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Fig. 1:Megapixel facial identity manipulation. (Top) Face swapping. Our
model faithfully synthesizes a high-quality megapixel image by blending ID (e.g.,
eyes and face shape) and ID-irrelevant attributes (e.g., pose and expression) of
source and target images, respectively. (Middle) Face swapping with large
gaps between the source and target images (e.g., gender and age). (Bottom) ID
mixing using two source images: blending global (e.g., face shape) and local ID
attributes (e.g., eyes) of global and local source images, respectively.
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Abstract. Face swapping is a task that changes a facial identity of a
given image to that of another person. In this work, we propose a novel
face-swapping framework called Megapixel Facial Identity Manipulation
(MFIM). The face-swapping model should achieve two goals. First, it
should be able to generate a high-quality image. We argue that a model
which is proficient in generating a megapixel image can achieve this goal.
However, generating a megapixel image is generally difficult without
careful model design. Therefore, our model exploits pretrained StyleGAN
in the manner of GAN-inversion to effectively generate a megapixel im-
age. Second, it should be able to effectively transform the identity of a
given image. Specifically, it should be able to actively transform ID at-
tributes (e.g., face shape and eyes) of a given image into those of another
person, while preserving ID-irrelevant attributes (e.g., pose and expres-
sion). To achieve this goal, we exploit 3DMM that can capture various
facial attributes. Specifically, we explicitly supervise our model to gen-
erate a face-swapped image with the desirable attributes using 3DMM.
We show that our model achieves state-of-the-art performance through
extensive experiments. Furthermore, we propose a new operation called
ID mixing, which creates a new identity by semantically mixing the iden-
tities of several people. It allows the user to customize the new identity.

1 Introduction

Face swapping is a task that changes the facial identity of a given image to that
of another person. It has now been applied in various applications and services
in entertainment [23], privacy protection [30], and theatrical industry [32].

In technical terms, a face-swapping model should be able to generate a high-
quality image. At the same time, it should be able to transfer the ID attributes
(e.g., face shape and eyes) from the source image to the target image, while
preserving the ID-irrelevant attributes (e.g., pose and expression) of the target
image as shown in Figure 1. In other words, the face-swapping model has two
goals: i) generating high-quality images and ii) effective identity transforma-
tion. Our model, Megapixel Facial Identity Manipulation (MFIM), is designed
to achieve both of these goals.

Firstly, to generate a high-quality image, we propose a face-swapping frame-
work that exploits pretrained StyleGAN [22] in the manner of GAN-inversion.
Specifically, we design an encoder called facial attribute encoder that effectively
extracts ID and ID-irrelevant representations from the source and target images,
respectively. These representations are forwarded to the pretrained StyleGAN
generator. Then, the generator blends these representations and generates a
high-quality megapixel face-swapped image.

Basically, our facial attribute encoder extracts style codes, which is simi-
lar to existing StyleGAN-based GAN-inversion encoders [34,38,3]. Specifically,
our facial attribute encoder extracts ID and ID-irrelevant style codes from the
source and target images, respectively. Here, one of the important things for
faithful face swapping is that the details of the target image such as expression
or background should be accurately reconstructed. However, the ID-irrelevant
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style codes, which do not have spatial dimensions, can fail to preserve the details
of the target image. Therefore, our facial attribute encoder extracts not only the
style codes, but also the style maps which have spatial dimensions from the target
image. The style maps, which take advantages from its spatial dimensions, can
complement the ID-irrelevant style codes by propagating additional information
about the details of the target image. As a result, our facial attribute encoder,
which extracts the style codes and style maps, can effectively capture the ID at-
tributes from the source image and the ID-irrelevant attributes including details
from the target image. MegaFS [48], the previous model that exploits pretrained
StyleGAN, suffers from reconstructing the details of target image because it only
utilizes the style codes. To solve this problem, they use a segmentation label to
take the details from the target image. However, we resolve this drawback by
extracting the style maps instead of using the segmentation label.

Secondly, we utilize 3DMM [16] which can capture various facial attributes
for the effective identity transformation. We especially focus on the transfor-
mation of face shape which is one of the important factors in recognizing an
identity. However, it is difficult to transform the face shape while preserving
the ID-irrelevant attributes of the target image at the same time because these
two goals are in conflict with each other [25]. Specifically, making the gener-
ated image have the same face shape with that of the source image enforces the
generated image to differ a lot from the target image. In contrast, making it
preserve the ID-irrelevant attributes of the target image enforces it to be sim-
ilar to the target image. To achieve these two conflicting goals simultaneously,
we utilize 3DMM which can accurately and distinctly capture the various facial
attributes such as shape, pose, and expression from a given image. In partic-
ular, we explicitly supervise our model to generate a face-swapped image with
the desirable attributes using 3DMM, i.e., the same face shape with the source
image, but the same pose and expression with the target image. The previous
models [1,27,10,17,48,25] without such explicit supervision struggle with achiev-
ing two conflicting goals simultaneously. In contrast, our model can transform
the face shape well, while preserving the ID-irrelevant attributes of the target
image. HiFiFace [41], the previous model that exploits 3DMM, requires 3DMM
not only at the training phase, but even at the inference phase. In contrast, our
model does not use 3DMM at the inference phase.

Finally, we propose a new additional task, ID mixing, which means face swap-
ping with a new identity created with multiple source images instead of a single
source image. Here, we aim to design a method that allows the user to semanti-
cally control the identity creation process. For example, when using two source
images, the user can extract the global ID attributes (e.g., face shape) from one
source image and the local ID attributes (e.g., eyes) from the other source image,
and create the new identity by blending them as shown in Figure 1. The user
can customize the new identity as desired with this operation. Furthermore, this
operation does not require any additional training or segmentation label. To the
best of our knowledge, we are the first to propose this operation.

In conclusion, the main contributions of this work include the following:
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Table 1: Comparison of our model (MFIM) with the previous face-
swapping models (✔: positive, : negative, : partially positive). In
terms of the 3DMM supervision, HifiFace also exploits the 3DMM supervision,
but it requires 3DMM even at the inference phase, while MFIM does not.

FaceShifter HifiFace InfoSwap MegaFS SmoothSwap MFIM

Megapixel ✔ ✔ ✔

W/o segmentation labels ✔ ✔ ✔ ✔

3DMM supervision ✔

ID mixing ✔

• We propose an improved framework for face swapping by adopting GAN-
inversion method with pretrained StyleGAN that takes both style codes and style
maps. It allows our model to generate high-quality megapixel images without
additional labels in order to preserve the details of the target image.

• We introduce a 3DMM supervision method for the effective identity trans-
formation, especially, the face shape. It allows our model to transform the face
shape and preserve the ID-irrelevant attributes at the same time. Moreover, our
model does not require 3DMM at the inference phase.

• We propose a new operation, ID mixing, which allows the user to customize
the new identity using multiple source images. It does not require any additional
training or segmentation label.

2 Related Work

Face swapping. Faceshifter [27] proposes a two-stage framework in order to
achieve occlusion aware method. Simswap [10] focuses on designing a framework
to transfer an arbitrary identity to the target image. InfoSwap [17] proposes
explicit supervision based on the IB principle for disentangling identity and
identity-irrelevant information from source and target image. MegaFS [48] uses
pre-trained StyleGAN [22] in order to generate megapixel samples by adopt-
ing GAN-inversion method. However, it does not introduce 3DMM supervision
and relies on the segmentation labels. HifiFace [41] utilizes 3DMM for the effec-
tive identity transformation. However, HifiFace [41] requires 3DMM not only in
the training phase, but also in the inference phase. On the contrary, our model
only takes advantage of 3DMM at training phase and no longer needs it at the
inference phase. Most recently, SmoothSwap [25] proposes a smooth identity em-
bedder to improve learning stability and convergence speed. The key differences
between our model and the previous models are given in Table 1.

Learning-based GAN-inversion. Generative Adversarial Networks (GAN) [18]
framework has been actively employed in the various image manipulation appli-
cations [19,47,26,12,13,33,5,31,11,44]. Recently, as remarkable GAN frameworks
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(e.g., BigGAN [7] and StyleGAN [22]) have emerged, GAN-inversion [43] is be-
ing actively studied. Especially, learning-based GAN-inversion aims to train an
extra encoder to find a latent code that can reconstruct a given image using a
pretrained generator as a decoder. Then, one can edit the given image by ma-
nipulating the latent code. pSp [34] and e4e [38] use the pretrained StyleGAN
generator as a decoder. However, they have difficulty in accurate reconstruction
of the given image. To solve this problem, ReStyle [3] and HFGI [40] propose
iterative refinement and distortion map, respectively. However, these methods
require multiple forward passes. StyleMapGAN [24] replaces the style codes of
StyleGAN with the style maps. Our model also exploits the style maps, but as
additional inputs to the style codes, not as replacements for the style codes to
fully utilize the capability of the pretrained StyleGAN generator.

3DMM. A 3D morphable face model (3DMM) produces vector space repre-
sentations that capture various facial attributes such as shape, expression and
pose [6,4,8,15,16]. Although the previous 3DMM methods [6,4,8] have limita-
tions in estimating face texture and lighting conditions accurately, recent meth-
ods [15,16] overcome these limitations. We utilize the state-of-the-art 3DMM [16]
to effectively capture the various facial attributes and supervise our model.

3 MFIM: Megapixel Facial Identity Manipulation

Figure 2a shows an overall architecture of our model. Our goal is to capture the
ID and ID-irrelevant attributes from the source image, xsrc ∈ R3×256×256, and
target image, xtgt ∈ R3×256×256, respectively, and synthesize a megapixel image,
xswap ∈ R3×1024×1024, by blending these attributes. Note that xswap should have
the same ID attributes with those of xsrc, while the same ID-irrelevant attributes
with those of xtgt. For example, in Figure 2, xswap has the same eyes and face
shape with xsrc, and the same pose and expression with xtgt.

To achieve this goal, we firstly design a facial attribute encoder that encodes
xsrc and xtgt into ID and ID-irrelevant representations, respectively. These rep-
resentations are forwarded to the pretrained StyleGAN generator (Section 3.1).
Secondly, for the effective identity transformation, especially the face shape, we
additionally supervise our model with 3DMM. Note that 3DMM is only used at
the training phase and no more used at the inference phase (Section 3.2). After
training, our model can perform a new operation called ID mixing as well as
face swapping. Whereas conventional face swapping uses only one source image,
ID mixing uses multiple source images to create a new identity. (Section 3.3).

3.1 Facial Attribute Encoder

We introduce our facial attribute encoder. As shown in Figure 2a, it first extracts
hierarchical latent maps from a given image like pSp encoder [34]. Then, map-
to-code (M2C) and map-to-map (M2M) blocks produce the style codes and style
maps respectively, which are forwarded to the pretrained StyleGAN generator.
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(a) Face swapping (b) ID mixing

Fig. 2: The architecture of MFIM. Figure 2a shows the process of face swap-
ping. The facial attribute encoder extracts style codes and style maps from source
and target images. These are given to the pretrained StyleGAN generator as in-
puts. Figure 2b shows the process of ID mixing. The ID-style codes are extracted
from two source images, instead of a single source image.

Style code. Among the many latent spaces of the pretrained StyelGAN gen-
erator (e.g., Z [21], W [21], W+ [2], and S [42]), our facial attribute encoder
maps a given image to S, so it extracts twenty-six style codes from a given im-
age. The extracted style codes transform the generator feature maps via weight
demodulation operation [22]. As demonstrated in previous work [21], among the
twenty-six style codes, we expect that the style codes corresponding to coarse
spatial resolutions (e.g., from 4×4 to 16×16) synthesize the global aspects of an
image (e.g., overall structure and pose). In contrast, the style codes correspond-
ing to fine spatial resolutions (e.g., from 32× 32 to 1024× 1024), synthesize the
relatively local aspects of an image (e.g., face shape, eyes, nose, and lips).

Based on this expectation, as shown in Figure 2a, the style codes for the
coarse resolutions are extracted from xtgt and encouraged to transfer the global
aspects of xtgt such as overall structure and pose. In contrast, the style codes
for the fine resolutions are extracted from xsrc and encouraged to transfer the
relatively local aspects of xsrc such as face shape, eyes, nose, and lips. In this
respect, we call the style codes extracted from xtgt and xsrc ID-irrelevant style
codes and ID style codes, respectively. However, it is important to reconstruct
the details of the target image (e.g., expression and background), but the ID-
irrelevant style codes, which do not have spatial dimensions, lose those details.

Style map. To preserve the details of xtgt, our encoder extracts the style maps
from xtgt which have the spatial dimensions. Specifically, the M2M blocks in our
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encoder produce the style maps with the same size of the incoming latent maps.
Then, these style maps are given as noise inputs to the pretrained StyleGAN
generator, which are known to generate fine details of the image.

Note that MegaFS [48] also adopts GAN-inversion method, but it struggles
with reconstructing the details of xtgt. To solve this problem, it relies on the
segmentation label that detects background and mouth to copy those from xtgt.
In contrast, our model can reconstruct the details of xtgt due to the style maps.

3.2 Training Objectives

ID loss. To ensure xswap has the same identity with xsrc, we formulate ID loss
which calculates cosine similarity between them as

Lid = 1− cos(R(xswap), R(xsrc)), (1)

where R is the pretrained face recognition model [14].

Reconstruction loss. In addition, xswap should be similar to xtgt in most
regions except for ID-related regions. To impose this constraint, we define re-
construction loss by adopting pixel-level L1 loss and LPIPS loss [46] as

Lrecon = L1(xswap, xtgt) + LPIPS(xswap, xtgt). (2)

Adversarial loss. To make xswap realistic, we use the non-saturating adver-
sarial loss [18], Ladv, and R1 regularization [29], LR1

.

3DMM supervision. We explicitly enforce xswap to have the same face shape
with that of xsrc, and same pose and expression with those of xtgt. For these
constraints, we formulate the following losses using 3DMM [16]:

Lshape = ||sswap − ssrc||2, (3)

Lpose = ||pswap − ptgt||2, (4)

Lexp = ||eswap − etgt||2, (5)

where s, p, and e are the shape, pose, and expression parameters extracted
from a given image by 3DMM [16] encoder, respectively, with a subscript that
denotes the image from which the parameter is extracted (e.g., sswap is the shape
parameter extracted from xswap). Lshape encourages xswap to have the same face
shape with that of xsrc. On the other hand, Lpose and Lexp encourage xswap to
have the same pose and expression with those of xtgt, respectively.

Note that HifiFace [41] also utilizes 3DMM, but it requires 3DMM even
at the inference phase. This is because HiFiFace takes 3DMM parameters as
inputs to generate a face-swapped image. In contrast, our model does not take
3DMM parameters as inputs to generate a face-swapped image, so 3DMM is
no more used at the inference phase. Furthermore, in terms of loss function,
HifiFace formulates the landmark-based loss, but we formulate the parameter-
based losses. We compare these methods in the supplementary material.
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Fig. 3: Qualitative results on CelebA-HQ. The generated images have the
same ID attributes (e.g., face shape and eyes) with the source images, but the
same ID-irrelevant attributes (e.g., pose and expression) with the taget images.

Full objective. Finally, we formulate the full loss as

L = λidLid + λreconLrecon + λadvLadv + λR1
LR1

+λshapeLshape + λposeLpose + λexpLexp. (6)

3.3 ID Mixing

Our model can create a new identity by mixing multiple identities. We call
this operation ID mixing. In order to allow the user to semantically control
the identity creation process, we design a method to extract the ID style codes
from multiple source images and then mix them like style mixing [21]. Here,
we describe ID mixing using two source images, but it can be generalized to
use multiple source images more than two. Specifically, when using two source
images, the user can take global ID attributes (e.g., face shape) from one source
image and local ID attributes (e.g., eyes) from the other source image and mix
them to synthesize an ID-mixed image, xmix.

Figure 2b describes this process. The ID-irrelevant style codes and style maps
are extracted from xtgt (red arrow in Figure 2b). However, the ID style codes
are extracted from two source images, global and local source images. We denote
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Fig. 4: Qualitative comparison. See Section 4.2 for the discussion.

them as xgb
src and xlc

src, respectively, and the style codes extracted from them are
called global (light blue arrow in Figure 2b) and local ID style codes (dark blue
arrow in Figure 2b), respectively. These ID style codes transform the specific
generator feature maps. In particular, the global ID style codes transform the
ones with coarse spatial resolution (e.g., 32× 32), while the local ID style codes
are for the ones with fine spatial resolutions (e.g., from 64× 64 to 1024× 1024).
In this manner, the global ID style codes transfer the global ID attributes (e.g.,
face shape) of xgb

src, while the local ID style codes transfer the local ID attributes
(e.g., eyes) of xlc

src due to the property of style localization [21].

MegaFS [48] which exploits pretrained StyleGAN also has the potential
to perform ID mixing. However, MegaFS struggles with transforming the face
shape (Section 4.2), so it is difficult to effectively perform ID mixing.

4 Experiments

We present our experimental settings and results to demonstrate the effectiveness
of our model. Implementation details are in the supplementary material.
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Table 2: Quantitative comparison on FaceForensics++. See Section 4.1
for the description of each metric, and Section 4.2 for the discussion.

Identity ↓ Shape ↓ Expression ↓ Pose ↓ Pose-HN ↓
Deepfakes 120.907 0.639 0.802 0.188 4.588
FaceShifter 110.875 0.658 0.653 0.177 3.175
SimSwap 99.736 0.662 0.664 0.178 3.749
HifiFace 106.655 0.616 0.702 0.177 3.370
InfoSwap 104.456 0.664 0.698 0.179 4.043
MegaFS 110.897 0.701 0.678 0.182 5.456

SmoothSwap 101.678 0.565 0.722 0.186 4.498
MFIM (ours) 87.030 0.553 0.646 0.175 3.694

Table 3: Quantitative comparison on CelebA-HQ. See Section 4.1 for the
description of each metric, and Section 4.2 for the discussion.

Identity ↓ Shape ↓ Expression ↓ Pose ↓ Pose-HN ↓ FID ↓
MegaFS 108.571 0.906 0.438 0.071 4.880 14.446

MFIM (ours) 91.469 0.782 0.400 0.057 4.095 4.946

4.1 Experimental Settings

Baselines. We compare our model with Deepfakes [1], FaceShifter [27], Sim-
Swap [10], HifiFace [41], InfoSwap [17], MegaFs [48], and SmoothSwap [25].

Datasets. We use FFHQ [21] for training, and FaceForensics++ [35] and CelebA-
HQ [20] for evaluation. We do not extend the training dataset by combining
multiple datasets, while some of the previous models [27,41,48,17] do.

Evaluation metrics. We evaluate our model and the baselines with respect to
identity, shape, expression, and pose following SmoothSwap [25]. In the case of
ID and shape, the closer xswap and xsrc are, the better, and for the expression
and pose, the closer xswap and xtgt are, the better. To measure the identity, we
use L2 distance in the feature space of the face recognition model [9]. On the
other hand, to measure the shape, expression, and pose, we use L2 distance in
the parameter space of 3DMM [37] for each attribute. For the pose, L2 distance
in the feature space of a pose estimation model [36] is additionally used, and
this score is denoted as pose-HN. All of these metrics are the lower the better.

4.2 Comparison with the Baselines

The generated images of our model can be seen in Figure 3. The qualitative and
quantitative comparisons between our model and the baselines are presented in
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Fig. 5: Ablation study of MFIM. See Section 4.3 for the discussion.

Figure 4 and Tables 2 and 3, respectively. We first compare our model to the
baselines on FaceForensics++ [35], following the evaluation protocol of Smooth-
Swap [25]. As shown in Table 2, our model is superior to the baselines in all
metrics except for pose-HN. It is noteworthy that our model outperforms the
baselines for the shape, expression, and pose at the same time, whereas the ex-
isting baselines do not perform well for all those three metrics at the same time.
For example, among the baslines, SmoothSwap [25] and HifiFace [41] achieve
good scores in the shape, but the expression scores of these baselines are not as
good. On the other hand, FaceShifter [27] and SimSwap [10] achieve good scores
in the expression and pose, but the shape scores of these baselines are not as
good. However, our model accomplishes the state-of-the-art performance for the
shape, expression, and pose metric at the same time.

In addition, we compare our model to the previous megapixel model, MegaFS [48],
on CelebA-HQ. We generate 300,000 images following MegaFS [48]. Then, each
model is evaluated with the same metrics used in the evaluation on FaceForen-
scis++. For FID, we use CelebA-HQ for the real distribution following MegaFS [48].
As shown in Table 3, our model outperforms MegaFS [48] in the all metrics.

4.3 Ablation Study of MFIM

We conduct an ablation study on CelebA-HQ to demonstrate the effectiveness
of each component of our model following the evaluation protocol of the compar-
ative experiment on CelebA-HQ (Section 4.2). The qualitative and quantitative
results are presented in Figure 5 and Table 4, respectively.

The configuration (A) is trained by using only the ID-irrelevant and ID style
codes. The style maps and 3DMM supervision are not used in this configuration.
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Table 4: Ablation study of MFIM. See Section 4.1 for the description of each
metric, and Section 4.3 for the discussion.

Configuration Identity ↓ Shape ↓ Expression ↓ Pose ↓ Pose-HN ↓
A. Baseline MFIM 70.160 0.383 1.116 0.145 7.899
B. + style maps 91.430 0.823 0.398 0.051 3.795
C. + Lshape 86.476 0.635 0.864 0.085 5.091
D. + Lpose 86.777 0.634 0.860 0.078 4.797
E. + Lexp 91.469 0.782 0.400 0.057 4.095

In Figure 5, the configuration (A) generates an image that has the overall struc-
ture and pose of xtgt, but has the identity of xsrc (e.g., eyes and face shape).
This is because the ID-irrelevant style codes transform the generator feature
maps with the coarser spatial resolutions (from 4 × 4 to 16 × 16) than the ID
style codes (from 32×32 to 1024×1024), so the ID-irrelevant style codes synthe-
size more global aspects than the ID style codes do. However, the configuration
(A) fails to reconstruct the details of xtgt (e.g., expression, hair style, and back-
ground). This is because the ID-irrelevant style codes, which do not have the
spatial dimensions, lose the details of xtgt.

To solve this problem, we construct the configuration (B) by adding the style
maps to the configuration (A). In Figure 5, the configuration (B) reconstructs
the details of xtgt better than configuration (A). It is also supported by the
improvement of the expression score in Table 4. These results show that the
style maps, which have the spatial dimensions, can preserve the details of xtgt.
However, the generated image by configuration (B) does not have the same face
shape with that of xsrc, but with that of xtgt.

Therefore, for the more effective identity transformation, we improve our
model by adding the 3DMM supervision to the configuration (B). First, we
construct the configuration (C) by adding Lshape to the configuration (B). As a
result, the generated image by the configuration (C) has the same face shape with
that of xsrc rather than that of xtgt. It leads to the improvement of the shape
score in Table 4. However, the expression and pose scores are degraded. This
result is consistent with Figure 5 in that the generated image of configuration
(C) has the same expression with xsrc, not xtgt, which is undesirable. We assume
that this is because the expression and pose of xsrc are leaked somewhat while
the face shape of xsrc is actively transferred by Lshape. It means that the ID and
ID-irrelevant representations of MFIM are not perfectly disentangled. Improving
our model to solve this problem can be future work.

In order to restore the pose and expression scores, we first construct the
configuration (D) by adding Lpose to the configuration (C), and then construct
the configuration (E) by adding Lexp to the configuration (D). As a result, as
shown in Table 4, the pose and expression scores are restored to the similar scores
to the configuration (B). Finally, the generated image by the configuration (E)
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Fig. 6: ID mixing. Our model can create a new identity by blending the global
(e.g., face shape) and local (e.g., eyes) ID attributes captured from the global
and local source images, respectively.

in Figure 5 has the same face shape with that of xsrc, while the same pose and
expression with that of xtgt.

Although the configuration (E) can faithfully reconstruct the details of xtgt

such as background and hair style, we can further improve our model to recon-
struct the high-frequency details by adding ROI only synthesis to the configura-
tion (E) at the inference phase. This configuration is denoted as (E+). It allows
our model to generate only the face region, but it does not require any segmen-
tation label. More details on this are in the supplementary material. In Figure 5,
the configuration (E+) reconstructs the high-frequency details on hair. We use
the configuration (E) for all the quantitative results, and the configuration (E+)
for all the qualitative results.

4.4 ID Mixing

Figure 6 shows the qualitative results of ID mixing using our model. In Figure 6,
xmix has the new identity with the global ID attributes (e.g., face shape) of xgb

src,
but the local ID attributes (e.g., eyes) of xlc

src. This property of ID mixing allows
the user to semantically control the ID creation process. We also compare our
model with MegaFS [48] in terms of ID mixing in the supplementary material.

We quantitatively analyze the properties of ID mixing on CelebA-HQ. We
prepare 30,000 triplets by randomly assigning one global source image and one lo-
cal source image to each target image. Then, we define Relative Identity (R-ID)
distance and Relative Shape (R-Shape) distance following SmoothSwap [25].

For example, R-ID(gb) is defined as R-ID(gb) =
DID(xmix, xgb

src)

DID(xmix, xgb
src)+DID(xmix, xlc

src)
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Table 5: Quantitative analysis of ID mixing. See Section 4.4 for the descrip-
tion of each metric and discussion.

Overall identity Face shape

R-ID (gb) R-ID (lc) R-Shape (gb) R-Shape (lc)

Local 0.602 0.398 0.609 0.391
ID mixing 0.515 0.485 0.466 0.534
Global 0.399 0.601 0.378 0.622

where DID means L2 distance on the feature space of the face recognition
model [9]. This measures how similar the overall identity of xmix is to that of xgb

src

compared to xlc
src. R-ID(lc) is defined similarly, so R-ID(gb) + R-ID(lc) = 1.

In addition, R-Shape(gb) and R-Shape(lc) are defined in the same manner with
R-ID(gb) and R-ID(lc), respectively, but they are based on the 3DMM [37]
shape parameter distance to measure the similarity of face shape.

In Table 5, the two rows denoted by local and global show the results of
conventional face swapping, not ID mixing, which uses a single source image.
In particular, the row denoted by local is the result of conventional face swap-
ping using only xlc

src as the source image without using xgb
src. For this reason,

R-ID(lc) and R-Shape(lc) are smaller than R-ID(gb) and R-Shape(gb), respec-
tively, which means that the generated image has the same overall identity and
face shape as xlc

src, not xgb
src. Similarly, the row denoted by global shows that

xmix has the same overall identity and face shape as xgb
src, not x

lc
src.

On the other hand, the row denoted by ID mixing shows the results of ID
mixing, which uses both the xgb

src and xlc
src as described in Section 3.3. In contrast

to when only one of xlc
src or x

gb
src is used, R-ID(gb) is similar to that of R-ID(lc).

It means that the overall identity of xmix by ID mixing is like a new identity, a
mixed identity of xlc

src and xgb
src. Furthermore, R-Shape(gb) has a smaller value

than R-Shape(lc). It means that the face shape of the generated image is more
similar to that of xgb

src than that of xlc
src, which is consistent with Figure 6.

5 Conclusion

We present a state-of-the-art framework for face swapping, MFIM. Our model
adopts the GAN-inversion method using pretrained StyleGAN to generate a
megapixel image and exploits 3DMM to supervise our model. Finally, we design
a new operation, ID mixing, that creates a new identity using multiple source
images and performs face swapping with that new identity.

However, the face swapping model can cause negative impacts on society.
For example, a video made with a malicious purpose (e.g., fake news) can cause
fatal damage to the victim. Nevertheless, it has positive impacts on the enter-
tainment and theatrical industry. In addition, generating elaborate face-swapped
images can contribute to advances in deepfake detection.



MFIM: Megapixel Facial Identity Manipulation 15

Appendix. A Architecture

In this section, we describe the architectures of facial attribute encoder, generator
and discriminator.

Appendix. A.1 Facial Attribute Encoder.

Our facial attribute encoder, which is based on the psp [34] encoder, uses the
same encoder backbone (blue structures denoted as ‘Encoder Blocks’ in Fig-
ure 2a) as the psp encoder. As shown in Figure 2a, the encoder backbone extracts
the hierarchical latent maps from the given image. The M2C and M2M blocks
of our facial attribute encoder extract the style codes and style maps from the
hierarchical latent maps extracted from the backbone, respectively. The details
of encoding process are as follows.

Style codes. The architecture of the M2C block is the same as that of the
Map2Style block of the pSp encoder. However, the pSp encoder produces eigh-
teen style codes because it maps the image to W+ space [2], whereas our facial
attribute encoder maps the image to S space [42], so twenty-six style codes,

{ci}25i=0. Then, the style codes go through the following additional steps:

si = αici + µi, (7)

where {αi}25i=0 is a set of learnable parameters and {µi}25i=0 is a set of style codes
that maps an average latent code of W space [21] to S space. αi, ci, and µi have
the same dimensions.

We extract the style codes from the source image, xsrc, and the target image,
xtgt, respectively, and combine them to construct the final style codes. Let us

denote the style codes extracted from xsrc and xtgt, {ssrci }25i=0 and
{
stgti

}25

i=0
,

respectively. We construct the ID-irrelevant style codes,
{
stgti

}b−1

i=0
, by taking a

subset of
{
stgti

}25

i=0
, and the ID style codes {ssrci }25i=b from {ssrci }25i=0, where b is

a hyperparameter for the border index between the ID and ID-irrelevant style
codes. We set b = 8. Then, the final style codes, {si}25i=0, are constructed by com-

bining
{
stgti

}b−1

i=0
and {ssrci }25i=b. Finally, {si}

25
i=0 is used in weight demodulation

operation [22].

Style maps. Our facial attribute encoder introduces an M2M block with the
architecture depicted in Table 6 to extract the style maps from the target image.
As shown in Table 6, the M2M block takes the latent maps as input and produces
two groups of style maps, which are denoted as Output 0 and Output 1 in
Table 6 respectively, of the same spatial size as the input latent maps.

Our encoder produces a total of four groups of style maps: two groups with a

spatial size of 16×16,
{
m16×16

i

}1

i=0
, and the remaining two groups have a spatial
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Table 6: Architecture of M2M block. M2M block has shared convolutional
layers at the top, but separated convolutional layers at the bottom. All con-
volutional layers have kernel size of 3 × 3, stride of 1, and padding size of 1.
Cin and Cout for the convolutional layer denotes the input and output channel
dimensions, respectively. a for the LeakyReLU layer denotes the negative slope.
To encourage the style maps to be similar to the noise inputs which is used in
StyleGAN pretraining, M2M block has an instance normalization [39] layer at
the last which makes the style maps to be normally distributed.

(Input): latent maps (c, h, w)

Conv (Cin = c, Cout = c)
LeakyReLU (a = 0.01)

Conv (Cin = c, Cout = c′)
LeakyReLU (a = 0.01)

Conv (Cin = c′, Cout = c′) Conv (Cin = c′, Cout = c′)
InstanceNorm InstanceNorm

(Output 0): style maps (c′, h, w) (Output 1): style maps (c′, h, w)

size of 32×32,
{
m32×32

i

}1

i=0
. All of these style maps have the channel dimensions

of 512. Finally, these style maps are given to the pretrained StyleGAN generator
as noise inputs.

Appendix. A.2 Generator

We use the pretrained generator of StyleGAN [22], so we use the same archi-
tecture with StyleGAN without modification except for the mapping network
that maps a random vector z ∈ Z to an intermediate latent space W. We re-
place the mapping network with the facial attribute encoder which produces the
ID-irrelevant style codes, ID style codes and style maps. These are forwarded
appropriately to each layer of the pretrained StyleGAN generator, as shown in
Tables 7 and 8. Table 7 describes the process of face swapping, which uses a
single source image, xsrc, but Table 8 describes the process of id mixing, which
uses the global and local source images, xgb

src and xlc
src.

Appendix. A.3 Discriminator

We use the pretrained discriminator of StyleGAN [22], so we use the same ar-
chitecture with StyleGAN without modification.

Appendix. B Hyperparameters

Table 9 shows weights for each loss to train our model. Following StyleGAN [22],
we use R1 regularization [29] every sixteen training steps. Table 10 shows addi-
tional hyperparameters for optimization. For the optimizer, we use the Ranger
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Table 7: Inputs that each layer of the pretrained StyleGAN generator

takes for face swapping. The ID-irrelevant style codes,
{
stgti

}7

i=0
, and style

maps,
{
m16×16

i

}1

i=0
and

{
m32×32

i

}1

i=0
are extracted from xtgt, while the ID style

codes, {ssrci }25i=8 are extracted from xsrc.

S layer index Resolution Layer name Style code Style code type Style maps

0 4× 4 Conv stgt0 ID-irrelevant -

1 4× 4 ToRGB stgt1 ID-irrelevant -

2 8× 8 ConvUp stgt2 ID-irrelevant -

3 8× 8 Conv stgt3 ID-irrelevant -

4 8× 8 ToRGB stgt4 ID-irrelevant -

5 16× 16 ConvUp stgt5 ID-irrelevant m16×16
0

6 16× 16 Conv stgt6 ID-irrelevant m16×16
1

7 16× 16 ToRGB stgt7 ID-irrelevant -

8 32× 32 ConvUP ssrc8 ID m32×32
0

9 32× 32 Conv ssrc9 ID m32×32
1

10 32× 32 ToRGB ssrc10 ID -

11 64× 64 ConvUP ssrc11 ID -

12 64× 64 Conv ssrc12 ID -

13 64× 64 ToRGB ssrc13 ID -

14 128× 128 ConvUP ssrc14 ID -

15 128× 128 Conv ssrc15 ID -

16 128× 128 ToRGB ssrc16 ID -

17 256× 256 ConvUP ssrc17 ID -

18 256× 256 Conv ssrc18 ID -

19 256× 256 ToRGB ssrc19 ID -

20 512× 512 ConvUP ssrc20 ID -

21 512× 512 Conv ssrc21 ID -

22 512× 512 ToRGB ssrc22 ID -

23 1024× 1024 ConvUP ssrc23 ID -

24 1024× 1024 Conv ssrc24 ID -

25 1024× 1024 ToRGB ssrc25 ID -
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Table 8: Inputs that each layer of the pretrained StyleGAN generator

takes for ID mixing. The ID-irrelevant style codes,
{
stgti

}7

i=0
, and style maps,{

m16×16
i

}1

i=0
and

{
m32×32

i

}1

i=0
are extracted from xtgt. However, the global ID

style codes, {ssrci }9i=8, are extracted from xgb
src, and the local ID style codes,

{ssrci }25i=10, are extracted from xlc
src.

S layer index Resolution Layer name Style code Style code type Style maps

0 4× 4 Conv stgt0 ID-irrelevant -

1 4× 4 ToRGB stgt1 ID-irrelevant -

2 8× 8 ConvUp stgt2 ID-irrelevant -

3 8× 8 Conv stgt3 ID-irrelevant -

4 8× 8 ToRGB stgt4 ID-irrelevant -

5 16× 16 ConvUp stgt5 ID-irrelevant m16×16
0

6 16× 16 Conv stgt6 ID-irrelevant m16×16
1

7 16× 16 ToRGB stgt7 ID-irrelevant -

8 32× 32 ConvUP ssrc8 Global ID m32×32
0

9 32× 32 Conv ssrc9 Global ID m32×32
1

10 32× 32 ToRGB ssrc10 Local ID -

11 64× 64 ConvUP ssrc11 Local ID -

12 64× 64 Conv ssrc12 Local ID -

13 64× 64 ToRGB ssrc13 Local ID -

14 128× 128 ConvUP ssrc14 Local ID -

15 128× 128 Conv ssrc15 Local ID -

16 128× 128 ToRGB ssrc16 Local ID -

17 256× 256 ConvUP ssrc17 Local ID -

18 256× 256 Conv ssrc18 Local ID -

19 256× 256 ToRGB ssrc19 Local ID -

20 512× 512 ConvUP ssrc20 Local ID -

21 512× 512 Conv ssrc21 Local ID -

22 512× 512 ToRGB ssrc22 Local ID -

23 1024× 1024 ConvUP ssrc23 Local ID -

24 1024× 1024 Conv ssrc24 Local ID -

25 1024× 1024 ToRGB ssrc25 Local ID -
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optimizer, which is a combination of RAdam [28] and Lookahead [45], following
pSp [34]. We use a learning rate of 1e− 4 and decrease it by 2e− 5 every 40,000
steps after 500,000 steps. We use a batch size of four, which means that we use
four pairs of source and target images for training. However, for one of the four
pairs, we make the source image and the target image the same, so that the
generator performs self-reconstruction on that pair.

Table 9: Weights for each loss. Each loss is described in the main manuscript.

λid λrecon λadv λR1 λshape λpose λexp R1 step

2.0 1.0 0.1 10.0 5.0 1.0 1.0 16

Table 10: Hyperparameters for optimization. The details are described in
Section Appendix. B.

Training steps Optimizer Learning rate Learning rate decay Batch size Self-recon size

700,000 Ranger 0.0001 Step 4 1

Appendix. C Preprocess and Postprocess

Appendix. C.1 Data preprocess

We use FFHQ [21], which consists of 70,000 human faces at 1024 × 1024 reso-
lution, for the training dataset. It is noteworthy that the most of the previous
face-swapping models [27,41,48,17] extend the training dataset by combining
multiple datasets, but we only use FFHQ. Therefore, our model can be trained
more efficiently because our model does not require any additional preprocess
steps such as image alignment to combine the multiple datasets.

For training, we basically follow the image preprocess protocol of pSp [34].
However, for Ladv and R1, we use the images with the size of 1024 × 1024.
Furthermore, for 3DMM supervision, we preprocess the images by following the
image preprocess protocol of DECA [16] before forwarding the images to DECA
encoder.

Appendix. C.2 Postprocess: ROI Only Synthesis

Our model can faithfully reconstruct the background or hair style of xtgt, but
we can further improve our model to reconstruct the high-frequency details of
the background or hair style via ROI only synthesis.
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Fig. 7:ROI only synthesis. The details are described in Section Appendix. C.2.

Note that it does not require a segmentation label at all. This process is
depicted in Figure 7. Assuming that the image is aligned, we use a mask, which
has a size of 1024× 1024, with a fixed box at the expected location of the face.
Specifically, we set the size of the box to a width of 512 and a height of 608
and top-left coordinates, (top, left), to (384, 256). The inside of the box has a
value of one, and the outside has a value of zero. Then, we blur the boundary
by downsampling the mask to the size of 16× 16 and upsampling it to the size
of 1024× 1024 again. With this mask, the final output image is generated as

m⊙ xswap + (1−m)⊙ xtgt, (8)

where m is a mask and ⊙ is the element-wise product. Note that it is not used
at the training phase, only at the inference phase. Also, we use it only in the
qualitative results, not in the quantitative results at all.

Appendix. D Analysis on 3DMM Supervision

We compare our 3DMM supervision method and that of HifiFace [41]. We first
describe each method and then compare them with experimental results.

Appendix. D.1 Method

For the 3DMM supervision, our model utilizes the 3DMM parameter reconstruc-
tion loss which is formulated as

Lparam = λshapeLshape + λposeLpose + λexpLexp, (9)

where Lshape, Lpose, and Lexp are described in the main manuscript, and λshape,
λpose, and λexp are weights for each loss.

On the other hand, HifiFace utilizes the landmark reconstruction loss. Note
that 3DMM can reconstruct a 3D face using 3DMM parameters and extract
landmark keypoints corresponding to the 3D face. Using this capability, Hifi-

Face encourages the landmark keypoints of the generated image, {qgenk }K
k=1

to



MFIM: Megapixel Facial Identity Manipulation 21

Table 11: Quantitative comparison between Llm and Lparam. The metrics
are the same with those in the main manuscript. Also, the configuration (B) is
the same with that in the main manuscript. Llm and Lparam are the 3DMM
supervision methods of HifiFace [41] and ours, respectively.

Configuration Identity ↓ Shape ↓ Expression ↓ Pose ↓ Pose-HN ↓
B. 96.066 0.887 0.424 0.053 3.839
B + Llm. 96.016 0.892 0.418 0.046 3.683
B + Lparam. 96.153 0.842 0.426 0.060 4.173

be equal to its ground-truth landmark keypoints,
{
qgtk

}K

k=1
. Here, when using

DECA [16], K = 68, and the ground-truth landmark keypoints are extracted
from the reconstructed 3D face using the shape parameter of the source image
and the pose, expression, and cam parameters of the target image. We apply
this method to our model to formulate the landmark reconstruction loss as

Llm =
1

K

K∑
k=1

|| {qgenk } −
{
qgtk

}
||1. (10)

Table 12: Full ablation study of MFIM. This table is the same with the
table of the ablation study in the main manuscript, but the configuration (F) is
newly added.

Configuration Identity ↓ Shape ↓ Expression ↓ Pose ↓ Pose-HN ↓
A. Baseline MFIM 70.160 0.383 1.116 0.145 7.899
B. + style maps 91.430 0.823 0.398 0.051 3.795
C. + Lshape 86.476 0.635 0.864 0.085 5.091
D. + Lpose 86.777 0.634 0.860 0.078 4.797
E. + Lexp 91.469 0.782 0.400 0.057 4.095
F. + Llm 92.018 0.778 0.387 0.041 3.876

Appendix. D.2 Comparison between Llm and Lparam

In Table 11, we compare Llm and Lparam on CelebA-HQ [20]. Here, unlike the
quantitative experiment on CelebA-HQ in the main manuscript, we use 30,000
face-swapped images instead of 300,000. Specifically, we randomly assign an
image to each image in CelebA-HQ and make 30,000 pairs of the source image
and target image.

The configuration (B) in Table 11 is the same with that in the main manuscript.
Then, we construct the configurations (B+Llm) and (B+Lparam) by adding Llm
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and Lparm to the configuration (B), respectively. The configuration (B+Lparam)
is the same with the configuration (E), our proposed model, in the main manuscript.

As shown in Table 11, adding Llm to the configuration (B) does not improve
the shape score while Lparam improves the shape score. However, we can see that
Llm improves the pose score by comparing the configurations (B) and (B+Llm).
We think that this may be because the pose, which is the more global attribute
than the shape and expression, has a greater effect on the landmark regression
than the shape or expression. For this reason, the most effective way to decrease
Llm can be to match the pose of the generated image to that of the target image.
As a result, the model focuses on matching poses, and may not be sufficiently
motivated to improve the shape score.

In contrast, we use a separate loss for each attribute. In particular, to decrease
Lshape, the face shape of the generated image should be the same as that of
the source image. Due to this difference, Lparam can improve the shape score,
while Llm cannot. Although the pose score is somewhat degraded after applying
Lparam, transforming the face shape rather than preserving the pose is one of
our important goals. Furthermore, the configuration (B+Lparam) still shows the
visually plausible results in terms of the pose. Therefore, we propose Lparam as
our 3DMM supervision method.

Appendix. D.3 Combination of Llm and Lparam

Based on the results in Table 11, we further improve our model by combining
Lparam and Llm as shown in Table 12. For the results in Table 12, we use 300,000
face-swapped images, which is the same setting with that of the quantitative
experiment on CelebA-HQ in the main manuscript.

In Table 12, we construct the configuration (F) by adding Llm with the
weight for this loss of 1,000 (i.e., λlm = 1000) to the configuration (E). Here, we
use only some of the landmark keypoints instead of the full landkark keypoints
to encourage our model to further focus on matching the pose. Specifically, we
use {qgenk }

k∈{9,31,37,46,49,55} and
{
qgtk

}
k∈{9,31,37,46,49,55} . As shown in Table 12,

the configuration (F) achieves the better pose and pose-HN scores than the
configuration (E) without deterioration on the shape and expression scores. As
a result, the configuration (F) achieves the better shape, expression, and pose
scores than the configuration (B) at the same time. However, Llm is not our
contribution and the configuration (E) also shows the visually plausible results
in terms of pose, so we propose the configuration (E) as our final model.

Figure 8 shows the qualitative results for several configurations. We construct
the configuration (E+) by adding ROI only synthesis (Section Appendix. C.2)
to the configuration (E). As shown in Figure 8, the configuration (E+) transfers
the ID attributes (e.g., eyes and face shape) of the source image actively while
preserving the ID-irrelevant attributes (e.g., pose and expression) of the target
image. In Figure 8, the differences between the configurations (A) and (B) show
the effectiveness of the style maps, and the differences between the configurations
(B) and (E+) show the effectiveness of the 3DMM supervision.
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Fig. 8: Ablation study of MFIM. The configuration (A) transfers the ID
attributes (e.g., eyes and face shape) of the source image while maintaining the
overall structure and pose of the target image, but cannot reconstruct the details
of the target image. The configuration (B) reconstructs the details of the target
image better than the configuration (A), but the face shape of the source image is
not sufficiently transferred. Finally, the configuration (E+) sufficiently transfers
the face shape of the source image while preserving the ID-irrelevant attributes
(e.g., pose and expression) of the target image. Furthermore, ROI only synthesis
(Section Appendix. C.2) allows our model to preserve the high-frequency details
on hair or background of the target image.
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Fig. 9: Qualitative comparison on ID mixing. MegaFS has a trouble in ID
mixing because it cannot transfer the face shape of the global source image. In
contrast, our model can create a new identity by blending the global (e.g., face
shape) and local (e.g., eyes) ID attributes captured from the global and local
source images, respectively.

Appendix. E Comparison with MegaFS on ID Mixing

One of the state-of-the-art models, MegaFS [48], has a potential to perform ID
mixing because it also exploits the StyleGAN [22] architecture. However, MegaFS
is not good at transforming the face shape as demonstrated in the manuscript.
As a result, in Fig. 9, MegaFS fails to performing ID mixing because it cannot
transfer the round face shape of the global source image to the target image.
It only transfers the eyes of the local source image to the target image. For
this reason, the generated image by MegaFS does not seem an ID-mixed image.
In contrast, our model, MFIM, can transfer the round face shape of the global
source image and the eyes of the local source image at the same time. As a result,
the generated image by MFIM seems an ID-mixed image.

Appendix. F Additional Samples

Figure 10 shows the qualitative results of face swapping on FaceForensics++ [35].
Figures 11, 12, 13, and 14 show the qualitative results of face swapping on
CelebA-HQ [20]. Figure 15 shows the qualitative results of ID mixing on CelebA-
HQ.
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Fig. 10: Qualitative results of face swapping on FaceForensics++. The
leftmost image is the source image, and the uppermost images are the target
frames captured uniformly from the video. The rest of the images are the gen-
erated frames.
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Fig. 11: Qualitative results of face swapping on CelebA-HQ. Our model
faithfully captures ID (e.g., eyes and face shape) and ID-irrelevant (e.g., pose
and expression) attributes from the source and target images, respectively, and
synthesizes a high-quality megapixel image by blending these attributes.
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Fig. 12: Qualitative results of face swapping on CelebA-HQ. Our model
faithfully captures ID (e.g., eyes and face shape) and ID-irrelevant (e.g., pose
and expression) attributes from the source and target images, respectively, and
synthesizes a high-quality megapixel image by blending these attributes.
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Fig. 13: Qualitative results of face swapping on CelebA-HQ. Our model
faithfully captures ID (e.g., eyes and face shape) and ID-irrelevant (e.g., pose
and expression) attributes from the source and target images, respectively, and
synthesizes a high-quality megapixel image by blending these attributes.
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Fig. 14: Qualitative results of large-gap face swapping on CelebA-HQ.
Our model faithfully performs face swapping even with a large gap between the
source and target images (e.g., gender and age).
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Fig. 15: Qualitative results of ID mixing on CelebA-HQ. Our model can
create a new identity by blending the global (e.g., face shape) and local (e.g.,
eyes) ID attributes captured from the global and local source images, respec-
tively.
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