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Figure 1. Sample outputs from the StyleGAN2 model debiased using our method with respect to Black+Gender attributes.

Abstract

Recent advances in generative adversarial networks
have shown that it is possible to generate high-resolution
and hyperrealistic images. However, the images produced
by GANs are only as fair and representative as the datasets
on which they are trained. In this paper, we propose
a method for directly modifying a pre-trained StyleGAN2
model that can be used to generate a balanced set of im-
ages with respect to one (e.g., eyeglasses) or more attributes
(e.g., gender and eyeglasses). Our method takes advan-
tage of the style space of the StyleGAN2 model to per-
form disentangled control of the target attributes to be de-
biased. Our method does not require training additional
models and directly debiases the GAN model, paving the
way for its use in various downstream applications. Our
experiments show that our method successfully debiases the
GAN model within a few minutes without compromising the
quality of the generated images. To promote fair gener-
ative models, we share the code and debiased models at
http://catlab-team.github.io/fairstyle.

*Equal contribution

1. Introduction

Generative Adversarial Networks (GANs) [8] are popu-
lar image generation models capable of synthesizing high-
quality images, and they have been used for a variety of
visual applications [18, 28, 33, 34, 41, 42]. Like any other
deep learning model, GANs are essentially statistical mod-
els trained to learn a data distribution and generate realistic
data that is indistinguishable to the discriminator from that
in the training set. To achieve this, GANs exploit and fa-
vor the samples that provide the most information, and may
neglect minority samples. Therefore, a well-trained GAN
favors learning the majority attributes, and the samples they
generate suffer from the same biases in the datasets on
which they are trained. For example, a GAN, trained on
a face dataset with few images of non-Caucasian individ-
uals, will generate images of mostly Caucasian individu-
als [21, 29]. Our preliminary analysis of the pre-trained
StyleGAN2-FFHQ model confirms the significance of the
generation bias: out of 10K randomly generated images,
the male attribute is present in 42%, the young attribute is
present in 70%, and the eyeglasses attribute is present in
20%. Our analysis shows that these biases also exist in the
FFHQ training data with 42%, 72%, and 22% for the male,
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young and eyeglasses attributes, respectively (see Appendix
A for more details). These examples show that GANs not
only inherit biases from the training data, but also carry over
to the applications built on top of them. This is a particu-
larly important issue because pre-trained large-scale GANs
such as StyleGAN2 [15] are often used as the backbone of
various computer vision applications in a variety of domains
such as image processing, image generation and manipula-
tion, anomaly detection, dataset generation and augmenta-
tion. Therefore, any model or application that depends on
large pre-trained models such as StyleGAN2 would inherit
or even amplify their biases and is therefore bound to be
unfair.

In this work, we aim to address the problem of fairness
in GANs by debiasing a pre-trained StyleGAN2 model with
respect to single or multiple attributes. After debiasing, the
edited StyleGAN2 models allow the user to generate unbi-
ased images in which the target attributes are fairly repre-
sented. Unlike previous work that requires extensive pre-
processing or training an additional model for each target
attribute, our approach directly debiases the GAN model to
produce more balanced outputs, and it can also be used for
various downstream applications. Moreover, our approach
does not require any sub-sampling of the input or output
data, and is able to debias the GAN model within minutes
without comprimising the image quality. Our main contri-
butions are as follows:

• We first propose a simple method that debiases the
GAN model with respect to a single attribute, such as
gender or eyeglasses.

• We then extend our method for jointly debiasing mul-
tiple attributes such as gender and eyeglasses.

• To handle more complex attributes such as race, we
propose a third method based on CLIP [24], where we
debias StyleGAN2 with text-based prompts such as ’a
black person’ or ’an asian person’.

• We perform extensive comparisons between our pro-
posed method and other approaches to enforce fairness
for a variety of attributes. We empirically show that
our method is very effective in de-biasing the GAN
model to produce balanced datasets without compro-
mising the quality of the generated images.

• To promote fair generative models and encourage fur-
ther research on this topic, we provide our source
code and debiased StyleGAN2 models for various at-
tributes at http://catlab-team.github.io/
fairstyle.

2. Related Work

In this section, we first review related work in fairness
and bias. We then discuss studies that specifically address
fairness and bias in generative models. Finally, we discuss
related work in the area of latent space manipulation.

2.1. Fairness and Bias in AI

Fairness and bias detection in deep neural networks have
attracted much attention in recent years [5, 22]. Most ex-
isting work on fairness focuses on studying the fairness of
classifiers, as the predictions of these models can be directly
used for discriminatory purposes or associate unjustified
stereotypes with a particular class. Approaches to eliminat-
ing model bias can be divided into three main categories:
Preprocessing methods that aim to collect balanced train-
ing data [19, 20, 40], methods to introduce constraints or
regularizers into the training process [2, 36, 39], and post-
processing methods that modify the posteriors of the trained
models to debias them [6, 11]. In our work, we focus on
debiasing and fairness methods developed specifically for
GANs, which we discuss below.

2.2. Detecting and Eliminating Biases in GANs

The fairness of generative models is much less studied
compared to the fairness of discriminative models. Most
research on the bias and fairness of GANs aims to either
eliminate the negative effects of using imbalanced data on
generation results or to identify and explain the biases. Re-
search on bias and fairness of GANs can be divided into
three main categories: improving the training and genera-
tion performance of GANs using biased datasets, identify-
ing and explaining biases, and debiasing pre-trained GANs.

The first research category, training GANs on biased
datasets, aims to solve the problem of low quality im-
age generation when the model is trained on imbalanced
datasets with disjoint manifolds and fails to learn the true
data distribution. [31] proposes a heuristic motivated by re-
jection sampling to inject disconnectedness into GAN train-
ing to improve learning on disconnected manifolds. [30]
proposes Discriminator Optimal Transport (DOT), a gradi-
ent ascent method driven by a Wasserstein discriminator to
improve samples. [3] uses a rejection sampling method to
approximately correct errors in the distribution of the GAN
generator. [9] proposes a weakly supervised method to de-
tect bias in existing datasets and assigns importance weights
to samples during training. The second category of research
aims to detect or explain bias in generative models. [17]
proposes to use attribute-specific classifiers and train a gen-
erative model to specifically explain which style channels
of StyleGAN2 contribute to the underlying classifier deci-
sions. The third line of research aims to debias and improve
the sample quality of pre-trained GANs. [10] proposes to
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train a probabilistic classifier to distinguish samples from
two distributions and use this likelihood-free importance
weighting method to correct for bias in generative models.
However, this method requires training a classifier for each
attribute targeted for debiasing and cannot handle biases in
multiple attributes (e.g., gender and eyeglasses). [29] pro-
poses a conditional latent space sampling method to gen-
erate attribute-balanced images. More specifically, latent
codes from StyleGAN2 are sampled and classified. Then,
a Gaussian Mixture Model (GMM) is trained for each at-
tribute to create a set of balanced latent codes. Another re-
cent work, [25], proposes to use the latent codes from the
W -space of StyleGAN2 to train a linear SVM model for
each attribute and then use the normal vector to the sep-
aration hyperplane to steer the latent code away from or
towards acquiring the target attribute for debiasing. Un-
like [25, 29], our method does not require model training
and aims to directly debias the GAN model which can be
used to generate attribute-balanced image sets.

2.3. Latent Space Manipulation

Several methods have been proposed to exploit the la-
tent space of GANs for image manipulation, which can be
divided into two broad categories: supervised and unsu-
pervised methods. Supervised approaches typically benefit
from pre-trained attribute classifiers that guide the optimiza-
tion process to discover meaningful directions in the latent
space, or use labeled data to train new classifiers that di-
rectly aim to learn directions of interest [7, 26]. Other work
shows that it is possible to find meaningful directions in la-
tent space in an unsupervised manner [13, 32]. GANSpace
[12]) proposes to apply principal component analysis (PCA,
[35]) to randomly select the latent vectors of the intermedi-
ate layers of the BigGAN and StyleGAN models. A similar
approach is used in SeFA [27], where they directly optimize
the intermediate weight matrix of the GAN model in closed
form. LatentCLR [38] proposes a contrastive learning ap-
proach to find unsupervised directions that are transferable
to different classes. In addition, both StyleCLIP [23] and
StyleMC [16] use CLIP to find text-based directions within
StyleGAN2 and perform both coarse and fine-grained ma-
nipulations of different attributes. Another recent work,
StyleFlow [1], proposes a method for attribute-conditioned
sampling and attribute-controlled editing with StyleGAN2.
With respect to GAN editing, [4] proposes a method to per-
manently change the parameters of a GAN to produce im-
ages in which the desired attribute (e.g., clouds, thick eye-
brows) is always present. However, they did not aim to de-
bias GANs for fairness and their methodology differs from
ours.

3. Methodology

In this section, we propose three methods to debias a
pre-trained StyleGAN2 model. We begin with a brief de-
scription of the StyleGAN2 architecture and then describe
our methods for debiasing a single attribute, joint debiasing
of multiple attributes, and debiasing with text-based direc-
tions. Figure 2 illustrates a general view of our framework.

3.1. Background on StyleGAN2

The generator of StyleGAN2 contains several latent
spaces: Z , W , W+ and S, also referred to as the style
space. z ∈ Z is a latent vector drawn from a prior distribu-
tion p(z), typically chosen as a Gaussian. The generator G
acts as a mapping function G : Z → X , where X is the tar-
get image domain. Therefore, G transforms the vectors from
z into an intermediate latent spaceW by forward propagat-
ing them through 8 fully connected layers. The resulting la-
tent vectors w ∈ W are then transformed into channel-wise
style parameters, forming the style space, denoted S. In our
work, we use the style space S to perform manipulations, as
it is shown [37] to be the most disentangled, complete and
informative space of StyleGAN2.

The synthesis network of the generator in StyleGAN2
consists of several blocks, each block having two convo-
lutional layers for synthesizing feature maps. Each main
block has an additional 1× 1 convolutional layer that maps
the output feature tensor to RGB colors, referred to as tRGB.
The three different style code vectors are referred to as sB1,
sB2, and sB+tRGB , where B indicates the block number.
Given a block B, the style vectors sB1 and sB2 of each
block consist of style channels that control disentangled vi-
sual attributes. The style vectors of each layer are obtained
from the intermediate latent vectors w ∈ W of the same
layer by three affine transformations, wB1 → sB1,wB2 →
sB2,wB2 → sB+tRGB .

3.2. Measuring Generation Bias

To assess whether our method produces a balanced dis-
tribution of attributes, we begin by formulating and quan-
tifying the bias in the generated images. Given an n-
dimensional image dataset I ⊆ Rn, GANs attempt to
learn such a distribution P (I) = Pdata (I). Thus, a well-
trained generator is a mapping function G : Z → I, where
Z ⊆ Rm denotes the m-dimensional latent space, usually
assumed to be a Gaussian distribution. Moreover, we can
sample latent codes z and use the trained model to generate
a realistic dataset D = {G (zi)}Ni=1 of N generated images
belonging to the distribution P (I) ≈ Pdata (I).

Assuming that real and generated images contain k se-
mantic attributes a1, a2, ..., ak, a well-trained GAN learns
any bias inherent in the original data distribution Pdata (I)
with respect to the semantic attributes. In our work, we
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Figure 2. An overview of the FairStyle architecture, z denotes a random vector drawn from a Gaussian distribution, w denotes the latent
vector generated by the mapping network of StyleGAN2. Given a target attribute at, si,j represents the style channel with layer index i and
channel index j controlling the target attribute. We introduce fairstyle bias tensors into the GAN model, in which we edit the corresponding
style channel si,j for debiasing. The edited vectors are then fed into the generator to get a new batch of images from which we obtain
updated classifier results for at. The fairstyle bias tensors are iteratively edited until the GAN model produces a balanced distribution with
respect to the target attribute. The de-biased GAN model can then be used for sampling purposes or directly used as a generative backbone
model in downstream applications.

are interested in finding both the marginal distribution of
the individual semantic attributes P (ai) and the joint dis-
tributions of the attribute pairs P (ai, aj) of the generated
dataset D. To measure generation bias, we generate N
random images with pre-trained StyleGAN2 trained on the
FFHQ dataset, and use 40 pre-trained binary attribute clas-
sifiers [14] to assign labels to each image such that ai = 1
if the image contains the attribute ai, and ai = 0 otherwise.

3.3. Identifying channels that control certain at-
tributes

For a target attribute at such as eyeglasses, we first pro-
pose a simple approach that identifies a single style channel
si,j responsible for controlling the target attribute, where
layer and channel indices are denoted by i and j, respec-
tively. We assume that there is a binary classifier Cat

corre-
sponding to the target attribute, such as pre-trained CelebA
binary classifiers [14]. The identified style channel si,j is
then used for debiasing the GAN model with respect to sin-
gle (Section 3.4) and multiple attributes (Section 3.5).

To identify si,j , we first generateN = 128 random noise
vectors to obtain their style codes using StyleGAN2. Given
an arbitrary style code s, we generate two perturbed style
codes by adding and subtracting a value of c at the corre-
sponding index i and channel j. This process is repeated

for 128 randomly generated style codes, and each per-
turbed style code is forward propagated through the Style-
GAN2 generator to synthesize images. Finally, we identify
si,j corresponding to the target attribute by selecting the
style channel for which the perturbation causes the high-
est average change in classification score over the batch of
N = 128 images:

arg max
i,j

∑N
k=1 |Cat

(G(s−∆si,j))− Cat
(G(s + ∆si,j))|

N

(1)

where ∆si,j represents the perturbation value c, k de-
notes the index of the generated image, and G denotes the
generator of StyleGAN2. In other words, we repeat the
same process for each channel of the style codes and leave
the values of the other style channels unchanged. In our
experiments, we use the perturbation value c = 10.

3.4. Debiasing single attributes

Once we have identified a style channel si,j that controls
the target attribute at, we can perturb the value of the chan-
nel to increase or decrease the representation of the target
attribute in the generated output. In our work, we use this
intuition to edit the parameters of a pre-trained StyleGAN2
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model that can be used to generate balanced outputs with
respect to the target attribute at.

To this end, we introduce additional bias tensors, which
we call fairstyle tensors, into the GAN model (see Figure
2). These tensors are added to the StyleGAN2 convolution
modulations on a channel-wise manner. More specifically,
for a fairstyle tensor, b, we set bi,j = c and bm,n = 0,
where m,n 6= i, j, and c is initialized to 0. In other words,
the values inside the fairstyle tensors are set to zero except
for the channel indices i, j that correspond to the target at-
tribute.

We then iteratively generate a batch of N = 128 latent
codes and compute their updated style vectors. Given an
arbitrary style vector s, we then compute the updated vector
s′ = s + b. We forward propagate these style vectors to
generate a batch of images and compute the distribution of
the target attribute using an attribute classifier. Our goal is
to optimize fairstyle tensor b such that the images generated
using the updated GAN model have a fair distribution with
respect to the target attribute at. Similar to [29], we use the
Kullback-Leibler divergence between the class distribution
of at and a uniform distribution to compute a fairness loss
value Lfair, formulated as follows:

Lfair = KL(PD(at) || U(at)) (2)

where PD denotes the class probability distributions
and U denotes the uniform distribution. We used a one-
dimensional gradient descent for optimizing fairstyle ten-
sors b. The updated GAN model with the optimized
fairstyle tensors can then be used to generate images with
a balanced distribution with respect to the target attribute.

3.5. Debiasing multiple attributes

While our first method is effective at debiasing the GAN
model with respect to a single attribute such as eyeglasses, it
does not allow for the joint debiasing of multiple attributes
such as gender and eyeglasses. Therefore, we propose to
extend our method to multiple attributes. Let at1 and at2
represent attributes that we want to jointly debias, such as
gender and eyeglasses. Let si1,j1 and si2,j2 represent the
target style channels identified by the method in Section 3.3
for attributes at1 and at2 , respectively. Similar to our first
method, we iteratively generate N = 128 random noise
vectors and their corresponding style codes. Given an arbi-
trary style code s, we then compute the fairstyle tensor for
the corresponding channels as follows:

bi1,j1 = x2 ×
si2,j2 − s̄i2,j2

σ̂si2,j2

+ y2

bi2,j2 = x1 ×
si1,j1 − s̄i1,j1

σ̂si1,j1

+ y1

(3)

where x1, y1, x2, y2 are learned parameters initialized
at 0 and optimized using gradient descent over a batch of
N images, and s̄i,j , σ̂si,j denote the mean and standard de-
viation for a given target style channel si,j calculated as
follows:

s̄i,j =
1

N

N∑
k=1

si,j (4)

σ̂2
si,j =

1

N − 1

N∑
k=1

(si,j − s̄i,j)
2 (5)

Similar to our first method, we use KL divergence as a loss
function between the joint class distribution of attributes
at1 , at2 and a uniform distribution. After optimizing the
fairstyle tensor, we use the GAN model to produce a bal-
anced distribution of images with respect to the target at-
tributes.

Our method can also be extended to support joint debi-
asing for more than two attributes. Let the number of at-
tributes for which we want to jointly debias our model be
M and assume that we have identified a style channel si,j
for each target attribute. In this case, each corresponding
channel of the fairstyle tensor is updated as follows:

bim,jm =

M∑
k=1,k 6=m

(xmk
× sik,jk − s̄ik,jk

σ̂sik,jk

+ ymk
) (6)

We note that Eq. 6 is simply a generalized version of
Eq. 3 where each fairstyle tensor channel for a target de-
pends on the other target channels. In this case, the number
of resulting subclasses is equal to M2 and the number of
parameters to be learned is equal to 2×M × (M − 1).

3.6. Debiasing attributes with text-based directions

The first two methods debias the GAN model with sin-
gle or multiple channels, where the channels responsible for
the desired attributes were identified using pre-trained at-
tribute classifiers. However, the complexity of the attributes
is limited by the availability of the classifiers. To debias
even more complex attributes such as ‘a black person’ or
‘an asian person’, we debias style channels with text-based
directions using CLIP. We use StyleMC [16] to identify the
individual style channels for a given text.

In addition to the text-based directions, we also replace
the attribute classifier with a CLIP-based one, since binary
classifiers are not available for more complex attributes. In
this case, we label images by comparing their CLIP-based
distances D CLIP with a text prompt at describing our target
attribute and with another text prompt atneg negating the
attribute (e.g., ’the photo of a person with curly hair’ vs.
’the photo of a person with straight hair’) as follows:
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Figure 3. Distribution of single and joint attributes before and after debiasing StyleGAN2 model with our methods.

Cat
=

{
1, if DCLIP(G(s), at) < DCLIP(G(s), atneg ).

0, otherwise.
(7)

where s is an arbitrary style code, D CLIP is the cosine
distance between CLIP embeddings of the generated image
and the text prompt at or atneg

, and Cat
is the binary la-

bel assigned based on whichever text prompt (at or atneg
)

achieves the shortest CLIP distance from the input image.
We note that the negative text prompt atneg , as in the exam-
ple above, may be biased and exclude certain groups, such
as ’the photo of a black person’.

With an effective approach to assign classification scores
to generated images, we identify a direction sat consist-
ing of one or more style channels using [16]. We use the
same debiasing approach as our first method by replacing b
with αsat

, where α is the hyperparameter for manipulation
strength.

4. Experiments
In this section, we explain our experimental setup and

evaluate the proposed methods using StyleGAN2 trained on
the FFHQ dataset. Furthermore, we show that our meth-
ods effectively debias StyleGAN2 without requiring model
training or affecting the quality of generation. Next, we
compare our methods to FairGen [29] and StyleFlow [1]
methods.

4.1. Experimental Setup

For the first two methods, we identify a layer and a
style channel for the gender, eyeglasses, smiling and age
attributes and use them in our single or multiple attribute

debiasing methods as described in Section 3.4 and Section
3.5. For the third method, described in Section 3.6, we ex-
periment with a variety of simple and complex attributes
such as ‘a person with eyeglasses’, ‘a smiling person’, ‘a
black person’, ‘an asian person’ using [16]. We generate
and label 1000 images to compute the mean and std statis-
tics for our second method.

For our experiments, we use the official pre-trained
StyleGAN2 models and binary attribute classifiers pre-
trained with the CelebA-HQ dataset1. To identify attribute-
relevant style channels, we exclude stRGB layers from the
style channel search since they cause entangled manipula-
tions [37]. Following [16], we also exclude the style chan-
nels of the last four blocks from the search, as they represent
very fine-grained features.

For the comparison with FairGen, we use the pre-trained
GMM models2. For FairGen, we had to limit our compari-
son to the available pre-trained models in Table 1. We used
the StyleFlow’s official implementation3 to uniformly sam-
ple latent codes from each attribute group. Although Style-
Flow is not intended for fairness, we use it for conditional
sampling similar to [29]. In StyleFlow, we had to limit
our comparisons to gender, smiling, eyeglasses and age and
their multiple attributes age and eyeglasses, age and gen-
der, gender and eyeglasses. We exclude the comparison for
racial attributes for both methods because no pre-trained
models were available for these attributes or training code
to train new ones.

1https://github.com/NVlabs/stylegan2
2https://github.com/genforce/fairgen
3https://github.com/RameenAbdal/StyleFlow
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(a) Female with Eyeglasses (b) Female w/o Eyeglasses (c) Male with Eyeglasses (d) Male w/o Eyeglasses

(e) Black with Eyeglasses (f) Black w/o Eyeglasses (g) Non-Black with Eyeglasses (h) Non-Black w/o Eyeglasses

Figure 4. Qualitative results for fair image generation in GANs with Gender+Eyeglasses and Black+Eyeglasses attributes.

4.2. Fairness Analysis

To assess the fairness of the generated images, we re-
port the KL divergence between the marginal or joint dis-
tribution of the generated images with respect to the tar-
get attributes and a uniform distribution (see Eq. 2). Our
goal is to obtain a distribution with respect to one or more
attributes that closely resembles a uniform distribution in
order to achieve a fair distribution. To this end, we gener-
ate 10K images for each of our methods as well as for the
pre-trained StyleGAN2 model, FFHQ dataset, FairGen and
StyleFlow.

We start with our first method to debias a single target
attribute, and present marginal distribution of the datasets
generated with our method and the pre-trained StyleGAN2
in Figure 3 (a-d). As can be seen in the figure, our first
method can successfully debias attributes and achieves al-
most perfectly balanced datasets for the attributes gender,
eyeglasses, age and smiling. Next, we use our second
method to debias gender and eyeglasses, eyeglasses and
smiling and gender and smiling attributes. As can be seen in
Figure 3 (e-g), our second method is very effective at debi-
asing even extremely imbalanced distributions as in the case
of the gender and eyeglasses attributes, and can achieve a
significant balance.

We then measure the KL divergence between the dis-
tribution of generated datasets and a uniform distribu-
tion, and provide a comprehensive comparative analysis

with the FFHQ training dataset, pre-trained StyleGAN2,
FairGen, and StyleFlow. We debias single attributes for
eyeglasses, age, smiling, gender and joint attributes for
the Age+Gender, Age+Eyeglasses, and Gender+Eyeglasses
(see Table 1). As can be seen in the table, our method out-
performs StyleFlow, Fairgen and the pre-trained StyleGAN
model on all attributes and achieves KL divergence val-
ues that are very close to uniform distribution in all single-
attribute debiasing experiments.

We also perform additional single-attribute debiasing
experiments for the highly biased attributes black, asian,
and white. Since the CelebA classifiers did not cover
these attributes, we used our CLIP-based method to debias
the StyleGAN2 model for the black, asian, and white
attributes. We present the results of this experiment in
Table 2. As can be seen in the table, our method achieves a
distribution that is very close to a uniform distribution, and
effectively produces unbiased datasets with respect to the
racial attributes.

4.3. Qualitative Results

We use our methods to debias StyleGAN2 for multiple
attributes and show the generated images in Figure 1 and
Figure 4. As can be seen in the figures, our method is able
to generate balanced images for the attributes gender with
eyeglasses (Figure 4 (a-d)), gender and black (Figure 1
(a-d)) and attributes black and eyeglasses (Figure 4) (e-h)).
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Table 1. KL Divergence between a uniform distribution and the distribution of images generated with our method, StyleFlow and FairGen.
FFHQ and StyleGAN2 are included for comparison purposes.

Method Age+Gender Age+Glasses Gender+Glasses Glasses Age Smiling Gender
FFHQ 0.2456 0.3546 0.2421 0.186 0.091 0.005 0.015

StyleGAN2 0.2794 0.3836 0.2495 0.180 0.109 0.011 0.018
StyleFlow 0.2141 0.1620 0.1214 0.061 3.98× 10−4 0.045 0.023
FairGen 3.73× 10−2 3.30× 10−2 1.85× 10−3 7.07× 10−4 1.77× 10−3 1.80× 10−5 4.21× 10−4

FairStyle 2.57× 10−2 1.57× 10−2 2.41× 10−4 0 1.80× 10−7 8× 10−8 3.20× 10−7

4.4. Runtime Analysis

Our method directly debias the StyleGAN2 model
within a short period of time. More specifically, the average
time to debias a single attribute is 2.25 minutes, while
debiasing joint attributes takes 4.2 minutes.

4.5. Generation Quality

We note that a fair generative model should not compro-
mise on generation quality to maintain its usefulness. To
ensure that our methods generate high quality and diverse
images, we report the Fréchet Inception Distance (FID) be-
tween sets of 10K images generated by the debiased Style-
GAN2 model produced by our method and by the pre-
trained StyleGAN2 model. Unlike our method, FairGen and
StyleFlow do not edit the GAN model, but rely on subsam-
pling latent vectors from GMM or normalizing flows mod-
els. Therefore, we exclude them from the FID experiments.

To test image quality after debiasing the GAN model,
we use the attribute pairs gender and eyeglasses, race
and gender and race and eyeglasses to compute the FID
scores of the debiased datasets. While the pre-trained
StyleGAN2 model achieves a FID score of 14.11, our
method achieves fairly similar FID score of 14.72 (a lower
FID score is better). Note that a small increase in FID
scores is expected as the distribution of generated images
is shifted for debiasing compared to the real images from
the training data. However, we note that the increase in
FID score is negligible and the debiased GAN model still
generates high quality images (see Figure 1 and Figure 4).

5. Limitations and Broader Impact
While our proposed method is effective in debiasing

GAN models, it requires pre-trained attribute classifiers for
style code optimization. We note that the debiasing process
can be affected by biases in these classifiers, a problem that
also occurs in the competing methods. This is especially
important when debiasing attributes that are known to be

Table 2. KL Divergence between a uniform distribution and the
distribution of images generated by our text-based method to de-
bias the black, asian, and white attributes. FFHQ and StyleGAN2
are included for comparison purposes.

Method Black Asian White
FFHQ 0.576 0.279 0.042

StyleGAN2 0.603 0.319 0.057
FairStyle 8.00× 10−6 7.20× 10−7 2× 10−6

biased, such as racial attributes like black or asian.

6. Conclusion
Generative models are only as fair as the data sets on

which they are trained. In this work, we attempt to ad-
dress this problem and propose three novel methods for
debiasing a pre-trained StyleGAN2 model to allow fairer
data generation with respect to a single or multiple target at-
tributes. Unlike previous work that requires training a sep-
arate model for each target attribute or subsampling from
the latent space to generate debiased datasets, our method
restricts the debiasing process to the style space of Style-
GAN2 and directly edits the GAN model for fast and stable
fair data generation. In our experiments, we have shown
that our method is not only effective in debiasing, but also
does not affect the generation quality.

We believe that our method is not only useful for
generating fairer data, but also our debiased models can
serve as a fairer framework for various applications built
on StyleGAN2. We hope that our work will not only
raise awareness of the importance of fairness in generative
models, but also serve as a foundation for future research.
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A. Fairness Analysis on FFHQ Data and Style-
GAN2 FFHQ Model

To understand how fair the StyleGAN2 model works
on FFHQ, we randomly generated 1000 images. Then we
used binary classifiers to label each image for the attributes
gender, smiling, eyeglasses, and young for marginal and
joint distributions (Table 3, Table 4). As can be seen, the
StyleGAN2 model generates images that are slightly bi-
ased towards Male=False, moderately biased towards Smil-
ing=True and strongly biased towards Young=True and
Eyeglasses=False attributes.We also examine the joint dis-
tribution of attribute pairs such as gender + eyeglasses, gen-
der + smiling and eyeglasses + smiling. As can be seen,
the joint probability distribution of the attributes can be ex-
tremely imbalanced even if the marginal probability distri-
butions of the individual attributes are not, such as the ratio
of women + eyeglasses to men + eyeglasses. In Figure 7 and
Figure 8, respectively, we show the percentage of assigned
binary labels for single and multiple attributes.

B. Additional debiasing results
We also performed debiasing for eyeglasses (Figure 5)

and afro hair attribute (Figure 6) on the same latent codes
showing the before/after of our debiasing method.
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Figure 5. A set of images generated with the same latent codes before and after debiasing the StyleGAN2 model with respect to the
’Eyeglasses’ attribute on a single channel with our method.

Figure 6. A set of images generated with the same latent codes before and after debiasing the StyleGAN2 model with respect to the ’a
person with afro hairstyle’ text-based attribute with our method.

Table 3. Marginal distributions of attributes measured on the FFHQ dataset and images generated by StyleGAN2 pretrained on the FFHQ
dataset.

Attribute FFHQ StyleGAN2
Eyeglasses F=0.78, T=0.22 F=0.80, T=0.20
Young F=0.28, T=0.72 F=0.30, T=0.70
Smiling F=0.43, T=0.57 F=0.44, T=0.56
Male F=0.58, T=0.42 F=0.58, T=0.42
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Figure 7. Marginal probability distributions of ‘male‘, ‘smiling‘, ‘eyeglasses‘, ‘young‘ attributes sampled from images generated by
StyleGAN2 pre-trained on the FFHQ dataset.

Figure 8. Joint probability distributions of (‘male‘, ‘eyeglasses‘), (‘eyeglasses‘, ‘smiling‘), (‘male‘, ‘smiling‘) attribute pairs sampled from
images generated by StyleGAN2 pre-trained on the FFHQ dataset.

Table 4. Joint distributions of attribute pairs measured on the FFHQ dataset and images generated by StyleGAN2 pretrained on the FFHQ
dataset.

Attributes FFHQ StyleGAN2

Eyegl.-Smile
FF=0.34, FT=0.44
TF=0.09, TT=0.13

FF=0.35, FT=0.45
TF=0.09, TT=0.11

Smile-Male
FF=0.22, FT=0.36
TF=0.21, TT=0.21

FF=0.23, FT=0.35
TF=0.21, TT=0.21

Male-Eyegl.
FF=0.50, FT=0.08
TF=0.28, TT=0.14

FF=0.53, FT=0.05
TF=0.27, TT=0.15
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