge distillation [15] ensures that the
predictive power of the teacher network is replicated in the
student network. In this problem setting, we want the final
model to replicate the same predictive power of the origi-
nal model for the remaining classes. Therefore, given any
training example, we use the knowledge distillation-based
regularization loss to ensure that the output logits produced
by the model corresponding to only the non-excluded classes
remain the same as that produced by the original model. We
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apply the knowledge distillation loss to the limited training
examples from both the excluded and remaining classes, to
preserve the non-excluded class logits of the model for any
input image. We validate this knowledge distillation-based
regularization loss through ablation experiments as shown in
Table 5 in the Appendix. We use the original model Mo (be-
fore applying ERwP) as the teacher network and the current
model M being processed by ERwP as the student network,
for the knowledge distillation process. Please note that the
optimization for this loss is also carried out only for the
restricted class relevant parameters of the model. Let KD
refer to the knowledge distillation loss function. It computes
the Kullback-Liebler (KL) divergence between the soft pre-
dictions of the teacher and the student networks and can be
defined as follows:

KD(ps, pt) = KL(σ(ps), σ(pt)) (4)

where, σ(.) refers to the softmax activation function that con-
verts logit ai for each class i into a probability by comparing
ai with logits of other classes aj , i.e., σ(ai) = expai/κ∑

j exp
aj/κ

.

κ refers to the temperature [15], KL refers to the KL-
Divergence function. ps, pt refer to the logits produced by
the student network and the teacher network, respectively.

The knowledge distillation-based regularization losses in
our approach are defined as follows.

Le
kd =

Se∑
i=1

KD(M(xei )[C
ne],Mo(xei )[C

ne]) (5)

Lne
kd =

Sne∑
j=1

KD(M(xnej )[Cne],Mo(xnej )[Cne]) (6)

Lkd =
1

S
(Le

kd + Lne
kd) (7)

Where, M(#)[Cne] and Mo(#)[Cne] refer to the output
logits corresponding to the remaining classes produced by
M and Mo, respectively. # can be either xei or xnej . Le

kd

and Lne
kd refer to knowledge distillation-based regularization

loss for the examples from the excluded and non-excluded
classes, respectively. Lkd refers to the overall knowledge
distillation-based regularization loss for each mini-batch.
The Lne

kd loss helps in preserving the model performance for
the non-excluded classes. If some of the restricted classes
are similar to some of the remaining/non-excluded classes,
the Le

kd loss ensures that the model performance on the
remaining classes is not degraded due to this similarity. This
is because the Le

kd loss preserves the logits corresponding
to the non-excluded classes for the restricted class training
examples.

The total loss Lerwp of our approach for each mini-batch
is defined as follows.

Lerwp = Lc + βLkd (8)

Where, β is a hyper-parameter that controls the contri-
bution of the knowledge distillation-based regularization
loss. We use this loss for fine-tuning the model for very few
epochs.

5. Related Work
Pruning [1, 32, 11, 13] involves removing redundant and

unimportant weights [2, 7, 9] or filters [12, 14, 19] from
a deep learning model without affecting the model perfor-
mance. Pruning approaches generally identify the impor-
tant parameters in the network and remove the unimpor-
tant parameters. In the RCRMR-LD problem setting, the
restricted class relevant parameters are also important param-
eters. However, we empirically observe that pruning the re-
stricted class relevant parameters severely affects the model
performance for the remaining classes since the parame-
ters are shared among all the classes. Therefore, pruning
approaches cannot be applied in the RCRMR-LD problem
setting.

In the incremental learning setting [16, 31, 3, 20], the
objective is to preserve the predictive power of the model for
previously seen classes while learning a new set of classes.
The work in [28] uses a topology-preserving loss to pre-
vent catastrophic forgetting by maintaining the topology in
feature space. In contrast to the incremental learning set-
ting, our proposed RCRMR-LD problem setting involves
removing the information regarding specific classes from the
pre-trained model while preserving the predictive power of
the model for the remaining classes.

There has been some research involving deleting indi-
vidual data points from trained machine learning models
such as [5, 6]. The work in [5] deals with data deletion in
the context of a machine learning algorithm and model. It
shows how to remove the influence of a data point from a
k-means clustering model. Our work focuses on restricted
category removal from deep learning models with limited
data. Therefore, the approaches proposed in [5] cannot be ap-
plied to RCRMR-LD. Further, the objective of data deletion
is to remove a data point without affecting the model perfor-
mance on any classes, including the class of the deleted data
point. This is in stark contrast to our RCRMR-LD problem,
where the objective is to remove the knowledge of a set of
classes or categories from the model. Further, data deletion
methods will require access to the entire training data of
a class in order to remove the entire knowledge of a class
(refer to the appendix A.1. of [6]). This is because deep
learning models have a high generalization power even on
unseen examples of a class on which they have been trained,

5



and simply deleting a few data points of a class from the
knowledge base of the model will not be enough to forget
that class. However, in our proposed problem setting, only
a limited number of training examples are present for any
class. Therefore, data-deletion approaches are not solutions
to our proposed RCRMR-LD problem setting. This is why
we have not applied these approaches in our problem setting.

Privacy-preserving deep learning [21, 4, 8] involves learn-
ing representations that incorporate features from the data
relevant to the given task and ignore sensitive information
(such as the identity of a person). The authors in [23] propose
a simple variational approach for privacy-preserving repre-
sentation learning. In contrast to existing privacy preserva-
tion works, the objective of the RCRMR-LD problem setting
is to achieve class-level forgetting, i.e., if a class is declared
as private/restricted, then all information about this class
should be removed from the model trained on it, without
affecting its ability to identify the remaining classes. To the
best of our knowledge, this is the first work to address the
class-level forgetting problem in the limited data regime, i.e.,
RCRMR-LD problem setting.

5.1. Baselines

We propose 9 baseline models for the RCRMR-LD
problem and compare our proposed approach with them.
The baseline 1 involves deleting the weights of the fully-
connected classification layer corresponding to the excluded
classes. Baselines 2, 3, 4, 5 involve training the model on the
limited training data of the remaining classes. Baselines 6,
7, 8, 9 involve fine-tuning the model on the available limited
training data. The details about the baselines are provided
below:

Original model: It refers to the original model that is
trained on the complete training set containing all the training
examples from both the excluded and non-excluded classes.
It represents the model that has not been modified by any
technique to remove the excluded class information.

Baseline 1 - Weight Deletion (WD): It refers to the orig-
inal model with a modified fully-connected classification
layer. Specifically, we remove the weights corresponding
to the excluded classes in the fully-connected classification
layer so that it cannot classify the excluded classes.

Baseline 2 - Training from Scratch on Limited Non-
Restricted Class data (TSLNRC): In this baseline, we
train a new model from scratch using the limited training
examples of only the non-excluded classes. It uses the com-
plete training schedule as the original model and only uses
the classification loss for training the model.

Baseline 3 - Training from Scratch on Limited Non-
Restricted Class data with KD (TSLNRC-KD): This
baseline is the same as baseline 2, but in addition to the
classification loss, it also uses a knowledge distillation loss
to ensure that the non-excluded class logits of the model

(student) match that of the original model (teacher).
Baseline 4 - Training of Original model on Limited

Non-Restricted Class data (TOLNRC): This baseline is
the same as baseline 2, but the model is initialized with the
weights of the original model instead of randomly initializing
it.

Baseline 5 - Training of Original model on Limited
Non-Restricted Class data with KD (TOLNRC-KD):
This baseline is the same as baseline 4, but in addition to the
classification loss, it also uses a knowledge distillation loss.

Baseline 6 - Fine-tuning of Original model on Limited
data after Mapping Restricted Classes to a Single Class
(FOLMRCSC): In this baseline approach, we first replace
all the excluded class labels in the limited training data with
a new single excluded class label and then fine-tune the
original model for a few epochs on the limited training data
of both the excluded and remaining classes. In the case of
the examples from the excluded classes, the model is trained
to predict the new single excluded class. In the case of the
examples from the remaining classes, the model is trained to
predict the corresponding non-excluded classes.

Baseline 7 - Fine-tuning of Original model on Limited
data after Mapping Restricted Classes to a Single Class
with KD (FOLMRCSC-KD): This baseline is the same as
baseline 6, but in addition to the classification loss, it also
uses a knowledge distillation loss to ensure that the non-
excluded class logits of the model (student) match that of
the original model (teacher).

Baseline 8 - Fine-tuning of Original model on Limited
Non-Restricted Class data (FOLNRC): In this baseline
approach, we fine-tune the original model for a few epochs
on the limited training data of non-excluded/remaining
classes. The model is trained to predict the corresponding
non-excluded classes of the training examples.

Baseline 9 - Fine-tuning of Original model on Lim-
ited Non-Restricted Class data with KD (FOLNRC-KD):
This baseline is the same as baseline 8, but in addition to the
classification loss, it also uses a knowledge distillation loss.

6. Performance Metrics
In the RCRMR-LD problem setting, we propose three per-

formance metrics to validate the performance of any method:
forgetting accuracy (FAe), forgetting prototype accuracy
(FPAe), and constraint accuracy (CAne). The forgetting
accuracy refers to the fully-connected classification layer
accuracy of the model for the excluded classes. The forget-
ting prototype accuracy refers to the nearest class prototype-
based classifier accuracy of the model for the excluded
classes. CAne refers to the fully-connected classification
layer accuracy of the model for the non-excluded classes.

In order to judge any approach on the basis of these
metrics, we follow the following sequence. First, we analyze
the constraint accuracy (CAne) of the model produced by the
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given approach to verify if the approach has preserved the
prediction power of the model for the non-excluded classes.
CAne of the model should be close to that of the original
model. If this condition is not satisfied, then the approach is
not suitable for this problem, and we need not analyze the
other metrics. This is because if the constraint accuracy is
not maintained, then the overall usability of the model is hurt
significantly. Next, we analyze the forgetting accuracy (FAe)
of the model to verify if the excluded class information
has been removed from the model at the classifier level.
FAe of the model should be as close to 0% as possible.
Finally, we analyze the forgetting prototype accuracy (FPAe)
of the model to verify if the excluded class information has
been removed from the model at the feature level. FPAe
of the model should be significantly less than that of the
original model. However, the FPAe will not become zero
since any trained model will learn to extract meaningful
features, which will help the nearest class prototype-based
classifier to achieve some non-negligible accuracy even on
the excluded classes. Therefore, for a better analysis of
the level of forgetting of the excluded classes at the feature
level, we compare the FPAe of the model with the FPAe of
the FDR model. The FDR model is a good candidate for
this analysis since it has not been trained on the excluded
classes (only trained on the complete dataset of the remaining
classes), and it still achieves a non-negligible performance
of the excluded classes (see Sec 7.1). However, it should
be noted that this comparison is only for analysis and the
comparison is not fair since the FDR model needs to train
on the entire dataset (except the excluded classes).

A naive approach for measuring the capability of any ap-
proach for removing the excluded class information in this
problem setting is to only consider how low the forgetting
accuracy (FAe) of the model for the excluded classes drops
to after the excluded category removal process. However,
using FAe alone may be misleading since zero or random
forgetting accuracy (FAe) for a excluded class does not mean
that the excluded class information has been removed from
all layers of the model. In order to understand this point,
let us consider the weight deletion (WD) baseline (baseline
1) that simply deletes the classification layer weights corre-
sponding to the excluded classes and achieves a forgetting
accuracy (FAe) of 0% for the excluded classes. However,
this does not mean that the excluded class information has
been removed from all the layers of the network since the
rest of the network remains intact. Therefore, using only
(FAe) metric is not enough. Now, if we consider the for-
getting prototype accuracy (FPAe) of the WD model, we
will observe that the FPAe of WD model is the same as that
of the original model for the excluded classes. This clearly
indicates that the excluded class information is still present
in the layers of the network. Further, we also need to check
whether the model performance for the remaining classes is

maintained. We use our proposed constraint accuracy (CAne)
of the non-excluded classes for this purpose. Therefore, the
above discussion clearly demonstrates that a single metric is
not effective in this problem setting.

7. Experiments

7.0.1 Datasets

For the RCRMR-LD problem setting, we modify the CIFAR-
100 [18], CUB-200 [29] and ImageNet-1k [26] datasets.
In order to simulate the RCRMR-LD problem setting with
limited training data, we choose the last 20 classes of the
CIFAR-100 dataset as the excluded classes and take only
10% of the training images of each class. Similarly, we
choose the last 20 classes of the CUB-200 dataset as the
excluded classes with only 3 training images per class. For
ImageNet-1K, we choose the last 100 classes as the excluded
classes with 5% of the training images to simulate the limited
data available for this problem setting.

7.0.2 Implementation Details

In this section, we provide all the details required to repro-
duce our experimental results. We use the ResNet-20 [10],
ResNet-56, ResNet-164 architectures for the experiments
on the CIFAR-100 dataset. We use the standard data aug-
mentation methods of random cropping to a size of 32× 32
(zero-padded on each side with four pixels before taking a
random crop) and random horizontal flipping, which is a
standard practice for training a model on CIFAR-100. In
order to obtain the original and FDR models for the CIFAR-
100 dataset, we train the network for 300 epochs with a
mini-batch size of 64 using the stochastic gradient descent
optimizer with momentum 0.9 and weight decay 1e − 4.
We choose the initial learning rate as 0.1, and we decrease
it by a factor of 5 after the 90, 150, 210, 240, and, 270
epochs. For the CIFAR-100 experiments with ERwP using
the ResNet-20, ResNet-56, and ResNet-164 architectures,
we use learning rate= 1e − 4, β = 10 and optimize the
network for 10 epochs. Since the available limited training
data is only 10% of the entire CIFAR-100 dataset, therefore,
our ERwP approach is approximately 30 ∗ 10 = 300× faster
than the FDR method.

For the experiments on the ImageNet dataset, we use
the ResNet-18, ResNet-50, and MobileNet-V2 architectures.
We use the standard data augmentation methods of random
cropping to a size of 224× 224 and random horizontal flip-
ping, which is a standard practice for training a model on
ImageNet-1k. In order to obtain the original and FDR mod-
els for the ImageNet dataset, we train the network for 100
epochs with a mini-batch size of 256 using the stochastic
gradient descent optimizer with momentum 0.9 and weight
decay 1e − 4. We choose the initial learning rate as 0.1,

7



and we decrease it by a factor of 10 after every 30 epochs.
For evaluation, the validation images are subjected to center
cropping of size 224 × 224. For the ImageNet-1k experi-
ments (5% training data) with ERwP using the ResNet-50
architecture, we optimize the network for 10 epochs with a
learning rate of 9e − 5 using β = 200. For the ERwP ex-
periments using the ResNet-18 architecture, we optimize the
network for 10 epochs using β = 200 with an initial learning
rate of 1.1e−4 and a learning rate of 1.1e−5 from the third
epoch onward. In the case of the ERwP experiments with
the MobileNet-V2 architecture, we optimize the network
for 10 epochs using β = 400 with an initial learning rate
of 1.5e − 4 and a learning rate of 1.5e − 5 from the third
epoch onward. Since the available limited training data is
only 5% of the entire ImageNet-1k dataset, therefore, our
ERwP approach is approximately 20 ∗ 10 = 200× faster
than the FDR method. For the experiments on the CUB-200
dataset, we use the ResNet-50 architecture pre-trained on the
ImageNet dataset. In order to obtain the original and FDR
models for the CUB-200 dataset, we train the network for
50 epochs with a mini-batch size of 64 using the stochastic
gradient descent optimizer with momentum 0.9 and weight
decay 1e− 3. We choose the initial learning rate as 1e− 2,
and we decrease it by a factor of 10 after epochs 30 and 40.
For the CUB-200 experiments (3 images per class, i.e., 10%
training data) with ERwP using the ResNet-50 architecture,
we optimize the network for 10 epochs with a learning rate
of 1e− 4 using β = 10. Since the available limited training
data is only 10% of the entire CUB-200 dataset, therefore,
our ERwP approach is approximately 5 ∗ 10 = 50× faster
than the FDR method.

In our proposed approach, we use κ = 2 for all the
experiments (see Sec. 9.3.5 in the Appendix). We use a
popular Pytorch implementation1 for performing knowledge
distillation. We run all the experiments 5 times and report
the average accuracy. We perform all the experiments using
the Pytorch [24] and Python 3.0. We use 4 GeForce GTX
1080 Ti graphics processing units for our experiments. We
have discussed the experimental results for the CIFAR-100
and ImageNet-1k datasets in this page and the next page. We
have also provided the results on the CUB-200 dataset in the
Table 4 of the Appendix. We have provided the experimental
results for the ablation experiments to validate the different
components of our works in Sec. 9.3 of the Appendix.

7.1. CIFAR-100 Results
We report the performance of different baselines and our

proposed ERwP method on the RCRMR-LD problem using
the CIFAR-100 dataset with different architectures in Table 1.
We observe that the baseline 1 (weight deletion) achieves
high constraint accuracy CAne and 0% forgetting accuracy

1https://github.com/peterliht/knowledge-distillation-
pytorch/blob/master/model/net.py

FAe. But its forgetting prototype accuracy FPAe remains
the same as the original model for all the three architectures,
i.e., ResNet-20/56/164. Therefore, baseline 1 fails to remove
the excluded class information from the model at the fea-
ture level. Baseline 2 is not able to preserve the constraint
accuracy CAne even though it performs full training on the
limited excluded class data. Baseline 3 achieves higher CAne
than baseline 2, but the constraint accuracy is still too low.
Baselines 4 and 5 demonstrate significantly better constraint
accuracy than baseline 2 and 3, but their constraint accuracy
is still significantly lower than the original model (except
baseline 5 for ResNet-20). The baseline 5 with ResNet-20
maintains the constraint accuracy and achieves 0% forget-
ting accuracy FAe but its FPAe is still significantly high and,
therefore, is unable to remove the excluded class information
from the model at the feature level. The fine-tuning based
baselines 6 and 7 are able to significantly reduce the forget-
ting accuracy FAe but their constraint accuracy CAne drops
significantly. The fine-tuning based baselines 8 and 9 only
finetune the model on the limited remaining class data and
as a result they are not able to sufficiently reduce either the
FAe or the FPAe.

Our proposed ERwP approach achieves a constraint ac-
curacy CAne that is very close to the original model for
all three architectures. It achieves close to 0% FAe. Fur-
ther, it achieves a significantly lower FPAe than the original
model. Specifically, the FPAe of our approach is signif-
icantly lower than that of the original model by absolute
margins of 17.19%, 20.81%, and 20.17% for the ResNet-20,
ResNet-56, and ResNet-164 architectures, respectively. The
FPAe for the FDR model is 44.20%, 45.40% and 51.85%
for the ResNet-20, ResNet-56 and ResNet-164 architectures,
respectively. Therefore, the FPAe of our approach is close to
that of the FDR model by absolute margins of 3.86%, 2.44%
and 4.38% for the ResNet-20, ResNet-56 and ResNet-164
architectures, respectively. Therefore, our ERwP approach
makes the model behave similar to the FDR model even
though it was trained on only limited data from the excluded
and remaining classes. Further, our ERwP requires only
10 epochs to remove the excluded class information from
the model. Since the available limited training data is only
10% of the entire CIFAR-100 dataset, therefore, our ERwP
approach is approximately 30 ∗ 10 = 300× faster than the
FDR method that is trained on the full training data for 300
epochs.

The FPAe accuracy obtained using ERwP is significantly
lower than the original model, e.g., for the ResNet-56 archi-
tecture FPAe of ERwP is 47.84% compared to 68.65% of the
original model for the CIFAR-100 dataset using the ResNet-
56 model. However, this does not indicate the presence of
much restricted category information. This is because the
process for obtaining the FPAe accuracy involves creating
prototypes from the limited training data of the restricted
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Table 1: Experimental results on the CIFAR-100 dataset for RCRMR-LD

Methods ResNet-20 ResNet-56 ResNet-164

FAe FPAe CAne FAe FPAe CAne FAe FPAe CAne

Original 70.15% 65.25% 67.06% 70.80% 68.65% 69.88% 79.00% 76.40% 76.30%

No Training
Baseline 1 - WD 0.00% 65.25% 69.88% 0.00% 68.65% 72.44% 0.00% 76.40% 78.23%

Full Train Schedule
Baseline 2 - TSLNRC 0.00% 22.20% 31.55% 0.00% 20.20% 30.21% 0.00% 33.05% 40.65%
Baseline 3 - TSLNRC-KD 0.00% 27.55% 40.81% 0.00% 22.50% 32.26% 0.00% 38.55% 45.74%
Baseline 4 - TOLNRC 0.00% 50.85% 58.01% 0.00% 48.60% 57.81% 0.00% 51.55% 63.78%
Baseline 5 - TOLNRC-KD 0.00% 60.25% 67.85% 0.00% 51.25% 61.14% 0.00% 52.80% 63.75%

Only Fine-Tuning
Baseline 6 - FOLMRCSC 24.25% 59.55% 64.03% 13.35% 60.25% 65.23% 15.40% 59.20% 71.06%
Baseline 7 - FOLMRCSC-KD 13.50% 58.80% 63.79% 12.75% 64.95% 63.41% 16.75% 65.30% 68.61%
Baseline 8 - FOLNRC 59.05% 64.30% 68.34% 66.90% 68.45% 70.11% 77.35% 75.85% 75.95%
Baseline 9 - FOLNRC-KD 57.99% 64.40% 68.40% 65.95% 68.40% 70.01% 73.30% 73.55% 75.99%
ERwP (Ours) 0.00% 48.06% 66.84% 0.00% 47.84% 69.32% 0.74% 56.23% 75.65%

classes and the remaining classes and finding the nearest
neighbor class. Therefore, this process is dependent on
the features generated by the deep learning model. Deep
learning models generally produce highly discriminative fea-
tures that can be used to create good prototype classifiers
even for classes that the models were not trained on. For
example, in the few-shot learning setting, the model is gen-
erally trained only on the base classes and then evaluated on
novel class episodes using a prototype-based classifier. The
prototype-based classifier of the few-shot learning setting is
very effective in classifying the novel classes even though
the deep model, which was used to obtain the features for
the prototypes, was never trained on the novel classes. The
discriminative nature of the features produced by deep learn-
ing models is the main reason why ImageNet pre-trained
model features are used to train classifiers for other datasets
and settings, such as in zero-shot learning. In order to better
appreciate the effectiveness of our approach, we also con-
sider the FDR model, which has not seen any training data
of the restricted classes and still achieves a FPAe accuracy
close to that of our approach, e.g. FDR achieves a FPAe
accuracy of 45.40% for the CIFAR-100 dataset using the
ResNet-56 model while our approach achieves an FPAe ac-
curacy of 47.84%. We provide this result as a reference to
demonstrate that the non-zero accuracy of ERwP is due to
the generalization power of deep CNNs and not due to the
restricted classes information in the model. However, com-
paring FDR with our approach is not fair since FDR requires
the full training data of the remaining classes, which violates
the RCRMR-LD problem setting. Therefore, we have not
provided the FDR results in the tables to maintain fairness.

Table 2: Experimental results on ImageNet-1k

Model Methods Top-1 Top-5

FAe CAne FAe CAne

Res-18 Original 69.76% 69.76% 89.58% 89.02%
ERwP 0.28% 69.13% 1.01% 88.93%

Res-50 Original 76.30% 76.11% 93.04% 92.84%
ERwP 0.25% 75.45% 2.55% 92.39%

Mob-V2 Original 72.38% 70.83% 91.28% 90.18%
ERwP 0.17% 70.81% 0.81% 89.95%

7.2. ImageNet Results

Table 2 reports the experimental results for different ap-
proaches to RCRMR-LD problem over the ImageNet-1k
dataset using the ResNet-18, ResNet-50 and MobileNet V2
architectures. Our proposed ERwP approach achieves a top-1
constraint accuracy CAne that is very close to that of the orig-
inal model by absolute margins of 0.63%, 0.66% and 0.02%
for the ResNet-18, ResNet-50 and MobileNet V2 architec-
tures, respectively. It achieves close to 0% top-1 forgetting
accuracy FAe for all the three architectures. Therefore, our
approach performs well even on the large-scale ImageNet-1k
dataset. Further, our ERwP requires only 10 epochs to re-
move the excluded class information from the model. Since
the available limited training data is only 5% of the entire
ImageNet-1k dataset, therefore, our ERwP approach is ap-
proximately 20 ∗ 10 = 200× faster than the FDR method
that is trained on the full data for 100 epochs.
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Table 3: Performance of ERwP in incremental learning set-
ting using ResNet-18

Model FAe CAne

Original Model obtained after Session 4 [M4] 56.39% 58.32%
M4 modified with ERwP (Ours) 0.20% 59.93%

7.3. RCRMR-LD Problem in Incremental Learning

In this section, we experimentally demonstrate how the
RCRMR-LD problem in the incremental learning setting is
addressed using our proposed approach. We consider an
incremental learning setting on the CIFAR-100 dataset in
which each task contains 20 classes. We use the BIC [30]
method for incremental learning on this dataset. The exem-
plar memory size is fixed at 2000 as per the setting in [30].
In this setting, there are 5 tasks. Let us assume that the
model (M4) has already been trained on 4 tasks (80 classes),
and we are in the fifth training session. Suppose, at this
stage, it is noticed that all the classes in the first task (20
classes) have become restricted and need to be removed be-
fore the model is trained on task 5. However, we only have
a limited number of exemplars of the 80 classes seen till
now, i.e., 2000/80 = 25 per class. We apply our proposed
approach to the model obtained after training session 4, and
the results are reported in Table 3. The results indicate that
our approach modified the model obtained after session 4,
such that the forgetting accuracy of the restricted classes
approaches 0% and the constraint accuracy of the remaining
classes is not affected. In fact, the modified model behaves
as if, it was never trained on the classes from task 1. We can
now perform the incremental training of the modified model
on task 5.

8. Conclusion
In this paper, we present a “Restricted Category Removal

from Model Representations with Limited Data” problem in
which the objective is to remove the information regarding a
set of excluded/restricted classes from a trained deep learning
model without hurting its predictive power for the remaining
classes. We propose several baseline approaches and also
the performance metrics for this setting. We propose a novel
approach to identify the model parameters that are highly
relevant to the restricted classes. We also propose a novel
efficient approach that optimizes these model parameters in
order to remove the restricted class information and re-use
these parameters for the remaining classes.
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9. Appendix

9.1. Process for Selecting the Restricted Class Rel-
evant Parameters

In this section, we provide a detailed description of our
process for selecting the restricted class relevant parameters.
First, we apply a data augmentation technique f , not used
during training, to the images of the given restricted class.
Next, we combine the predictions for these images and per-
form backpropagation. Finally, we select the parameters
with the highest absolute gradient as the relevant parameters
for the corresponding restricted class. Specifically, for a
given restricted class, we choose all the parameters from
each network layer such that pruning these parameters will
result in the maximum degradation of model performance on
that restricted class. We use a process similar to the binary
search for automatically selecting the parameters with the
highest absolute gradient.

We first create a list of parameters in each layer, sort them
in descending order according to the absolute gradient val-
ues, and check if zeroing out the weights of the first 20%
parameters from this list for a particular layer leads to low
accuracy (less than 10% for ResNet-164 on CIFAR-100) for
that class. If the accuracy is not low after zeroing out the
chosen parameters, then we select double the number of pa-
rameters chosen earlier and repeat this process. However, if
the accuracy is low after zeroing out the chosen parameters,
we still need to check if a low accuracy can be achieved by
zeroing out fewer parameters. To check this, we reduce the
number of parameters by half the difference between the
current and previously chosen number of parameters and
observe the effect of zeroing out these parameters. If the
accuracy is low for the reduced parameters, then we stop
the process with the current set of parameters as the relevant
parameters for the current restricted class. If the accuracy is
not low for the reduced parameters, then we take the previ-
ously chosen higher number of parameters as the relevant
parameters of the layer for the current restricted class. We
repeat this process for all the restricted classes to obtain the
relevant parameters for each restricted class in all the layers.
The combined set of the relevant parameters for all the ex-
cluded classes is referred to as the restricted/excluded class
relevant parameters. Please note that this process is just for
identifying the parameters relevant to the restricted classes,
and their weights are restored after this process.
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Table 4: Experimental results on the CUB-200 dataset with
ResNet-50 architecture for the RCRMR-LD problem with
20 excluded classes using only 3 training images per class

Methods FAe FPAe CAne

Original 85.20% 84.69% 77.37%

No Training
Baseline 1 - WD 0.00% 84.69% 77.64%

Full Train Schedule
Baseline 2 - TSLNRC 0.00% 30.27% 27.56%
Baseline 3 - TSLNRC-KD 0.00% 35.54% 31.66%
Baseline 4 - TOLNRC 0.00% 60.37% 64.60%
Baseline 5 - TOLNRC-KD 0.00% 68.37% 70.48%

Only Fine-Tuning
Baseline 6 - FOLMRCSC 53.40% 77.38% 74.39%
Baseline 7 - FOLMRCSC-KD 60.88% 81.12% 75.14%
Baseline 8 - FOLNRC 84.86% 84.18% 76.85%
Baseline 9 - FOLNRC-KD 84.35% 85.20% 77.70%
ERwP (Ours) 0.77% 48.89% 75.45%

9.2. Experiments

9.2.1 CUB-200 Results

Table 4 reports the experimental results for different ap-
proaches to the RCRMR-LD problem over the CUB-200
dataset using the ResNet-50 architecture. Our proposed
ERwP approach achieves a constraint accuracy CAne that is
very close to that of the original model even though we use
only 3 images per class for optimizing the model. It achieves
close to 0% forgetting accuracy FAe and achieves a FPAe
that is significantly lower than that of the original model by
an absolute margin of 35.80%. Our ERwP approach out-
performs all the baseline approaches. Further, our ERwP
requires only 10 epochs to remove the excluded class infor-
mation from the model. Since the available limited training
data is only 10% of the entire CUB dataset, therefore, our
ERwP approach is approximately 5 ∗ 10 = 50× faster than
the FDR method that is trained on the full training data for
50 epochs.

9.3. Ablation Studies

9.3.1 Ablation on Our Approach of Identifying the Re-
stricted Class Relevant Parameters

We perform ablation experiments to verify our approach of
identifying the highly relevant parameters for any restricted
class. We perform these experiments on the CIFAR-100
dataset with the ResNet-56 architecture and report the for-
getting accuracy FAe for the randomly chosen excluded
class. Please note that in this case, only the chosen class
of CIFAR-100 is the restricted class and all the remaining

Figure 4: Ablation to validate our approach for identifying
relevant model parameters for a random restricted class of
CIFAR-100

classes constitute the non-excluded classes. In order to show
the effectiveness of our approach, we sort the absolute gra-
dients of the parameters in the model (obtained through
backpropagation for the excluded class augmented images)
and choose a set of high relevance and low relevance param-
eters. We then prune/zero out these parameters and record
the forgetting accuracy. Fig. 4 demonstrates that as we zero
out the high relevance parameters, the forgetting accuracy of
the excluded class drops by a huge margin. It also shows that
as we zero out the low relevance parameters, there is only
a minor change in the forgetting accuracy of the excluded
class. Therefore, the parameters relevant to the excluded
class receive large gradient updates as compared to the other
parameters. This validates our approach for identifying the
high relevant parameters for the restricted classes.

9.3.2 Significance of the Components of the Proposed
ERwP Approach

We perform ablations on the CIFAR-100 dataset using the
ResNet-56 model to study the significance of the Le

c, Lne
c

and Lkd components of our proposed ERwP approach. Ta-
ble 5 indicates that optimizing the restricted class relevant
parameters using only Lne

c cannot significantly remove the
information regarding the restricted classes from the model.
Applying Lne

c along with Le
c significantly reduces the forget-

ting accuracy FAe and forgetting prototype accuracy FPAe
but also significantly reduces the constraint accuracy CAne.
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(a) (b)

Figure 5: Plots denoting the performance of our proposed ERwP during the optimization process for forgetting 20 excluded
classes from CIFAR-100 using a) ResNet-20 and b) ResNet-56 architectures

Table 5: Significance of ERwP components

Lne
c Le

c Lkd FAe FPAe CAne

3 7 7 66.50% 68.19% 69.79%
3 3 7 0.00% 24.40% 6.45%
3 3 3 0.00% 47.84% 69.32%

Finally, applying the Lkd loss along with Lne
c and Le

c signif-
icantly reduces FAe and FPAe while maintaining the con-
straint accuracy CAne very close to that of the original model.

9.3.3 Ablation on the Number of Excluded Classes

We report the experimental results for our approach for dif-
ferent splits of excluded and remaining classes of the CIFAR-
100 dataset in Table 6. We observe that our ERwP performs
well for all the splits for both the ResNet-20 and ResNet-56
architectures.

9.3.4 Performance of ERwP over Training Epochs

We analyze the change in the performance of the model af-
ter every epoch of our proposed ERwP approach in Fig. 5
for the CIFAR-100 dataset with 20 excluded classes using
the ResNet-20 and ResNet-56 architectures. For both archi-
tectures, we observe that as the training progresses, ERwP

Table 6: Experimental results on the CIFAR-100 dataset
using ResNet-56 for ERwP with different numbers of ex-
cluded classes. # R/E→ no. of non-excluded classes / no.
of excluded classes

# R/E Methods ResNet-20 ResNet-56

FAe CAne FAe CAne

60/40 Original 68.18% 67.35% 69.98% 70.11%
ERwP 0.00% 67.03% 0.00% 69.98%

70/30 Original 67.83% 67.61% 69.60% 70.26%
ERwP 0.00% 67.25% 0.00% 69.81%

80/20 Original 70.15% 67.06% 70.80% 69.88%
ERwP 0.00% 66.84% 0.00% 69.32%

90/10 Original 67.90% 67.66% 68.40% 70.24%
ERwP 0.00% 67.26% 0.00% 69.69%

95/5 Original 66.20% 67.76% 67.00% 70.22%
ERwP 0.00% 67.55% 0.00% 69.63%

maintains the constraint accuracy close to that of the origi-
nal model and forces the forgetting accuracy to drop to 0%.
ERwP also forces the forgetting prototype accuracy to keep
dropping and makes it similar to the FDR model.
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Table 7: Experimental results on the CIFAR-100 dataset with
ResNet-20 architecture for the RCRMR-LD problem with
20 excluded classes using our proposed ERwP with different
values of β

β Methods FAe CAne

- Original 70.15% 67.06%

8 ERwP 0.00% 66.03%
9 ERwP 0.00% 66.23%
10 ERwP 0.00% 66.84%
11 ERwP 0.00% 66.58%
12 ERwP 0.00% 66.15%

Table 8: Experimental results on the CIFAR-100 dataset with
ResNet-20 architecture for the RCRMR-LD problem with
20 excluded classes using our proposed ERwP with different
values of κ

κ Methods FAe CAne

- Original 70.15% 67.06%

1.0 ERwP 0.00% 66.05%
1.5 ERwP 0.00% 66.08%
2.0 ERwP 0.00% 66.84%
2.5 ERwP 0.00% 66.30%
3.0 ERwP 0.00% 66.23%

9.3.5 Ablation Experiments for β and κ

We perform ablation experiments to identify the most suit-
able values for the hyper-parameters β and κ for our pro-
posed ERwP. The ablation results in Tables 7, 8, validate our
choice of hyper-parameter values considering the forgetting
accuracy and the constraint accuracy of the resulting model.

9.3.6 Effect of Different Data Augmentations on the
Identification of Class Relevant Model Parame-
ters

The purpose of applying any data augmentation (not used
during training) in our approach is to study the gradient
updates when the model performs backpropagation over
slightly different versions of the training data of a class and
use this information to identify the highly relevant param-
eters of the model with respect to that class. We have per-
formed experiments using various data augmentation tech-
niques (grayscale, vertical flip, rotation, random affine aug-
mentations) and have provided these results in Fig-6. We

chose the same restricted class of CIFAR-100 and use the
ResNet-56 network for all the experiments. The results in
Fig. 6 indicate that for all the compared data augmentations
approaches, pruning/zeroing out the high relevance parame-
ters obtained using our approach results in a huge drop in the
forgetting accuracy of the excluded class. Further, zeroing
out the low relevance parameters has a minor impact on the
forgetting accuracy of the excluded class. Therefore, the
data augmentation techniques are almost equally effective in
our approach for finding the relevant parameters with respect
to any restricted class.

9.3.7 Ablation Experiments on the Restricted Class
Relevant Parameters

We perform ablation experiments with ERwP to check if
only 25% and 50% of the restricted class relevant parameters
of each layer identified using our proposed procedure can
be used for ERwP. We run each of these experiments for
the same number of epochs for the CIFAR-100 dataset and
ResNet-56 network. However, we observed that the final
FPAe falls from 68.65% to 60.35% and 53.7%, respectively,
for 25% and 50% of restricted class relevant parameters
of each layer as compared to 47.84% when using all the
restricted class relevant parameters per layer identified using
our approach. The good performance of our approach is
more evident in light of the performance of the FDR model
that achieves a FPAe accuracy of 45.40%. We provide this
result as a reference to demonstrate that the 47.84% FPAe
accuracy is due to the generalization power of the model and
not due to the restricted classes information in the model.
This shows that our approach effectively identifies the class-
relevant parameters of the model for a given class.

9.3.8 Effect of Using the Proposed ERwP Approach
When the Entire Dataset is Available

We perform ablation experiments to demonstrate the per-
formance of our proposed ERwP approach when the entire
training data is available. We perform these experiments
on the CIFAR-100 dataset using ResNet-20 and ResNet-56.
We observe experimentally that for both the ResNet-20 and
ResNet-56 experiments using ERwP, the forgetting accu-
racy FAe accuracy is 0% and the constraint accuracy CAne
matches that of the original model. Further, the gap between
the forgetting prototype accuracy FPAe of ERwP and the
FDR model reduces from 3.86% (for limited data) to 2.79%
for ResNet-20. Similarly, the gap reduces from 2.44% (for
limited data) to 1.65% for ResNet-56. However, ERwP re-
quires only 2-3 epochs of optimization (∼100-150× faster
than the FDR model) for achieving this performance when
trained on the entire dataset. This makes it significantly
faster than any approach that trains on the entire dataset.
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Figure 6: Ablation to validate our approach for identifying restricted class relevant model parameters using different
augmentation techniques w.r.t. the same randomly chosen restricted class of CIFAR-100. We use the ResNet-56 network for
these experiments. The data augmentation techniques used are (a) grayscale augmentation, (b) vertical flip augmentation, (c)
rotation augmentation, (d) random affine augmentation. In each case, the figure shows the model performance when the low
relevance and high relevance parameters obtained using our approach are zeroed out

Figure 7: Class activation maps of ImageNet images from the excluded and non-excluded classes, for the original ResNet-50
(second row) and ResNet-50 after applying our proposed ERwP approach (third row). First row depicts the real images

9.3.9 Qualitative Analysis

In order to analyze the effect of removing the excluded class
information from the model using our proposed ERwP ap-
proach, we study the class activation map visualizations
[27] of the model before and after applying ERwP. We ob-
serve in Fig. 7 that for the images from the excluded classes,
the model’s region of attention gets scattered after applying
ERwP, unlike the images from the remaining classes.
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