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Abstract. Fair representation learning transforms user data into a rep-
resentation that ensures fairness and utility regardless of the downstream
application. However, learning individually fair representations, i.e., guar-
anteeing that similar individuals are treated similarly, remains challenging
in high-dimensional settings such as computer vision. In this work, we
introduce LASSI, the first representation learning method for certifying
individual fairness of high-dimensional data. Our key insight is to lever-
age recent advances in generative modeling to capture the set of similar
individuals in the generative latent space. This enables us to learn indi-
vidually fair representations that map similar individuals close together
by using adversarial training to minimize the distance between their rep-
resentations. Finally, we employ randomized smoothing to provably map
similar individuals close together, in turn ensuring that local robustness
verification of the downstream application results in end-to-end fairness
certification. Our experimental evaluation on challenging real-world image
data demonstrates that our method increases certified individual fairness
by up to 90% without significantly affecting task utility.

Keywords: fair representation learning, individual fairness, smoothing

1 Introduction

Deep learning models are increasingly deployed in critical domains, such as face
detection [74], credit scoring [38], or crime risk assessment [6], where decisions of
the model can have wide-ranging impacts on society. Unfortunately, the models
and datasets employed in these settings are biased [7,43], which raises concerns
against their usage for such tasks and causes regulators to hold organizations
accountable for the discriminatory effects of their models [18,19,22,23,77].

In this regard, fair representation learning [88] is a promising bias mitigation
approach that transforms data to prevent discrimination regardless of the concrete
downstream application while simultaneously maintaining high task utility. The
approach is highly modular [60]: the data regulator defines the fairness notion,
the data producer learns a fair representation that encodes the data, and the
? Work partially done while the author was at ETH Zurich.
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Ĉ(rcs + δ) = Ĉ(rcs)

w.h.p. for all ‖δ‖ ≤ dcs

Fig. 1: Overview of our framework LASSI. The left part shows the data producer
who captures the set of individuals similar to x by interpolating along the
attribute vector apale. The data producer then uses adversarial training and
center smoothing to compute a representation that provably maps all similar
points into the `2-ball of radius dcs around rcs. The right part shows the data
consumer who can certify individual fairness, i.e., prove that all similar individuals
receive the same classification outcome, of the end-to-end model by checking
whether the certified radius obtained via randomized smoothing exceeds dcs.

data consumers employ the transformed data in downstream tasks. Recent work
successfully augmented fair representation learning with guarantees [24,68], but
its application to high-dimensional data, such as images, remains challenging.

Key challenge: scaling to high-dimensional data and real-world models
The two central challenges of individually fair representation learning, which
requires similar individuals to be treated similarly, are: (i) designing a suitable
input similarity metric [86,88] and (ii) enforcing that similar individuals are
provably treated similarly according to that metric. For low-dimensional tabular
data, prior work has typically measured input similarity in terms of the input
features (age, income, etc.), using, e.g., logical constraints [68] or weighted `p-
metrics [85]. However, characterizing the similarity of high-dimensional data, such
as images, at the input-level, e.g., by comparing pixels, is infeasible. Moreover,
proving that all points in the infinite set of similar individuals obtain the same
classification requires propagating this set through the model. Unfortunately, for
high-dimensional applications this is unattainable for prior work using (mixed-
integer) linear programming solvers [16,76], which only scale to small networks.

This work In this work, we introduce latent space smoothing for individually fair
representations (LASSI), a method that addresses both of the above challenges.
Our approach leverages two recent advances: the emergence of powerful generative
models [41], which enable the definition of image similarity for individual fairness,
and the scalable certification of deep models [10], which allows proving individual
fairness. A high-level overview of our approach is shown in Fig. 1. Concretely, we
use generative modeling [41] to enable data regulators to define input similarity
by varying a continuous attribute of the image, such as pale skin in Fig. 1. To
enforce that similar individuals are provably treated similarly, we further base our
approach on smoothing: (i) the data producer uses center smoothing [44] to learn
a representation that provably maps similar individuals close together, and (ii)
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the data consumer certifies local `2-robustness using randomized smoothing [10],
thereby proving individual fairness of the end-to-end model. Therefore, our
approach enables data regulators to impose fairness notions of the form: “For
a given person, all people differing only in skin tone should receive the same
classification” and allows data producers and consumers to independently learn a
representation and classification models that provably enforce this notion.

To measure input similarity, the data producer leverages the ability of a
bijective generative model to interpolate along the direction of an attribute vector
in the latent space, which is impractical in the pixel space. As a result, the set of
similar individuals can be defined by a line segment in the latent space (center
part of the data producer in Fig. 1), corresponding to an elaborate curve in the
input space (left part of the data producer in Fig. 1), which cannot be concisely
captured by, e.g., an `p-ball. Thus, the data producer learns a representation R
that maps all points of the latent line segment close together in the representation
space by using adversarial training to minimize the distance between similar
individuals. However, as adversarial training cannot provide guarantees on this
maximum distance, the data producer uses center smoothing [44] to adjust the
representation such that its smoothed version R̂ provably maps all similar points
into an `2-ball of radius dcs around a center rcs with high probability (right
part of the data producer in Fig. 1). Finally, the data consumer only needs to
prove that the certified radius (violet in the data consumer part of Fig. 1) of
its smoothed classifier Ĉ around rcs is larger than dcs to obtain an individual
fairness certificate for the end-to-end model M := Ĉ ◦ R̂ ◦ E.

Our experimental evaluation on several image classification tasks shows that
training with LASSI significantly increases the number of individuals for which
we can certify individual fairness, with respect to multiple different sensitive
attributes, as well as their combinations. Overall, we certify up to 90% more than
the baselines. Furthermore, we demonstrate that the representations obtained by
LASSI can be used to solve classification tasks that were unseen during training.

Main contributions We make the following contributions:
– A novel input similarity metric for high-dimensional data defined via interpo-

lation in the latent space of generative models.
– A scalable representation learning method with individual fairness certifica-

tion for models using high-dimensional data via randomized smoothing.
– A large-scale evaluation of our method on various image classification tasks.

2 Related Work

In this work, we consider individual fairness, which requires that similar in-
dividuals be treated similarly [14]. In contrast, group fairness enforces specific
classification statistics to be equal across different groups of the population [14,28].
While both fairness notions are desirable, they also both suffer from certain short-
comings. For instance, models satisfying group fairness may still discriminate
against individuals [14] or subgroups [36]. In contrast, the central challenge
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limiting practical adoption of individual fairness is the lack of a widely accepted
similarity metric [86]. While recent work has made progress in developing simi-
larity metrics for tabular data [31,57,62,79,87], defining similarity concisely for
high-dimensional data remains challenging and is a key contribution of our work.

Fair representation learning A wide range of methods has been proposed to
learn fair representations of user data. Most of these works consider group fairness
and employ techniques such as adversarial learning [15,37,50,55], disentangle-
ment [11,53,69], duality [73], low-rank matrix factorization [63], and distribution
alignment [3,54,89]. Fair representation learning for individual fairness has re-
cently gained attention, with similarity metrics based on logical formulas [68],
Wasserstein distance [20,45], fairness graphs [46], and weighted `p-norms [88].
Unfortunately, none of these approaches can capture the similarity between
individuals for the high-dimensional data we consider in our work.

Bias in high-dimensional data A long line of work has investigated the
biases of models operating on high-dimensional data, such as images [81,83]
and text [5,49,64,75], showing, e.g., that black women obtain lower accuracy
in commercial face classification [7,43,66]. Importantly, these models not only
learn but also amplify the biases of the training data [29,90], even for balanced
datasets [80]. A key challenge for bias mitigation in high-dimensional settings is
that, unlike tabular data, sensitive attributes such as age or skin tone are not
directly encoded as features. Thus, prior work has often relied on generative
models [2,12,13,33,39,40,47,48,67,70] or computer simulations [59] to manipulate
these sensitive attributes and check whether the perturbed instances are classified
the same. However, unlike our work, these methods only tested for bias empirically
and do not provide fairness guarantees. Recent work also explored using generative
models to define [27,84] or certify [61] robustness, but without focusing on fairness.

Fairness certification Regulatory agencies are increasingly holding organi-
zations accountable for the discriminatory effects of their machine learning
models [18,19,22,23,77]. Accordingly, designing algorithms with fairness guaran-
tees has become an active area of research [1,3,4,9,24,71]. However, unlike our
work, most approaches for individual fairness certification consider pretrained
models and thus cannot be employed in fair representation learning [32,78,85].
In contrast, [68] learn individually fair representations with provable guarantees
for low-dimensional tabular data, providing a basis for our approach. However,
neither the similarity notions nor the certification methods employed by [68]
scale to high-dimensional data, which is the primary focus of our work.

3 Background

This section provides the necessary background on individual fairness, fair repre-
sentation learning, generative modeling, and randomized smoothing.

Individual fairness The seminal work of [14] defined individual fairness as
“treating similar individuals similarly”. In this work, we consider the concrete
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instantiation of this notion from [68]: an individual x′ is similar to x with respect
to a binary input similarity metric φ : Rn×Rn → {0, 1} if and only if φ(x,x′) = 1.
A model M : Rn → Y is individually fair at x ∈ Rn if it classifies all individuals
similar to x (as measured by φ) the same, i.e.,

∀x′ ∈ Rn : φ (x,x′) =⇒ M (x) =M (x′) . (1)

For example, a credit rating algorithm is individually fair for a given person if
all similar applicants (e.g., similar income and repayment history) receive the
same credit rating. Our goal is to learn a model M that maximizes the number of
points x from the distribution for which we can guarantee that Eq. (1) is satisfied.
Defining a suitable input similarity metric φ is one of the key challenges limiting
practical applications of individual fairness, and in Sec. 4.1 we will show how to
employ generative modeling to overcome this obstacle for high-dimensional data.

Fair representation learning Fair representation learning [88] partitions the
model M : Rn → Y into a data producer P : Rn → Rk, which maps input points
x ∈ Rn into a representation space Rk that satisfies a given fairness notion while
maintaining downstream utility, and a data consumer C : Rk → Y that solves
a downstream task taking only the transformed data points r := P (x) ∈ Rk as
inputs. Importantly, the consumers (potentially indifferent to fairness) can employ
standard training methods to obtain fair classifiers that are useful across a variety
of different tasks. We base our approach on the LCIFR framework [68], which
learns representations with individual fairness guarantees for low-dimensional
tabular data. LCIFR defines a family of similarity notions and leverages (mixed-
integer) linear programming methods for fairness certification. However, high-
dimensional applications are out of reach for LCIFR because both the similarity
notions and linear programming methods are tailored to low-dimensional tabular
data. In particular, similarity is defined via logical formulas operating on the
features of x, which is infeasible for, e.g., images, which cannot be compared
solely at the pixel level. Moreover, while linear programming methods work well
for small networks, they do not scale to real-world computer vision models. In this
work, we show how to resolve these two key concerns to generalize the high-level
idea of LCIFR to real-world, high-dimensional applications.

Generative modeling Normalizing flows, such as Glow [41], recently emerged
as a promising generative modeling approach due to their exact log-likelihood
evaluation, efficient inference and synthesis, and useful latent space for down-
stream tasks. Unlike GANs [25] or VAEs [42], normalizing flows are bijective
models consisting of an encoder E : Rn → Rq and a decoder D : Rq → Rn for
which x = D (E (x)). Glow’s input space Rn and latent space Rq have the same
dimensionalities n = q. Its latent space captures important data attributes,
thus enabling latent space interpolation such as changing the age of a person in
an image. While attribute manipulation via latent space interpolation has also
been investigated in the fairness context for GANs and VAEs [2,13,33,39,48,67],
Glow’s key advantages are the existence of an encoder (unlike GANs, which
cannot represent an input point in the latent space efficiently) and the bijectivity
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of the end-to-end model (VAEs cannot reconstruct the input point exactly). Our
key idea is to leverage Glow to define image similarity by interpolating along the
directions defined by certain sensitive attributes in the latent space.

Smoothing Unlike (mixed-integer) linear programming [16,76], smoothing
approaches [10] can compute local robustness guarantees for any type of classifier
C : Rk → Y , regardless of its complexity and scale. To that end, [10] construct a
smoothed classifier Ĉ : Rk → Y, which returns the most probable classification
of C for an input r ∈ Rk when perturbed by random noise from N (0, σ2

rsI).
Using a sampling-based approach, [10] establish a local robustness guarantee
of the form: ∀δ ∈ Rk such that ‖δ‖2 < drs we have Ĉ (r + δ) = Ĉ (r) with
probability 1−αrs, where αrs can be made arbitrarily small. Thus, Ĉ will classify
all points in the `2-ball of radius drs around r the same with high probability.
Recently, [44] introduced center smoothing, which extends this approach from
classification to multidimensional regression. Concretely, for a function R : Rq →
Rk, center smoothing uses sampling and approximation to compute a smooth
version R̂ : Rq → Rk, which maps z ∈ Rq to the center point rcs := R̂ (z)
of a minimum enclosing ball containing at least half of the points ri ∼ R(z +
N (0, σ2

csI)) for i ∈ {1, . . . ,m}. Then, for ε > 0 and ∀z′ ∈ Rq such that ‖z−z′‖2 ≤
ε, we have ‖R̂ (z) − R̂ (z′) ‖2 ≤ dcs with probability at least 1 − αcs. That is,
center smoothing computes a sound upper bound dcs on the `2-ball of the function
outputs of R̂ for all points in the `2-ball of radius ε around z.

4 High-Dimensional Individually Fair Representations

In this section, we describe how our method defines a set of similar individuals
(Sec. 4.1), learns individually fair representations for these points (Sec. 4.2), and
finally, certifies individual fairness for them (Sec. 4.4). Our approach is general,
but we focus on images for presentational purposes.

4.1 Similarity via a Generative Model

We consider two individuals x and x′ to be similar if they differ only in their
continuous sensitive attributes. However, semantic attributes, such as skin color,
cannot be captured conveniently via the input features of x. Thus, our key idea
is to define similarity in the latent space of a generative model G. We compute
a vector a ∈ Rq associated with the sensitive attribute, such that interpolating
along the direction of a in the latent space and reconstructing back to the input
space results in a meaningful semantic transformation of that attribute. There is
active research investigating different ways of computing a [13,30,41,48,67], and
we will empirically show that our method is compatible with any such method.

Computing a We define individual similarity in the latent space of Glow [41].
Our method is independent of the actual computation of a, which we demonstrate
by instantiating four different attribute vector types. Let zG = E(x) be the latent
code of x in the generative latent space. First, following [41], we compute a by
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calculating the average latent vectors zG,pos for samples with the attribute and
zG,neg for samples without it and set a to their difference, a = zG,pos − zG,neg.
Second, following [13], we train a linear classifier sign(a>zG + b) to predict the
presence of the attribute from zG and take a to be the vector orthonormal to
the decision boundary of the linear classifier. Finally, we employ [48] and [67]
who build on these methods, accounting for the possible correlations between
the sensitive and target attributes. In all cases, moving in one direction of a in
the latent space increases the presence of the attribute and interpolating in the
opposite direction decreases it. LASSI is independent of the sensitive attribute
vector computation and will immediately benefit from all advancements in this
area. We evaluate with vectors computed by [41] and [13] in the main paper
(Sec. 5) and present further results with vectors from [48,67] in App. E.

zG

zG − εapale

zG + εapale

apale

Samples

Encoder E

x

Fig. 2: Similarity
in latent space.

Individual similarity in latent space Using the gener-
ative model G and the attribute vector a, we define the
set of individuals similar to x in the latent space of G as
S (x) := {zG + t · a | |t| ≤ ε} ⊆ Rq (bottom of Fig. 2). Here,
ε denotes the maximum perturbation level applied to the
attribute. We consider G, a, and ε to be a part of the simi-
larity specification set by the data regulator. Crucially, S (x)
contains an infinite number of points but is compactly rep-
resented in the latent space of G as a line segment. In con-
trast, the same set represented directly in the input space,
Sin (x) := D (S (x)) ⊆ Rn, obtained by decoding the latent
representations in S (x) with D, cannot be abstracted conve-
niently (top of Fig. 2). Moreover, this approach for construct-
ing S (x) can be extended to multiple sensitive attributes by
interpolating along their attribute vectors simultaneously. Re-
ferring back to the notation in Sec. 3, we formally define the in-
put similarity metric φ to satisfy φ (x,x′) ⇐⇒ x′ ∈ Sin (x).

4.2 Learning Individually Fair Representations

Assuming that the generative model G = (E,D) is pretrained and given (e.g., by
the data regulator), in this section we describe the learning of the representation
R : Rq → Rk, which maps from the generative latent space Rq directly to the
representation space Rk. The representation R is trained separately from the
data consumer, the classifier C, whose training is explained in the next section.

Adversarial loss We encourage similar treatment for all points in Sin (x) by
training R to map them close to each other in Rk, minimizing the loss

Ladv (x) = max
z′∈S(x)

‖R (zG)−R (z′) ‖2. (2)

Minimizing Ladv (x) is a min-max optimization problem, and adversarial train-
ing [56] is known to work well in such settings. Because the underlying domain of
the inner maximization problem is simply the line segment S (x), we perform a
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random adversarial attack in which we sample s points zi ∼ U (S (x)) uniformly
at random from S (x) and approximate Ladv (x) ≈ maxsi=1 ‖R (zG)−R (zi) ‖2.
This efficient attack is typically more effective [17] than the first-order methods
such as FGSM [26] and PGD [56] when the search space is low-dimensional.

Classification loss To ensure that the learned representations remain useful for
downstream tasks, we introduce an auxiliary classifier Caux to predict a ground
truth target label y by adding an additional classification loss term:

Lcls (x, y) = cross_entropy
(
Caux ◦R (zG) , y

)
. (3)

Reconstruction loss The downstream task may not always be known to the
data producer a priori, and thus our representations should ideally transfer to
a variety of such tasks. To that end, we optionally utilize a reconstruction loss,
which is designed to preserve the signal from the original data [55,68]:

Lrecon (x) = ‖zG −Q (R (zG)) ‖2, (4)

where Q : Rk → Rq denotes a reconstruction network.
The representation R, the auxiliary classifier Caux, and the reconstruction

network Q are trained jointly using stochastic gradient descent to minimize the
combined objective

λ1Lcls (x, y) + λ2Ladv (x) + λ3Lrecon (x) . (5)

Trading off fairness, accuracy, and transferability is a multi-objective optimization
problem, an active area of research. Here, we follow [55,68] and use a linear
scalarization scheme, with the hyperparameters λ1, λ2 and λ3 balancing the three
losses, but our method is also compatible with other schemes [51,58,82].

4.3 Training Classifier C

Once we have learned the representation R, we can use it to train any classifier C
(often different from the auxiliary one Caux). As we will apply smoothing to C,
we train it by adding isotropic Gaussian noise to its inputs during the training
process, as in [10]. We use the outputs of R ◦ E (and not the smoothed version
R̂ ◦ E) as inputs to train C, since repeatedly smoothing the pipeline at this step
is computationally expensive and because the distance between the smoothed
and the unsmoothed outputs is generally small [44].

4.4 Certifying Individual Fairness via Latent Space Smoothing

With R and C trained as described above, we now construct the end-to-end
model M : Rn → Y for which, given an input x, we can certify individual fairness
of the form

∀x′ ∈ Sin (x) :M (x) =M (x′) , (6)

with arbitrarily high probability.
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Algorithm 1 Certifying the individual fairness of Ĉ ◦ R̂ ◦ E for the input x.
function Certify(E, R, C, x)
Let zG = E (x). Then, rcs = R̂ (zG) and dcs from center smoothing [44].
if center smoothing abstained then return Abstain
Smooth C [10]: obtain the certified radius drs around rcs (i.e., same classification)
if dcs < drs then return Certified
else return Not Certified

zG

zG − εapale

zG + εapale

apale

Samples

LASSI R

rcs

dcsrR

Fig. 3: Center
smoothing the
similarity set.

Given a point z in the latent space of G, we define the
function gz (t) := R (z + t · a) for t ∈ R. We apply the cen-
ter smoothing procedure presented by [44] to obtain ĝz, the
smoothed version of gz, and define R̂ (z) := ĝz (0) such that for
all z′ ∈ S (x), ‖R̂ (z)− R̂ (z′) ‖2 ≤ dcs (see Fig. 3). Next, we
smooth the classifier C to obtain its `2-robustness radius drs. If
dcs < drs, then the end-to-end modelM = Ĉ ◦R̂◦E certifiably
satisfies individual fairness at x (as defined in Eq. (6)) with
high probability. Concretely, if we instantiate center smoothing
with confidence αcs and randomized smoothing with confidence
αrs, then the individual fairness certificate holds with proba-
bility at least 1− αcs − αrs (union bound). The compositional
certification procedure is summarized in Alg. 1. Its correctness
is formalized in Thm. 1 with a detailed proof in App. A.

Theorem 1. Assume that we have a bijective generative model
G = (E,D) used to define the similarity set Sin (x) for a given input x. Let Alg. 1
perform center smoothing [44] with confidence 1− αcs and randomized smooth-
ing [10] with confidence 1 − αrs. If Alg. 1 returns Certified for the input x,
then the end-to-end model M = Ĉ ◦ R̂ ◦ E is individually fair for x with respect
to Sin (x) with probability at least 1− αcs − αrs.

5 Experiments

We now evaluate LASSI and present the key findings: (i) LASSI enforces individual
fairness and keeps accuracy high, (ii) LASSI handles various sensitive attributes
and attribute vectors, and (iii) LASSI representations transfer to unseen tasks.

Datasets We evaluate LASSI on two datasets. CelebA [52] contains 202,599
aligned and cropped face images of real-world celebrities. The images are anno-
tated with the presence or absence of 40 face attributes with various correlations
between them [13]. As CelebA is highly imbalanced, we also experiment with
FairFace [34]. It is balanced on race and contains 97,698 released images (padding
0.25) of individuals from 7 race and 9 age groups. We split the training set ran-
domly (80:20 ratio) and evaluate on the validation set because the test set is not
publicly shared. Further information about the datasets (including experimental
“unfairness” of different attributes computed on CelebA) is in App. B.
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Experimental setup The following setup is used for all experiments, unless
stated otherwise. We use images of size 64×64, and for each dataset pretrain
a Glow model G with 4 blocks of 32 flows, using an open-source PyTorch [65]
implementation [72]. We use a = zG,pos − zG,neg and set ε = 1 such that Sin (x)
contains realistic high-quality reconstructions (confirmed by manual inspection).
Thus, the similarity specification (Sec. 4.1) for enforcing individual fairness is
determined by G and the radius ε. We implement the representation R as a
fully-connected network that propagates Glow’s latent code of an input x through
two hidden layers of sizes 2048 and 1024, mapping to a 512-dimensional space.
The final layer applies zero mean and unit variance normalization ensuring that
all components of R’s output are in the same range when Gaussian noise is added
during smoothing. A linear classifier C is used for predicting the target label.

Our fairness-unaware baseline (denoted as Naive) is standard representation
learning of R without adversarial and reconstruction losses (λ2 = λ3 = 0). When
training LASSI, we set the classification loss weight λ1 = 1, except for the transfer
learning experiments. A recent work [67] proposed generating synthetic images
with a ProGAN [35] to balance the dataset. Their method is not concerned with
individual fairness and their transformation of latent representations may change
other, non-sensitive attributes. Nevertheless, we employ [67]’s high-level idea of
augmenting the training set with synthetic samples from a generative model
(Glow in our case). For each training sample x, we synthesize and randomly
sample s additional images from Sin (x) in every epoch. Then, we proceed with
representation learning of R on the augmented dataset. We denote this baseline,
addapted to the individual fairness setting, as DataAug. We do not compare with
LCIFR [68] as our individual similarity specifications cannot be directly encoded
as logical formulas over the input features of x and because its certification is
based on expensive solvers that do not scale to Glow and large models.

We list all selected hyperparameters for all experiments, based on an an
extensive hyperparameter search on the validation sets, in App. C (details
provided for the CelebA dataset). The hyperparameter study shows that LASSI
works for a wide range of hyperparameter values and demonstrates that λ2
controls the trade-off between accuracy and fairness. We report the accuracy
and the certified individual fairness of the models measured on 312 samples from
CelebA’s test set (every 64-th) and 343 samples from FairFace’s test set (every 32-
nd). The certified fairness refers to the percentage of test samples for which Alg. 1
returns Certified, i.e., for which we can prove that Eq. (6) holds, guaranteeing
that all similar individuals (according to our similarity definition) are classified
the same. This metric is denoted as “Fair” in the tables. The evaluation of a single
data point takes up to 6 seconds due to the sampling required by the smoothing
procedures, which is why we do not report results on the whole test sets. We ran
the experiments on GeForce RTX 2080 Ti GPUs and release all the code and
models to reproduce our results at https://github.com/eth-sri/lassi.

Single sensitive attribute We experiment with 4 different continuous sensitive
attributes from CelebA: Pale_Skin, Young, Blond_Hair and Heavy_Makeup on
two tasks: predicting Smiling and Earrings. We chose attributes with different

https://github.com/eth-sri/lassi
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(a) Pale_Skin (b) Young

(c) Blond_Hair (d) Heavy_Makeup

(e) Pale_Skin + Young (f) Pale_Sking + Young + Blond

Fig. 4: Similar points from Sin (x), as reconstructed by Glow, for multiple sensitive
attribute combinations. Central images correspond to the original input. We
vary t uniformly (left to right) in the [− ε√

n
, ε√

n
] range, n = number of sensitive

attributes, ε = 1. For n > 1, all attribute vectors are multiplied by the same t.

balance ratios that have been used in prior work [13], while avoiding attributes
that perpetuate harmful stereotypes [13] (e.g., avoiding Male). Glow can also be
used to generate discrete attributes, but then fairness certification can be done
via enumeration because partial eyeglasses or hats, for example, are not plausible.
Fig. 4 provides example images from Sin (x) for a single x. The Earrings task is
considerably more imbalanced than Smiling, with 78.21% majority class accuracy
on our test subset. Because of the high correlation between Earrings and Makeup,
we run LASSI with increased λ2 for this pair of attributes.

We show the results in Tab. 1 averaged over 5 runs with different random
seeds. The results indicate that data augmentation helps, but is not enough.
LASSI significantly improves the certified fairness, compared to the baselines,
with a minor loss of accuracy on Smiling and even acts as a helpful regularizer
on the imbalanced Earrings task. In App. D we report the standard deviations
demonstrating that LASSI consistently enforces individual fairness with low
variance and further evaluate empirical (i.e., non-certifiable) fairness metrics.

Multiple sensitive attributes In the next experiment, we combine the
sensitive attributes Pale_Skin, Young and Blond_Hair and predict Smiling.
The similarity sets w.r.t. which we certify individual fairness are defined as
S (x) = {E (x) +

∑
i ti · ai | ‖t‖2 ≤ ε}. The results in Tab. 1 (rows 5 – 6) show

that the certified fairness drops as the similarity sets become more complex, as
expected, but LASSI still successfully enforces individual fairness in these cases.

Larger images and different attribute vectors Next, we explore if LASSI
can also work with larger images. We increase the dimensionality of the CelebA
images to 128×128, pretrain Glow with 5 blocks and keep the rest of the hyper-
parameters the same. The results are consistent with those already presented
in Tab. 1: LASSI increases the certified individual fairness by up to 77% on the
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Table 1: Evaluation of LASSI on the CelebA dataset, showing that LASSI
significantly increases certified individual fairness compared to the baselines
without affecting the classification accuracy, even increasing it for imbalanced
tasks. Reported means averaged over 5 runs, see App. D for standard deviations.

Naive DataAug LASSI (ours)

Task Sensitive attribute(s) Acc Fair Acc Fair Acc Fair

Smiling

Pale_Skin 86.3 0.6 85.7 12.2 85.9 98.0
Young 86.3 38.2 85.9 43.0 86.3 98.8
Blond_Hair 86.3 3.4 86.6 9.4 86.4 94.7
Heavy_Makeup 86.3 0.4 85.3 13.7 85.6 91.3
Pale+Young 86.0 0.4 85.8 9.9 85.8 97.3
Pale+Young+Blond 86.2 0.0 86.4 3.6 85.5 86.5

Earrings

Pale_Skin 81.3 24.3 81.0 40.4 85.0 98.5
Young 81.4 59.2 79.9 72.0 84.5 98.0
Blond_Hair 81.4 9.2 82.2 30.5 84.8 96.2
Heavy_Makeup 81.6 20.5 80.3 49.2 82.3 98.7

Smiling task (see App. D for detailed results). We also instantiate LASSI with
the alternative attribute vector type [13] introduced in Sec. 4.1 (with ε = 10).
Although interpolating along the vector which is perpendicular to the linear
decision boundary of the sensitive attribute possibly reduces the correlations
leaked into the similarity sets, Tab. 2 shows that LASSI still improves the certified
fairness by up to 16% compared to the baselines. This improvement is 9.7% and
6.1% for the attribute vectors proposed by [67] and [48] respectively, further
demonstrating that LASSI can be useful for various attribute vector types. More
details about these experiments are provided in App. E.

Transfer learning To demonstrate the modularity of our approach, we show
that LASSI can learn fair and transferable representations which are useful
for unseen downstream tasks. To that end, we turn off the classification loss,
consistent with prior work [55] (λ1 = 0, i.e., the representation R is trained
unsupervised), and enable the reconstruction loss (λ3 = 0.1). The reconstruction
network Q has an architecture symmetric to that of R. In Tab. 3 we report
the accuracies and the certified fairness on 7 different, relatively well-balanced,
downstream tasks. The models perform slightly worse compared to the case where
the downstream task is known in advance, but the obtained certified individual
fairness is still consistently high – more than 80% for the most complex similarity
specification (P+Y+B) and above 90% for the simpler ones. Standard deviations
and baseline accuracies on these tasks are reported in App. D.

Training on FairFace dataset To verify that LASSI works well in different
settings, we also evaluate on the FairFace [34] dataset. We select Race=Black as
a sensitive attribute and predict Age. This is a very challenging multi-class task
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Table 2: Evaluation with a perpendicular to the linear decision boundary of the
sensitive attribute [13] (Sec. 4.1) on the Smiling task, showing that LASSI is
not limited to a specific attribute vector type.

Naive DataAug LASSI (ours)

Sensitive attribute(s) Acc Fair Acc Fair Acc Fair

Pale_Skin 86.4 34.0 85.9 90.3 86.5 98.8
Young 86.3 73.1 86.2 90.3 86.8 97.9
Blond_Hair 86.2 71.4 86.1 88.8 86.7 98.8
Heavy_Makeup 86.2 11.5 86.3 87.4 86.8 98.8
Pale+Young 86.2 28.6 85.8 84.7 86.5 98.6
Pale+Young+Blond 86.2 23.7 85.9 82.2 86.4 98.7

Table 3: Transfer learning results, demonstrating that LASSI can still achieve
high certified individual fairness even when the downstream tasks are not known.

Sens. attrib.: Pale (P) Young (Y) Blond (B) P + Y P + Y + B

Transfer task Acc Fair Acc Fair Acc Fair Acc Fair Acc Fair

Smiling 86.2 93.1 86.0 95.4 85.1 93.8 85.9 92.2 85.1 87.0
High_Cheeks 81.7 92.6 82.3 96.0 81.3 92.2 80.8 93.0 80.6 84.5
Mouth_Open 81.5 91.2 82.4 94.3 82.4 87.5 81.6 90.1 82.5 80.8
Lipstick 88.3 94.0 85.8 95.8 86.8 91.2 85.1 90.6 86.2 81.0
Heavy_Makeup 86.5 93.0 83.5 95.3 85.6 89.3 83.7 90.0 83.3 80.4
Wavy_Hair 79.2 93.3 77.5 95.8 78.0 91.3 77.6 91.5 78.8 85.3
Eyebrows 78.3 92.1 78.3 94.7 78.9 89.6 77.8 92.2 78.7 85.6

with around 60% state of the art accuracy. Therefore, we create two easier tasks:
Age-2, predicting if an individual is younger or older than 30, and Age-3 with
three target ranges: [0− 19], [20− 39], and 40+. Tab. 4 reports the results for
ε = 0.5. We verify that transfer learning also works in this setup by training on
Age-2 and then transferring the representations to all three tasks. As the tasks
are related, increasing the classification loss weight λ1 on the base task from 0 to
0.01, increases both the transfer downstream accuracy and the certified fairness.
The highest certified fairness is generally obtained when the downstream task is
known and the model is trained on it (LASSI, λ1 = 1).

6 Limitations and Future Work

We now discuss some of the limitations of LASSI. First, our method trains
individually fair models, but it does not guarantee that models satisfy other



14 M. Peychev et al.

Table 4: Results on FairFace, showing that LASSI can significantly improve the
certified individual fairness even on balanced datasets. The adversarial loss weight
is λ2 = 0.1 for all models except Naive, the transfer models are trained on Age-2
with reconstruction loss weight λ3 = 0.1. LASSI is trained on the corresponding
tasks with adversarial but without reconstruction loss (λ1 = 1, λ3 = 0).

Naive DataAug Transferλ1=0 Transferλ1=0.01 LASSI

Task Acc Fair Acc Fair Acc Fair Acc Fair Acc Fair

Age-2 69.0 5.7 68.9 4.8 66.4 91.7 74.9 91.7 72.0 95.0
Age-3 67.0 0.0 67.1 0.6 63.0 85.6 67.7 88.0 65.1 90.8
Age (all) 42.2 0.0 39.9 0.0 34.3 72.0 37.1 77.5 41.5 65.9

fairness notions, e.g., group fairness. While individual fairness is a well-studied
research area, recent work argues that it does not qualify as a valid fairness
notion as it can be insufficient to guarantee fairness in certain instances and
risks encoding implicit human biases [21]. Moreover, the validity of our fairness
certificates depends heavily on the generative model used by LASSI. In particular,
the similarity sets S (x) considered in our work may not be exhaustive enough
as there can be latent points outside S (x) that correspond to input points that
would be perceived as similar to x by a human observer. This can also happen if
the generative model is not powerful enough to generate all possible instances
and combinations of similar individuals. For the above reasons, it is hard to
obtain formal guarantees about G and the computed certificates may not always
transfer from G to the real world. We explore this issue further in App. F where
we experiment with 3D Shapes [8], a procedurally generated dataset with known
ground truth similarity sets. Future work can consider addressing these challanges
by performing extensive manual human inspection of reconstructions produced by
G (similar to App. G). Moreover, all future advancements in the active research
area of normalizing flows will immediately improve the quality of our certificates.

7 Conclusion

We proposed LASSI, which defines image similarity with respect to a generative
model via attribute manipulation, allowing us to capture complex image transfor-
mations such as changing the age or skin color, which are otherwise difficult to
characterize. Further, we were able to scale certified representation learning for
individual fairness to real-world high-dimensional datasets by using randomized
smoothing-based techniques. Our extensive evaluation yields promising results
on several datasets and illustrates the practicality of our approach.

Acknowledgments We thank Seyedmorteza Sadat for his help with preliminary
investigations and the anonymous reviewers for their insightful feedback.



Latent Space Smoothing for Individually Fair Representations 15

References

1. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: probabilistic
verification of program fairness. Proc. ACM Program. Lang. (2017)

2. Balakrishnan, G., Xiong, Y., Xia, W., Perona, P.: Towards causal benchmarking of
bias in face analysis algorithms. In: Computer Vision - ECCV 2020 - 16th European
Conference (2020)

3. Balunovic, M., Ruoss, A., Vechev, M.T.: Fair normalizing flows. CoRR (2021)
4. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness

properties via concentration. Proc. ACM Program. Lang. (2019)
5. Bolukbasi, T., Chang, K., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer

programmer as woman is to homemaker? debiasing word embeddings. In: Advances
in Neural Information Processing Systems 29 (2016)

6. Brennan, T., Dieterich, W., Ehret, B.: Evaluating the predictive validity of the
compas risk and needs assessment system. Criminal Justice and Behavior (2009)

7. Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in
commercial gender classification. In: Conference on Fairness, Accountability and
Transparency (2018)

8. Burgess, C., Kim, H.: 3d shapes dataset. https://github.com/deepmind/3dshapes-
dataset/ (2018)

9. Choi, Y., Dang, M., den Broeck, G.V.: Group fairness by probabilistic modeling
with latent fair decisions. In: Thirty-Fifth AAAI Conference on Artificial Intelligence
(2021)

10. Cohen, J.M., Rosenfeld, E., Kolter, J.Z.: Certified adversarial robustness via random-
ized smoothing. In: Proceedings of the 36th International Conference on Machine
Learning (2019)

11. Creager, E., Madras, D., Jacobsen, J., Weis, M.A., Swersky, K., Pitassi, T., Zemel,
R.S.: Flexibly fair representation learning by disentanglement. In: Proceedings of
the 36th International Conference on Machine Learning (2019)

12. Dash, S., Sharma, A.: Counterfactual generation and fairness evaluation using
adversarially learned inference. CoRR (2020)

13. Denton, E., Hutchinson, B., Mitchell, M., Gebru, T.: Detecting bias with generative
counterfactual face attribute augmentation. CoRR (2019)

14. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through
awareness. In: Innovations in Theoretical Computer Science (2012)

15. Edwards, H., Storkey, A.J.: Censoring representations with an adversary. In: 4th
International Conference on Learning Representations (2016)

16. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
Automated Technology for Verification and Analysis - 15th International Symposium
(2017)

17. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape
of spatial robustness. In: Proceedings of the 36th International Conference on
Machine Learning (2019)

18. EU: Ethics guidelines for trustworthy ai (2019)
19. EU: Proposal for a regulation of the european parliament and of the council laying

down harmonised rules on artificial intelligence (artificial intelligence act) and
amending certain union legislative acts (2021)

20. Feng, R., Yang, Y., Lyu, Y., Tan, C., Sun, Y., Wang, C.: Learning fair representations
via an adversarial framework. CoRR (2019)



16 M. Peychev et al.

21. Fleisher, W.: What’s fair about individual fairness? In: AAAI/ACM Conference on
AI, Ethics, and Society, Virtual Event (2021)

22. FTC: Using artificial intelligence and algorithms (2020)
23. FTC: Aiming for truth, fairness, and equity in your company’s use of ai (2021)
24. Gitiaux, X., Rangwala, H.: Learning smooth and fair representations. In: The 24th

International Conference on Artificial Intelligence and Statistics (2021)
25. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Advances in Neural
Information Processing Systems 27 (2014)

26. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: 3rd International Conference on Learning Representations (2015)

27. Gowal, S., Qin, C., Huang, P., Cemgil, A.T., Dvijotham, K., Mann, T.A., Kohli, P.:
Achieving robustness in the wild via adversarial mixing with disentangled represen-
tations. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020)

28. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In:
Advances in Neural Information Processing Systems 29 (2016)

29. Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also
snowboard: Overcoming bias in captioning models. In: Computer Vision - ECCV
2018 - 15th European Conference (2018)

30. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,
Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational
framework. In: 5th International Conference on Learning Representations (2017)

31. Ilvento, C.: Metric learning for individual fairness. In: 1st Symposium on Founda-
tions of Responsible Computing (2020)

32. John, P.G., Vijaykeerthy, D., Saha, D.: Verifying individual fairness in machine
learning models. In: Proceedings of the Thirty-Sixth Conference on Uncertainty in
Artificial Intelligence (2020)

33. Joo, J., Kärkkäinen, K.: Gender slopes: Counterfactual fairness for computer vision
models by attribute manipulation. CoRR (2020)

34. Kärkkäinen, K., Joo, J.: Fairface: Face attribute dataset for balanced race, gender,
and age for bias measurement and mitigation. In: IEEE Winter Conference on
Applications of Computer Vision (2021)

35. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved
quality, stability, and variation. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net (2018), https://openreview.net/
forum?id=Hk99zCeAb

36. Kearns, M.J., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering:
Auditing and learning for subgroup fairness. In: Proceedings of the 35th International
Conference on Machine Learning (2018)

37. Kehrenberg, T., Bartlett, M., Thomas, O., Quadrianto, N.: Null-sampling for
interpretable and fair representations. In: Computer Vision - ECCV 2020 - 16th
European Conference (2020)

38. Khandani, A.E., Kim, A.J., Lo, A.W.: Consumer credit-risk models via machine-
learning algorithms. Journal of Banking & Finance (2010)

39. Kim, B., Wattenberg, M., Gilmer, J., Cai, C.J., Wexler, J., Viégas, F.B., Sayres,
R.: Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV). In: Proceedings of the 35th International Conference
on Machine Learning (2018)

https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb


Latent Space Smoothing for Individually Fair Representations 17

40. Kim, H., Shin, S., Jang, J., Song, K., Joo, W., Kang, W., Moon, I.: Counterfactual
fairness with disentangled causal effect variational autoencoder. In: Thirty-Fifth
AAAI Conference on Artificial Intelligence (2021)

41. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions.
In: Advances in Neural Information Processing Systems 31 (2018)

42. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International
Conference on Learning Representations (2014)

43. Klare, B., Burge, M.J., Klontz, J.C., Bruegge, R.W.V., Jain, A.K.: Face recognition
performance: Role of demographic information. IEEE Trans. Inf. Forensics Secur.
(2012)

44. Kumar, A., Goldstein, T.: Center smoothing: Certified robustness for networks with
structured outputs. Advances in Neural Information Processing Systems 34 (2021)

45. Lahoti, P., Gummadi, K.P., Weikum, G.: ifair: Learning individually fair data repre-
sentations for algorithmic decision making. In: 35th IEEE International Conference
on Data Engineering (2019)

46. Lahoti, P., Gummadi, K.P., Weikum, G.: Operationalizing individual fairness with
pairwise fair representations. Proc. VLDB Endow. (2019)

47. Lang, O., Gandelsman, Y., Yarom, M., Wald, Y., Elidan, G., Hassidim, A., Freeman,
W.T., Isola, P., Globerson, A., Irani, M., Mosseri, I.: Explaining in style: Training
a gan to explain a classifier in stylespace. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 693–702 (October 2021)

48. Li, Z., Xu, C.: Discover the unknown biased attribute of an image classifier. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 14970–14979 (October 2021)

49. Liang, P.P., Wu, C., Morency, L., Salakhutdinov, R.: Towards understanding and
mitigating social biases in language models. In: Proceedings of the 38th International
Conference on Machine Learning (2021)

50. Liao, J., Huang, C., Kairouz, P., Sankar, L.: Learning generative adversarial repre-
sentations (GAP) under fairness and censoring constraints. CoRR (2019)

51. Lin, X., Zhen, H., Li, Z., Zhang, Q., Kwong, S.: Pareto multi-task learning. In:
Advances in Neural Information Processing Systems 32 (2019)

52. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
IEEE International Conference on Computer Vision (2015)

53. Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Schölkopf, B., Bachem, O.: On
the fairness of disentangled representations. In: Advances in Neural Information
Processing Systems 32 (2019)

54. Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R.S.: The variational fair
autoencoder. In: 4th International Conference on Learning Representations (2016)

55. Madras, D., Creager, E., Pitassi, T., Zemel, R.S.: Learning adversarially fair and
transferable representations. In: Proceedings of the 35th International Conference
on Machine Learning (2018)

56. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: 6th International Conference on Learning
Representations (2018)

57. Maity, S., Xue, S., Yurochkin, M., Sun, Y.: Statistical inference for individual
fairness. In: 9th International Conference on Learning Representations (2021)

58. Martínez, N., Bertrán, M., Sapiro, G.: Minimax pareto fairness: A multi objective
perspective. In: Proceedings of the 37th International Conference on Machine
Learning (2020)

59. McDuff, D.J., Cheng, R., Kapoor, A.: Identifying bias in AI using simulation. CoRR
(2018)



18 M. Peychev et al.

60. McNamara, D., Ong, C.S., Williamson, R.C.: Costs and benefits of fair representa-
tion learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society (2019)

61. Mirman, M., Hägele, A., Bielik, P., Gehr, T., Vechev, M.T.: Robustness certification
with generative models. In: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (2021)

62. Mukherjee, D., Yurochkin, M., Banerjee, M., Sun, Y.: Two simple ways to learn
individual fairness metrics from data. In: Proceedings of the 37th International
Conference on Machine Learning (2020)

63. Oneto, L., Donini, M., Pontil, M., Maurer, A.: Learning fair and transferable
representations with theoretical guarantees. In: 7th IEEE International Conference
on Data Science and Advanced Analytics (2020)

64. Park, J.H., Shin, J., Fung, P.: Reducing gender bias in abusive language detection.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (2018)

65. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Wallach,
H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32 (2019)

66. Raji, I.D., Buolamwini, J.: Actionable auditing: Investigating the impact of publicly
naming biased performance results of commercial AI products. In: Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019)

67. Ramaswamy, V.V., Kim, S.S.Y., Russakovsky, O.: Fair attribute classification
through latent space de-biasing. In: IEEE Conference on Computer Vision and
Pattern Recognition (2021)

68. Ruoss, A., Balunovic, M., Fischer, M., Vechev, M.T.: Learning certified individually
fair representations. In: Advances in Neural Information Processing Systems 33
(2020)

69. Sarhan, M.H., Navab, N., Eslami, A., Albarqouni, S.: Fairness by learning orthogonal
disentangled representations. In: Computer Vision - ECCV 2020 - 16th European
Conference (2020)

70. Sattigeri, P., Hoffman, S.C., Chenthamarakshan, V., Varshney, K.R.: Fairness GAN:
generating datasets with fairness properties using a generative adversarial network.
IBM J. Res. Dev. (2019)

71. Segal, S., Adi, Y., Pinkas, B., Baum, C., Ganesh, C., Keshet, J.: Fairness in the
eyes of the data: Certifying machine-learning models. In: AAAI/ACM Conference
on AI, Ethics, and Society (2021)

72. Seonghyeon, K.: Glow pytorch (commit: 97081ff1).
https://github.com/rosinality/glow-pytorch (2020)

73. Song, J., Kalluri, P., Grover, A., Zhao, S., Ermon, S.: Learning controllable fair
representations. In: The 22nd International Conference on Artificial Intelligence
and Statistics (2019)

74. Sun, X., Wu, P., Hoi, S.C.H.: Face detection using deep learning: An improved
faster RCNN approach. Neurocomputing (2018)

75. Tatman, R.: Gender and dialect bias in youtube’s automatic captions. In: Pro-
ceedings of the First ACL Workshop on Ethics in Natural Language Processing
(2017)



Latent Space Smoothing for Individually Fair Representations 19

76. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks
with mixed integer programming. In: 7th International Conference on Learning
Representations (2019)

77. UN: The right to privacy in the digital age (2021)
78. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness

certification of neural networks. Proc. ACM Program. Lang. (2020)
79. Wang, H., Grgic-Hlaca, N., Lahoti, P., Gummadi, K.P., Weller, A.: An empirical

study on learning fairness metrics for COMPAS data with human supervision.
CoRR (2019)

80. Wang, T., Zhao, J., Yatskar, M., Chang, K., Ordonez, V.: Balanced datasets are
not enough: Estimating and mitigating gender bias in deep image representations.
In: IEEE/CVF International Conference on Computer Vision (2019)

81. Wang, Z., Qinami, K., Karakozis, I.C., Genova, K., Nair, P., Hata, K., Russakovsky,
O.: Towards fairness in visual recognition: Effective strategies for bias mitigation.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

82. Wei, S., Niethammer, M.: The fairness-accuracy pareto front. CoRR (2020)
83. Wilson, B., Hoffman, J., Morgenstern, J.: Predictive inequity in object detection.

CoRR (2019)
84. Wong, E., Kolter, J.Z.: Learning perturbation sets for robust machine learning. In:

9th International Conference on Learning Representations (2021)
85. Yeom, S., Fredrikson, M.: Individual fairness revisited: Transferring techniques from

adversarial robustness. In: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence (2020)

86. Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ML models with
sensitive subspace robustness. In: 8th International Conference on Learning Repre-
sentations (2020)

87. Yurochkin, M., Sun, Y.: Sensei: Sensitive set invariance for enforcing individual
fairness. In: 9th International Conference on Learning Representations (2021)

88. Zemel, R.S., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: Proceedings of the 30th International Conference on Machine Learning
(2013)

89. Zhao, H., Coston, A., Adel, T., Gordon, G.J.: Conditional learning of fair represen-
tations. In: 8th International Conference on Learning Representations (2020)

90. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.: Men also like shopping:
Reducing gender bias amplification using corpus-level constraints. In: Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing
(2017)


