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Abstract. Predicting human motion is critical for assistive robots and
AR/VR applications, where the interaction with humans needs to be
safe and comfortable. Meanwhile, an accurate prediction depends on un-
derstanding both the scene context and human intentions. Even though
many works study scene-aware human motion prediction, the latter is
largely underexplored due to the lack of ego-centric views that disclose
human intent and the limited diversity in motion and scenes. To reduce
the gap, we propose a large-scale human motion dataset that delivers
high-quality body pose sequences, scene scans, as well as ego-centric
views with the eye gaze that serves as a surrogate for inferring human
intent. By employing inertial sensors for motion capture, our data col-
lection is not tied to specific scenes, which further boosts the motion
dynamics observed from our subjects. We perform an extensive study of
the benefits of leveraging the eye gaze for ego-centric human motion pre-
diction with various state-of-the-art architectures. Moreover, to realize
the full potential of the gaze, we propose a novel network architecture
that enables bidirectional communication between the gaze and motion
branches. Our network achieves the top performance in human motion
prediction on the proposed dataset, thanks to the intent information
from eye gaze and the denoised gaze feature modulated by the motion.
Code and data can be found at https://github.com/y-zheng18/GIMO.

1 Introduction

A large portion of the human brain cortex is devoted to processing visual signals
collected by the optic nerve, and over half of the nerve fibers carry information
from the fovea that is responsible for sharp central vision. When modulated
through foveal fixation, or equivalently, eye gaze, important sensory input of
fine details perceived with the fovea can inform future actions of the human
agent [42,8]. As shown in Fig. 1, a human agent intending to perform two tasks
entails distinctive gaze patterns, even though the first few moves are not very
distinguishable. Hence, it is beneficial to employ eye gaze when making human
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Getting some waterReaching the boxTrajectories share similar starting poses

Fig. 1. Human motion driven by different intents look similar at the beginning. How-
ever, the scanning patterns of the eye gaze (red dots) during the starting phase are
pretty distinctive, which suggests that we can leverage eye gaze to reduce uncertainties
when predicting future body movements.

motion predictions in the 3D scene, which is of great importance for human-
machine interactions [1,6]. For example, a human agent wearing an AR/VR
headset may approach a chair to sit on it or just grab a cup on the table behind
it. If the latter is true, we may want the headset to send out a warning for collision
avoidance based on the forecast future. To resolve ambiguities for reliable human
motion prediction, there is an increasing interest in leveraging eye gaze as it
highly correlates to the underlying intent that motivates the consequent actions.

The key to understanding the role of gaze and how it can effectively in-
form human motion prediction lies in two folds. First, it is critical to have a
dataset with high-quality 3D body pose annotations and corresponding eye gaze
information. Besides data quality, the 3D scene and motion dynamics should be
diverse to enable meaningful learning and evaluation of the gain when eye gaze
is incorporated. Second, it is also crucial to have a network architecture that
can efficiently utilize sparse eye gaze during predictions given the multi-modal
setting (e.g., gaze, human motion and scene geometry) and the fact that not
every single gaze is of the same significance regarding the agent’s intent (e.g.,
one may get distracted by a salient object in the scene that has nothing to do
with the task at hand).

However, most existing human motion datasets do not support evaluating
the effect of eye gaze due to the lack of ego-centric data annotated with both
gaze and 3D body pose within the same scene. Recently, there are a few datasets
proposed on ego-centric social interaction and object manipulation where gaze
and the viewer’s 3D poses are available. Nevertheless, they are not suitable for
ego-centric human motion prediction since the diversity of scenes and the vari-
ation in motion dynamics are very limited. To validate the benefits of eye gaze
in human motion prediction, we propose a large-scale ego-centric dataset, which
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contains the scene context, eye gaze, and accurate 3D body poses of the hu-
man actors. By employing an advanced motion capture system based on Inertial
Measurement Units (IMUs), we can collect 3D pose data with high fidelity and
avoid the limits of conventional multi-camera systems. For example, the actor
can walk through any environment without performing a cumbersome setup
of motion capture devices. Moreover, accurate poses can be recorded without
any 2D-3D lifting, which could induce errors due to occlusions and noise in the
detection. These advantages enable the actors to perform various long-horizon
activities in a diverse set of daily living environments.

In order to check the effectiveness of eye gaze in improving human motion
prediction, we perform an extensive study with multiple state-of-the-art archi-
tectures. However, we note that gaze and motion could both be inherently am-
biguous in forecasting future movements. For example, the gaze may be allocated
to a TV monitor while walking towards the dining table. In this case, the actor
may simply follow the momentum, thus rendering the eye gaze uninformative
about the body motion. To utilize the full potential of eye gaze in human motion
prediction, we further propose a novel architecture that manifests cross-modal
attention such that not only future motion can benefit from the eye gaze, but also
the significance of gaze in predicting the future can be reinforced by the observed
motion. In our experiments, better human motion predictions are observed across
various architectures. Furthermore, the proposed architecture achieves the top
performance measured under different criteria, verifying the effectiveness of our
bidirectional fusion scheme.

In summary, we make the following contributions. First, we provide a large-
scale human motion dataset that enables investigating the benefits of eye gaze
under diverse scenes and motion dynamics. Second, we propose a novel archi-
tecture with a bidirectional multi-modal fusion that better suits gaze-informed
human motion prediction through mutually disambiguating motion and gaze.
Finally, we validate the usefulness of eye gaze for human motion prediction with
multiple architectures and verify the effectiveness of the proposed architecture
by showing top performance on the proposed dataset.

2 Related Work

Datasets for human motions. Human motion modeling is a long-standing
problem and is extensively explored with high-quality motion capture datasets,
ranging from small-scale CMU Graphics Lab Motion Capture Database [5] to
large-scale ones like AMASS [31]. Human3.6M [13] captures high-quality motions
using a multi-view camera system and serves as a standard benchmark for mo-
tion prediction and 3D pose estimation. While these datasets provide adequate
data to learn motion dynamics, the constraints from the 3D environment are usu-
ally not included. Later, more datasets containing the 3D scene are proposed,
and scene-aware motion prediction can be studied using GTA-1M dataset [4].
PROX [11] includes both 3D scene and human interaction motions which can
be used to explore scene-aware motion generation [51] task and the problem
of placing human to the scene [59,60]. As the data is always collected with a
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human agent, ego-centric videos are provided in EgoPose [55,54], Kinpoly [30]
and HPS [9] to study how the motion estimation and prediction can benefit
from these ego-centric observations. Moreover, social interaction is considered in
You2Me [36] and EgoBody [57]. However, existing datasets do not contain diverse
3D scenes and human motions with intentions, we collect a large-scale dataset
for gaze-guided human motion prediction, and it consists of high-quality human
motions, 3D scene, ego-centric video and corresponding eye gaze information.

Human motion prediction. RNNs have proven successful in modeling human
motion dynamics [7,34,27,3]. [32] proposes an attention-based model to guide
the future prediction with motion history. To effectively exploit both spatial
and temporal dependencies in human pose sequences, ST-Transformer [2] de-
signs a spatial temporal transformer architecture to model the human motions.
Pose Transformers [35] investigates a non-autoregressive formulation using trans-
former model and shows superior performance in terms of both efficiency and
accuracy. As human motions are tightly correlated with the scene context, scene-
aware motion prediction is also actively studied [4,10]. A three-stage pipeline is
established to predict long-term human motions conditioned on the scene con-
text [4]. SAMP [10] further includes object geometry to estimate interaction posi-
tions and orientations, and generates motions following a calculated collision-free
trajectory. Besides the scene constraints, other modalities such as gaze and mu-
sic also provide clues for future motion prediction. Transformer [48] is applied to
generate dance movements conditioned on music [24,25,47]. MoGaze [21] verifies
the effectiveness of eye gaze information for motion prediction with an RNN
model in a full-body manipulation scenario. Our work aims to predict long-term
future motions with both 3D scene and gaze constraints. We differ from existing
motion prediction works, as their focus is the dense motion predictions, while
we are predicting long-term sparse motions to understand human intentions.

Human motion estimation. 3D pose estimation is extensively studied in
third-person view images or videos [43,56,19,20,18,29,12]. VIBE [18] propose a
sequential model to estimate human poses and shapes from videos, along with a
motion discriminator to constrain the predictions in a plausible motion manifold.
TCMR [12] explicitly enforces the neural nets to leverage past and future frames
to eliminate jitters in predictions. Motion priors are founded effective in improv-
ing the temporal smoothness and tackling the occlusion issues [40,23,58]. More
attentions are received in ego-centric pose estimation recently. Pose estimation
from images captured using a fish eye camera is explored in [45,53,41,44,50]. [15]
deploy a chest-mounted camera and predict motions based on an implicit motion
graph. Following the chest-mounted camera setting, You2Me [36] introduces the
motions of the visible second person as an additional signal to constrain the
motion estimation of the camera wearer. [55,54,30] explores motion estimation
and prediction with head-mounted front-facing camera. In this work, we are ad-
dressing the ego-centric motion prediction task where past motions are given.
Our proposed dataset can benefit the ego-centric motion estimation problem.
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Fig. 2. We collect human motion data in various indoor environments (1st, 2nd rows),
allowing the human subject to perform a diverse range of daily activities exhibiting
rich dynamics (bottom). Top-right: motion and gaze capture devices.

3 GIMO Dataset: Gaze and Motion with Scene Context

Human motion is affected by the scene, which provides physical constraints and
the agent’s psychological demand that drives body movements. To have a con-
crete assessment of the benefits induced by eye gaze, we need both ego-centric
views, and 3D body poses of the agent. Particularly, they should be temporally
synchronized and spatially aligned within the 3D scenes. Current datasets for
human motion prediction are either collected in a virtual environment risking
being unrealistic or captured by an array of cameras with limited scene diversity
and motion dynamics. Moreover, eye gaze is usually not available.

Therefore, we propose a real-world large-scale dataset that provides high-
quality human motions, ego-centric views with eye gaze, as well as 3D environ-
ments. Next, we describe our data collection pipeline.

3.1 Hardware Setup

We employ a commercialized IMU-based motion capture system to record high-
quality 3D body poses of the human agent, whose eye gaze in 3D is detected
using an AR device mounted on the head. The 3D scenes are scanned by a
smartphone equipped with lidar sensors (please see Fig. 2, top-right).

Motion capture. To capture daily activities in various indoor environments,
we resort to motion capture from IMU signals following HPS [9]. While HPS
only provides SMPL [28] models with body movements, we take advantage of
an advanced commercial product Noitom PERCEPTION NEURON STUDIO,1

which can record at 96 fps 3D body and hand joint movement of the subject.

1 https://noitom.com/perception-neuron-series
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Table 1. Statistics of existing and our datasets. ∗ means the 3D scene is virtual, e.g.,
from game engine [4] or CAD models [10]. Ego denotes egocentric images are available,
and Intent indicates whether the motions have clear semantic intentions, e.g., fetching
a book.

Dataset Frame Sub. 3D scene Ego Gaze 3rd-person
Human pose

from
Parametric

model
Intent Task

EGTEA Gaze+ [26] 2419k 32 X X X Action recognition
TIA [52] 330k - X X X Attention prediction

Human3.6M [13] 3600k 11 X Marker-based Pose estimation
TNT15 [49] 13k 4 X RGB+IMU Pose estimation
3DPW [33] 51k 7 X RGB+IMU SMPL Pose estimation

Panoptic [16] 297k 180+ X Multi-RGB Pose estimation
TotalCapture [17] 1,900k 5 X Multi-RGB Frank Pose estimation

HPS [9] 300k 7 X X IMU SMPL Pose estimation
EgoBody [57] 153k 20 X X X X Multi-RGB-D SMPL-X Pose estimation

EgoMoCap [30] 148k 3 X Marker-based Pose estimation
PROX [11], [60] 100k 20 X X RGB SMPL-X Human generation

GTA-IM [4] 1000k X∗ X Game engine Motion prediction
SAMP [10] 1 X∗ Marker-based SMPL-X X Motion prediction

GIMO (ours) 129k 11 X X X IMU SMPL-X X Motion prediction

To obtain the full-body pose and hand gesture of the subject, we apply SMPL-
X [37] model to fit the recorded IMU signals from multiple joints. Compared to
human motion datasets like PROX [11], where the 3D body pose is estimated
from monocular RGB videos, the pose obtained using the above procedure is
free from estimation errors caused by noisy detection and occlusions. Fitting
parametric human body models for poses from multi-view RGB(D) streams or
with marker-based systems is also commonly used to collect human motion data
[17,57,13], however, our pipeline requires much less effort in presetting the en-
vironment; thus, we can collect human motion data in any indoor scene. These
characteristics endow us with the capability to ensure the diversity of the scene
and motion dynamics in our dataset.

Gaze capture. Following [57], we use Hololens22 and its Research Mode API [46]
to capture the 3D eye gaze. It also records ego-centric video at 30 fps in 760×428
resolution, long-throw depth streams at 1-5 fps in 512 × 512, and 6D poses of
the head-mounted camera. The 3D scene is reconstructed through TSDF fusion
given the recorded depth, which is used for the subsequent global alignment.
The eye gaze is recorded as a 3D point in the coordinate system of the headset.

3D scene acquisition. To obtain high-quality 3D geometry of the scene (the
reconstructed TSDF result from Hololens2 is usually noisy), we use an iPhone13
Pro Max equipped with LiDAR sensors to scan the environment through 3D
Scanner APP3. The output mesh contains about 500k vertices and photorealistic
texture, providing sufficient details to infer the affordance of the scene. The
data collection process involving human agents and the alignment of different
coordinate frames to the scanned meshes are described in the following.

2 https://www.microsoft.com/en-us/hololens
3 https://apps.apple.com/us/app/3d-scanner-app/id1419913995
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Table 2. Activities performed by our subjects.

Category Activities

Resting Sitting or laying on objects
Interacting with objects Touching, holding, stepping on, reaching to objects

Changing the state of objects
Opening, pushing, transferring, throwing,
picking up, lifting, connecting, screwing,

grabbing, swapping objects

3.2 Data Collection with Human in Action

One distinct feature of our dataset is that it captures long-term motions with
clear intentions. Different from prior datasets for motion estimation purposes
where the subjects are performing random actions such as jumping and waving
hands, we aim at collecting motion trajectories with semantic meaning, e.g., walk
to open the door. Thus, we focus on collecting data from various daily activities
in indoor scenes. The full statistics of our dataset are listed in Tab. 1.

To this end, we recruit 11 university students (4 female and 7 male) and ask
them to perform the activities defined in Tab. 2. The subjects are instructed to
start from a distant location to the goal object and then move to the destina-
tion to act. Therefore, long-term motion with clear intention can be obtained.
Especially, the collection progress includes the following steps: (i) the subject
wears the head-mounted Hololens2, the IMU-based motion capture clothes, and
gloves, where calibration is performed to set up the motion capture system; (ii)
the subject chooses the action from the activities in Tab. 2 according to the
affordance of the scene; (iii) the 3D scene is scanned; (iv) the subject starts to
carry out the planned activities in the scene while data are collected; (v) the
scene is reset for the following subjects to perform their activities. Note, if the
subject changes the scene geometry, we reset the objects to their original states
to avoid rescanning the whole environment.

As a result, our dataset contains 129k ego-centric images, 11 subjects, and
217 motion trajectories in 19 scenes, manifesting enough capacity and diversity
for gaze-informed human motion prediction. As illustrated in Fig. 2, the motions
are smooth and convey clear semantic intentions.

3.3 Data Preparation

Synchronization. Given compatibility issues, it is difficult to synchronize the
motion capture system with Hololens2 without modifying their commercialized
software. Instead, we use a hand gesture that can be observed in the ego-centric
view as a starting signal. Once the pose and ego-centric image of the hand gesture
are aligned, the rest frames can be synchronized according to the timestamps.

Parametric model fitting. To obtain the 3D body pose and shape of the
subject, we fit SMPL-X [37] model to the 3D joints (23 body joints, 15 left-hand
joints, and 15 right-hand joints), which are computed from the recorded IMU
signals by the provided commercial software. In addition, the 6D head pose is
used to determine the head position and orientation of the SMPL-X model.
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Fig. 3. Our gaze-informed human motion prediction architecture. Multi-modal fea-
tures, i.e., gaze feature, human motion feature, and global scene feature, are extracted
and then fused through the proposed bidirectional fusion scheme (a). The fused features
are then stacked into a holistic representation and used for future motion prediction
(c). The cross-modal transformer component [14] is illustrated in (b). Please refer to
Sec. 4 for more details.

Alignment. The Hololens2 coordinate system and the fitted SMPL-X models
need to align with the high-quality 3D scene scans. The former is aligned through
ICP between the TSDF fusion result of the depth recorded by Hololens2 and the
3D scene. The SMPL-X motion sequence is first transformed to the Hololens2
coordinate system via human annotations, i.e., the start and end shapes of the
human body are scanned by Hololens2 and visible in the TSDF reconstruction,
which serves as anchor shapes for aligning the fitted models. The pose can then
be aligned to the 3D scene using the global transformation obtained from the
previous ICP alignment between the scene scans. Our dataset is named GIMO,
and we describe our method for gaze-informed motion prediction in the following.

4 Gaze-Informed Human Motion Prediction

Gaze conveys relevant information about the subject’s intent, which can be used
to enhance long-horizon human motion prediction. On the other hand, past mo-
tions [4,2], ego-centric views [55,10], or 3D context [10,51] could provide helpful
constraints on human motion, yet, the prediction is still challenging and suffers
from uncertainties in the future. Here, we aim at gaze-informed long-term hu-
man motion prediction. Specifically, given the past motion, 3D scene, and 3D eye
gaze as inputs, we study how they can be integrated to resolve the ambiguities
in future motion and generate intention-aware motion predictions.

To fully utilize the geometry information provided by the 3D scene and in-
tention clues from past motions and gaze, we propose a novel framework with a
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bidirectional fusion scheme that facilitates the communication between different
modalities. As shown in Fig. 3, we use PointNet++ [39] as the encoding backbone
to extract per-point features of the 3D scene, followed by several cross-modal
transformers to transcend information from multi-modality embeddings.

4.1 Problem Definition

We represent a motion sample as a parametric sequence Xi:j = {xi, xi+1, · · · , xj}
where xk = (tk, rk, hk, βk, pk) is a pose frame at time k. Here t ∈ R3 is the global
translation, r ∈ SO(3) denotes the global orientation, hk ∈ R32 refers to the
body pose embedding, β ∈ R10 is the shape parameter, and p ∈ R24 is the hand
pose, where SMPL-X body mesh M = M(tk, rk, hk, βk, pk) can be obtained
using VPoser [37]. The 3D scene is represented as a point cloud S ∈ Rn×3, and
the 3D gaze point g ∈ R3 is defined as the intersection points between the gaze
direction and the scene. Thus, given the inputs of a motion sequence X1:t along
with the corresponding 3D gaze G1:t = {g1, g2, · · · , gt} and the 3D scene S, we
aim to predict the future motion Xt:t+T = Φ(X1:t, G1:t, S|θ) where θ represents
the network parameters.

4.2 Multi-modal Feature Extraction

Instead of extracting the multi-modal embeddings independently [25], we pro-
pose a novel scheme to integrate the motion, gaze, and scene features. The gist
is to let the motion and gaze features communicate to each other, so their un-
certainties regarding the future can be mutually decreased, resulting in more
effective utilization of the gaze information.

Scene feature extraction. To learn the constraints from the 3D scene and
guide the network to pay attention to local geometric structures, we apply Point-
Net++ to extract both global and local scene features. Specially, we obtain the
per-point feature map and a global descriptor of the scene as follows:

FP , Fo = Φscene(S|θs) (1)

where S ∈ Rn×3 is the input point cloud, FP ∈ Rn×dp is the per-point dp di-
mensional feature map, and Fo ∈ Rdo is the global descriptor of the scene. Given
the per-point feature FP , the feature of an arbitrary point e can be computed
through the inversed distance weighted interpolation [39]:

FP |e =
Σne

i=1wiFP |pi

Σne
i=1wi

, wi =
1

||pi − e||2
(2)

where {p1, p2, · · · , pne
} are the nearest neighbors of e in the scene point cloud.

Gaze feature extraction. We query the gaze point feature fg from the per-
point scene feature map FP according to Eq. 2, i.e., fg = FP |g. Thus, the inter-
polated gaze feature contains relevant scene information that provides cues to
infer the subject’s intention.
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Motion feature extraction. A linear layer is used to extract the motion em-
bedding fm from the input motion parameter x. To endow the embedding aware-
ness of the 3D scene, we further query the scene features of the SMPL-X vertices
using Eq. 2. These SMPL-X per-vertex features are then fed to PointNet [38] to
get the ambient scene context feature fm v of the current motion pose:

fm v = PointNet({FP |v, v ∈M(x)}}) (3)

where M(x) is the SMPL-X vertex set with motion parameter x.

4.3 Attention-Aware Multi-modal Feature Fusion

Given the multi-modal nature of the gaze, scene, and motion, an efficient feature
fusion module is necessary to leverage the information from different modalities.
Instead of directly concatenating the features [25], we propose a more effective
scheme by deploying a cross-modal transformer [14] to fuse the gaze, motion,
and scene features (Fig. 3). We explain our design in the following.

Cross-modal transformer. The cross-modal transformer [14] is used to cap-
ture the correlations between input embedding sequences and to establish com-
munications between the multi-modal information. It is largely based on atten-
tion mechanism [48]. An attention function [14] maps a query and key-value
pairs to an output as:

Attention(Q,K, V ) = softmax(
QKT

√
dK

)V,Q = qWq,K = kWk, V = vWv (4)

where q ∈ Rlq×dq , k ∈ Rlkv×dk , v ∈ Rlkv×dv are input query, key and value
vectors, and Wq ∈ Rdq×dK , Wk ∈ Rdk×dK , Wq ∈ Rdv×dV embed the inputs.
Here d denotes the dimension of the input vector and l is the sequence length.

As shown in Fig. 3 (b), the cross-modal transformer is built on a stack of
attention layers, which maps a ti-length input into a tq-length output by querying
a tq-length feature:

φout = cross trans(φquery, φinput) (5)

It is proved to be efficient in processing multi-modal signals, e.g., text, & audio.

Motion feature fusion. The motion feature should be aware of the 3D scene
context and the subject’s intention inferred from the gaze information, so that it
can guide the prediction network to generate more reasonable motion trajectories
(e.g., free from penetration and collision) and accurate estimations of the ending
position or pose of the subject. For this purpose, we first use the scene context
feature fm v acquired from the ambient 3D environment (Eq. 3) as the query to
update the motion feature fm through a motion-scene transformer:

fm s = cross trans(fm v, fm) (6)
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Thus, the output motion embedding fm s is expected to be aware of the 3D
scene. We then feed fm s to the next motion-gaze transformer where the gaze
feature fg is the query input:

fm g = cross trans(fg, fm s) (7)

The final motion embedding fm g is expected to integrate both the 3D scene
information and the intention clues from the gaze features.

Gaze feature fusion. While gaze can help generate intention-aware motion
features, the motion could also provide informative guidance to mitigate the
randomness of gaze since not every gaze point reveals meaningful user intent.
Therefore, we treat the gaze embedding in a bidirectional manner, i.e., the mo-
tion embedding fm is also used as the query to update the gaze features such
that the network can learn which gaze features contribute more to the future
motion:

fg m = cross trans(fm, fg) (8)

The bidirectionally fused multi-modal features are then composed into holistic
temporal representations of the input to perform human motion prediction. As
illustrated in Fig. 3 (c), the updated gaze feature fg m, motion feature fm g and
the global scene feature FO are used to predict the future motion by:

Xt:t+T = cross trans(hposition, cat(fg m, fm g, FO)1:t) (9)

where cat denotes the concatenation operation, and hposition is the latent vector
that contains temporal positional encodings for the output [14]. We verify the
effectiveness of our design in utilizing gaze information through experiments.

5 Experiments

In this part, we explain our experimental setup and results. Our goal is to ex-
amine the following questions:

1. Does gaze help disambiguate human motion prediction?
2. How do state-of-the-art methods perform on our dataset?
3. What is the contribution of each part of our design to the final performance?

Overall, is the proposed architecture effective?

5.1 Experimental Setup

In our experiments, we predict the future motion in 5 seconds from 3 seconds
input, where the first 3 seconds of a trajectory is just about to start an activity
(i.e., beginning to move for fetching a book) in our dataset, and in the next 5
seconds the trajectory proceeds to finish the activity. We set the motion frame
rate to 2 fps, i.e., 6 pose input and 10 pose output. Note that once the waypoints
are predicted, a full motion sequence with high fps can be easily generated [51].
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: future motion
: input motion Ours (w/o gaze) Multimodal

Transformer Ours GT
: gaze point

Fig. 4. Qualitative results. Top row: results on a known scene from the training set.
Bottom row: results in a new environment. We compare our method with Multimodal-
Net [25] and ours without gaze. Please zoom in for details.

Since we aim to explore the effect of gaze in disambiguating motion prediction,
high-frequency motion is not necessary in our experiments.

Baselines. We implement several state-of-the-art motion prediction and gen-
eration baselines including spatio-temporal transformer [2] and an RNN net-
work [22] for full motion prediction from the past motion input, and Multi-
modalNet [25] based on transformer for motion synthesis from multi-modal data
(i.e., gaze, motion, and the 3D scene feature in our experiments). We build our
pipeline by incorporating 6 cross-modal transformer layers [14] to extract 256-
dimensional gaze and motion features. L1 loss between the predicted motion and
the ground truth is used to train the network. More details about the network
architecture and training are available in the supplementary material.

5.2 Evaluation

To evaluate, we divide the 217 trajectories of our dataset into 180 trajectories for
training and 37 for testing. The 37 motions consist of 27 trajectories (different
from the training ones) performed in known scenes from the training set and 10
in 2 new environments scanned only for evaluation purposes.

Evaluation metrics. We employ the destination error and the path error as
our evaluation metrics. The destination error refers to the global translation,
rotation error and the mean per-joint position error (MPJPE) [13] of the last
pose in the predicted motion. The destination pose contains essential information
about the subject’s goal, which is our experiments’ primary focus. The path error
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Fig. 5. The attention map of the 6 input gaze for the 10 output motion. The gaze
influences the ending output most (brighter means larger weight), indicating that the
gaze features reveal the subject’s final goals.

is computed as the mean error of the predicted poses in 5s [4]. We treat the global
translation and rotation error as the l1 distance between the predicted SMPL-X
translation and orientation parameter with the ground truth [51].

Quantitative evaluation. As shown in Tab. 3 and Tab. 4, while the state-of-
the-art methods based on spatio-temporal transformer [2] suffer from ambiguities
since the prediction is simply from the past motion, a simple RNN method with
motion and gaze input [21] can significantly reduce the ambiguity, indicating the
effectiveness of gaze in guiding the prediction of motion. Our method achieves
promising results in predicting reasonable future motion with small destination
and translation errors. Compared to MultimodalNet [25] built on the vanilla
transformers [47], our method outperforms in recognizing the subject’s intent
from the gaze and thus predicts more accurate destination poses.

Qualitative evaluation. Fig. 4 shows that in a ”going to sit” activity performed
in one scene from the training set (top row), our method manages to generate
accurate destination poses, i.e., sitting on the sofa. In the new environment,
the subject first grabs a blackboard eraser and then starts wiping. While all
the methods generate walking actions, ours without gaze input fails to predict
the correct motion. When given gaze, results from MultimodalNet [25] and our
method both reach out the hand and try to grab something. Our prediction
successfully arrives at the destination point where the eraser lies; however, the
Table 3. Destination accuracy. We report the global translation and orientation error
and mean per-joint position error (MPJPE).

Method
Known scenes New scenes

Trans Ori MPJPE Trans Ori MPJPE

ST-Transformer [2] 0.587 0.864 279.9 0.516 0.682 236.8
RNN [22] 0.538 0.822 272.5 0.547 0.894 230.4

MultimodalNet [25] 0.442 0.699 260.0 0.389 0.658 236.0

RNN+gaze [21] 0.389 0.882 264.2 0.345 0.611 230.0
MultimodalNet+gaze [25] 0.316 0.743 266.6 0.300 0.583 204.9

Ours (w/o gaze) 0.393 0.656 262.1 0.389 0.709 228.7
Ours (pointnet) 0.310 0.659 240.6 0.394 0.563 234.5
Ours (vanilla) 0.353 0.739 249.0 0.365 0.602 220.4

Ours 0.245 0.579 237.8 0.280 0.556 209.0
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Table 4. Path errors of the predicted motions.

Method
Known scenes New scenes

Trans Ori MPJPE Trans Ori MPJPE

ST-Transformer [2] 0.329 0.503 201.4 0.339 0.537 201.7
RNN [22] 0.308 0.476 195.2 0.324 0.495 180.3

MultimodalNet [25] 0.273 0.383 190.0 0.294 0.425 177.0

RNN+gaze [21] 0.235 0.457 190.1 0.278 0.288 182.6
MultimodalNet+gaze [25] 0.246 0.424 193.1 0.250 0.374 183.7

Ours (w/o gaze) 0.305 0.412 180.1 0.315 0.403 182.5
Ours (pointnet) 0.218 0.360 180.5 0.267 0.403 184.5
Ours (vanilla) 0.238 0.399 182.7 0.286 0.348 180.3

Ours 0.213 0.340 177.1 0.261 0.322 160.3

results of MultimodalNet [25] reach out to the wrong place. More visualizations
and failure cases are included in the supplementary material.

5.3 Ablation Study

In this part, we aim to answer question 3 by finding the factors that contribute
to the superior performance of our method.

Variant 1: gaze. We evaluate the baseline’s performance with and without
gaze input to explore how gaze could influence the motion prediction results.
As clearly demonstrated in Tab. 3 and Tab. 4, the RNN network [21] and the
MultimodalNet [25] both gain significant accuracy improvement given gaze in-
puts. Fig. 4 shows that without gaze, our method is confused about the future
destination. To find more intuitions about the role of gaze in motion prediction,
we visualize the attention weights of gaze feature query over the motion feature
as depicted in Fig. 5. Interestingly, we find the gaze feature does influence the
ending poses in the predicted motion, implying that the gaze can serve as a
strong indicator of the destination of a motion, which reveals the user’s intent.

Variant 2: pointnet++ for scene feature query. We propose to use Point-
net++ [39] to extract the per-point feature of the scene such that the gaze feature
and scene-aware motion feature can be obtained (section 4.2). We replace it with
Pointnet to extract the global scene feature and use a linear layer to get the gaze
feature. Results in Tab. 3 and Tab. 4 demonstrate that the variant can act well
on scenes from the training set, but lose its competitiveness when generalized to
new environments with different 3D structures.

Variant 3: cross-modal transformer. The cross-modal transformer archi-
tecture proves to be effective in bridging multi-modal information [14]. We re-
place it with the vanilla transformer [48] as used in [25]. Results in Tab. 3 and
Tab. 4(Ours (vanilla)) demonstrate the loss of accuracy compared to the full de-
sign. Note that the path error of the variant on the new scenes is even larger than
the results without gaze input, indicating that the vanilla transformer might not
be efficient enough to capture the correlations between multi-modal inputs. Thus
a more sophisticated design such as a cross-modal transformer is needed.
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6 Conclusion, Discussion and Future Work

We present the GIMO dataset, a real-world dataset with ego-centric images, 3D
gazes, 3D scene context, and ground-truth human motions. With the collected
dataset, we define a new task, i.e., gaze-informed human motion prediction,
which leverages eye gaze to infer the subject’s potential intention to minimize
the ambiguities in motion prediction. We further contribute a novel framework,
which achieves promising results in predicting long-term future motions. While
our method only relies on 3D inputs, we aim as future work to incorporate visual
information from ego-centric images to further boost the accuracy.

Instead of the proposed task, our dataset can benefit various applications,
e.g., intention-aware motion synthesis and gaze-guided ego-centric pose estima-
tion. We believe our work not only opens new directions for motion prediction
but will have foreseeable impacts on ego-centric vision topics.
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Appendix

A Experimental Setup

A.1 Implementation Details

As demonstrated in the Fig. 3 of the main paper, our method is built on Point-
net++ [39] and a cross-modal transformer [14]. A 256D global feature FO and a
256D per-point feature map FP of the scene are extracted from the input point
cloud. The feature of an arbitrary point e is computed through the inversed
distance weighted interpolation on the 3 nearest neighbors of e from the scene
point cloud (Eq. 2 of the main paper), where we query the 256D gaze feature
fg and obtain the 256D scene context feature fm v of the current motion from
SMPL-X per-vertex features. The 32D motion parameter x is embedded into
256D motion feature fm through a linear layer. The motion embedding is then
fed to a motion-scene transformer with fm v as query and further fed to another
motion-gaze transformer with gaze feature fg as the query. The gaze feature is
updated by a gaze-motion transformer queried by motion feature fm. We then
concatenate the global scene feature FO, the updated motion feature fm g and
gaze feature fg m to get the 768D multi-modal embedding, which is used to
predict the 32D future motion parameter by a cross-modal transformer. All the
transformers adopt a 6 layer architecture as proposed in [14] with 256D latent
embedding. Note that here the input and output motion parameter x consists of
a 3D global translation vector t, a 3D global orientation vector r (represented as
axis angle), and a 32D pose embedding h obtained from VPoser [37]. We omit
predicting the hand poses p and the shape parameter β since the global body
pose can be well represented by parameter {t, r, h}, and we aim at future work
to include hand poses and the body shape for more detailed motion prediction.

For the baseline methods, we re-implement spatio-temporal transformer [2], a
RNN based network [22], and MultimodalNet [25] to adapt for our experimental
settings. The 3D joint angle representation is used as motion input and output
to train the spatio-temporal transformer and RNN as introduced in [22], while
MultimodalNet is based on the 32D motion parameter the same as ours. An 8
layer transformer [48] with 512 embedding size and 8 heads attention is used
in spatio-temporal transformer [2]. A three layer RNN with 1024 hidden size is
deployed to predict future motion with simple motion input or motion and gaze
input [21]. In MultimodalNet [25], the motion input is firstly embedded into 256D
feature space through linear layers and then fed to a transformer encoder to get
the motion embeddings. The gaze embedding is also obtained with linear layers
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Fig. 6. An overview of the scanned scenes in our dataset.

Fig. 7. Subjects in the scenes.

and a transformer encoder. The global scene feature from PointNet [38], the
gaze embedding and the motion embedding are stacked and fed to a transformer
decoder to generate future motion. The transformer encoders and decoder are all
based on a 6 layer architecture with 256 latent size. Therefore, all the baselines
share similar network capacity with our method.

A.2 Training Loss

We employ the L1 loss between the predicted motion parameter and ground
truth to train our method. The full loss consists of translation loss, orientation
loss and pose embedding loss. The translation loss is formulated as:

Ltrans =
1

T

T

Σ
k=1
||t̂k − tk||1 (10)



GIMO: Gaze-Informed Human Motion Prediction in Context 21

Fig. 8. Motion trajectories from our dataset. Better visualized in the supplementary
video.

where T is the length of output pose, and t̂k is the predicted global translation
parameter of the k-th pose in the T-length future motion, and tk is the ground
truth. We compute the orientation loss as:

Lori =
1

T

T

Σ
k=1
||r̂k − rk||1 (11)
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Human (w/o gaze) HumanEgocentric 
images

Egocentric 
images + gaze GT

Fig. 9. Human evaluation. Two human subjects are required to watch a egocentric
video (without gaze or with gaze) and infer the final pose of the trajectory. The subjects
choose a pose from a pose database which comes from the training set, and put the pose
into the 3D scene as the final position of the motion according to the egocentric video.
We show that humans can easily solve the task with the intention clues extracted from
gaze, while without the gaze information even human intelligence can be confused.

where r̂k is the predicted global orientation parameter. The pose embedding loss
is designed as:

Lp =
1

T

T

Σ
k=1
||ĥk − hk||1 (12)

where ĥk is the predicted pose embedding. Finally, the full loss is formulated as:

L = λtLtrans + λoLori + λpLp (13)

where we set λt, λo, λp to 1 during training.

B GIMO Dataset

Our dataset consists of 217 motion trajectories collected in 19 scenes by 11
subjects. Fig. 6 provides an overview of the scanned scenes in our dataset, which
cover a wide range of daily indoor environments, including living rooms, meeting
rooms, library, lab, etc. Fig. 7 shows the recruited subjects collecting data in
the scenes. More motion trajectories are demonstrated in Fig. 8. For better
visualization, please refer to the supplementary video.
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: future motion
: input motion Ours (w/o gaze) Multimodal
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Fig. 10. More Qualitative results.

: future motion
: input motion Ours GT
: gaze point

Fig. 11. Failure cases of our method. When the noisy gazes account for a large portion
of the input, our method is confused to interpret the subject’s intention.

C More Results

C.1 Human Evaluation

We conduct a human evaluation experiment to validate the function of gaze in
disambiguating future motion prediction. For simplification, the subjects predict
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the final pose of the motion instead of the full motion trajectory. To this end, two
human subjects are recruited and required to watch an ego-centric video (without
gaze or with gaze) and infer the final pose of the trajectory. The subjects first
choose a pose from a pose database which is constructed by poses from the
training set, and then put the pose into the 3D scene as the final position of
the motion according to the ego-centric video they have seen. Fig. 9 shows that
humans can easily extract the intention clues from the gaze and solve the problem
accurately, while without the gaze information even human intelligence can be
confused.

C.2 More Results of Baselines and Failure cases

Fig. 10 provides more results of the baseline methods, further demonstrating the
superiority of our method in predicting future motion from the multi-modal gaze,
motion and scene information. However, we find that when the input gazes are
quite noisy which convey little intention clues, our method can fail to interpret
the subject’s goal and generate inaccurate results, as shown in 11. Since our
method predicts future motion from sparse inputs (2fps), the uninformative gazes
can account for a large portion of the input. The problem might be mitigated
by leveraging high fps inputs since we find that in the recorded sequences the
most attention is paid to objects related to the destination of the motion.
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