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Fig. 1: Example images and the corresponding foreground masks. Both
are simultaneously generated by our model. FurryGAN learns not only
to generate realistic images, but also to synthesize alpha masks with fine details
such as hair, fur, and whiskers in a fully unsupervised manner (left). Our model
also can be trained on various datasets (right).

Abstract. Foreground-aware image synthesis aims to generate images
as well as their foreground masks. A common approach is to formulate
an image as an masked blending of a foreground image and a background
image. It is a challenging problem because it is prone to reach the trivial
solution where either image overwhelms the other, i.e., the masks be-
come completely full or empty, and the foreground and background are
not meaningfully separated. We present FurryGAN with three key com-
ponents: 1) imposing both the foreground image and the composite image
to be realistic, 2) designing a mask as a combination of coarse and fine
masks, and 3) guiding the generator by an auxiliary mask predictor in the
discriminator. Our method produces realistic images with remarkably de-
tailed alpha masks which cover hair, fur, and whiskers in a fully unsuper-
vised manner. Project page: https://jeongminb.github.io/FurryGAN/
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1 Introduction

As the quality of images from generative adversarial networks (GANs) improves
[9,15,16,13,14], discovering the semantics in their latent space is useful to control
the generation process [27,2,28,40] or to edit real images through latent inversion
[25,26,42,4]. Localizing the semantics in the latent space is another important
research direction for understanding how GANs work. Some methods tackle local
editing by separating parts in the intermediate feature maps [7,17].

Meanwhile, a few recent works tackle foreground-aware image synthesis by
modeling an image as a composition of foreground and background images ac-
cording to a mask. While previous methods achieve some success, they explicitly
prepare a background distribution by removing foreground with an off-the-shelf
object detector [29], assume that images with shifted foreground objects should
look real [5,37], or require multi-stage training with dataset-tailored hyperpa-
rameters [1]. These ingredients are obstacles that block general solutions for
foreground-aware synthesis.

In this paper, we propose FurryGAN which learns to synthesize images with
the explicit understanding of the foreground given only a collection of images.
Intuitions in our method include the following. 1) We encourage the foreground
images and the composite images to resemble the training distribution. It pre-
vents the foreground from losing the objects. 2) We introduce coarse and fine
masks. The coarse mask captures the rough shape, and the fine mask captures
details such as whiskers and hair. 3) We introduce an auxiliary task for the dis-
criminator to predict the mask from the generated image so that the generator
produces the foreground image aligned with the mask.

Compared to the previous works, our method does not require off-the-shelf
networks, the assumption for perturbation, multi-stage training, or careful early
stopping. Experiments demonstrate the superiority of our framework compared
to previous methods regarding high quality alpha masks. We also provide thor-
ough ablation studies to justify each component of our method.

Fig. 1 shows example synthesized images and the corresponding alpha masks.
They catch unprecedented levels of fine details, especially in hair and whiskers.
Consequently, the detailed masks enable natural composition of the foreground
part and any background (Fig. 5). As a byproduct, GAN inversion on our method
achieves unsupervised object segmentation with the same level of details.

2 Related Work

GANs and semantic interpretation. GANs [15,16,14] synthesize astonish-
ingly high quality images from random latent codes. Understanding semantic
interpretation of the latent codes is an important research topic so that users
can control the generation process or edit real images through latent inversion
[27,42,30,26,35]. Instead, we focus on teaching GANs spatial understanding of
foreground objects.
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Foreground-aware GANs. Although semantic interpretation has some cor-
relation with spatial separation, incorporating the notion of foreground objects
has been tackled in the orthogonal direction, mostly by modeling an image as
a combination of foreground and background according to a mask. PSeg [5]
and improved layered GAN [37] rely on an assumption that the composite im-
age with spatially transformed foreground should still be realistic. However, the
parameters for the transformation should be determined for each dataset, and
the assumption does not hold when the foreground region touches a border
of the image. In [32,20,33], they identify the latent directions in a pretrained
generator for changing the background to separate the foreground and back-
ground. Labels4Free [1] trains an alpha mask network that produces masks for
combining foregrounds and backgrounds, generated by pretrained StyleGAN2
and pretrained pseudo-background StyleGAN2, respectively. Whereas it requires
multi-stage training with tailored hyperparameters, our framework is trained in
end-to-end fashion and produces remarkably fine details in the masks.

Unsupervised segmentation. Early image segmentation methods rely on the
clustering of color and coordinates [3,8]. In order to cluster the regions regard-
ing semantics, learning deep networks for maximizing mutual information within
the cluster [12,24] or for contrasting different instances [31] have been success-
ful. These objectives assume multiple classes and are not straightforward to be
applied in foreground-background separation. Given a generator for foreground-
aware image synthesis, inverting a real image to the latent space inherently leads
to unsupervised foreground segmentation. Thus we focus on a better understand-
ing of foreground in GANs.

3D-aware GANs. 3D-aware GANs based on NeRF [22] represent a scene as a
neural network which receives 3D coordinates and outputs their color or feature
vector with occupancy. Furthermore, recent approaches divide the scene into
foreground and background by a depth threshold [10,41] or separate feature
fields [23]. However, they aim to understand the 3D geometry of the scene and
do not explicitly learn to generate high quality foreground alpha masks.

3 Method

In this section, we overview our framework (§ 3.1), describe the networks (§ 3.2),
and explain their training techniques including loss functions (§ 3.3). To begin
with, we briefly introduce a common formulation.

Common formulation. We follow the common formulation [1,5,29,37] for gen-
erating images: an image is a masked combination of a foreground image xfg and
a background image xbg, according to an alpha mask m. Formally,

xcomp = m⊙ xfg + (1−m)⊙ xbg, (1)

where ⊙ denotes pixel-wise multiplication.
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Fig. 2: Our framework. consists of a foreground generator, a mask generator,
a background generator, and a discriminator with a mask predictor. The alpha
mask specifies the combination of the foreground image and the background
image to produce the composite image. We feed both the foreground images and
the composite images to the discriminator as fake images.

3.1 Framework overview and dual fake input strategy

Fig. 2 shows the framework overview. FurryGAN has three generators for the
foreground, background, and mask to produce the composite images according to
Eq. (1). Then the discriminator guides the generator to produce realistic images.

Dual fake input strategy. Guiding the generator to produce realistic com-
posite images solely does not guarantee the separation of the foreground and
background. Motivation of the dual fake input is the following. The foreground
images should contain salient objects (e.g., a person in FFHQ) so that there
exists a solution for the masks to produce realistic composite images including
the foreground images. Otherwise, the mask will favor excluding the foreground
images from the composite images. Hence, we ensure the foreground images
to contain salient objects by imposing a sufficient condition: being realistic by
themselves. The fake mini-batch for the discriminator consists of the foreground
images and the composite images (Fig. 3(a)). Then the discriminator tries to
classify them as fakes and the generator tries to produce realistic images in
both the foreground and the composite images. We find that the dual fake input
strategy helps prevent improper foreground separation.

3.2 Architecture

Generators. The foreground and background generators, Gfg and Gbg, syn-
thesize images xfg and xbg from latent codes zfg and zbg, respectively. The
two generators do not share any parameters. The mask generator Gmask synthe-
sizes m from the penultimate feature maps of the foreground generator. Then,
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Fig. 3: Dual fake input strategy and mask generators. (a) Our discrim-
inator receives the foreground images and the composite images as fake. They
evenly share a fake mini-batch. (b) Our mask generator produces an alpha mask
as a combination of a coarse mask and a fine mask.

their simple alpha-blending produces the composite image xcomp (Eq. (1)). Note
that the composite function causes unexpected additional degree of freedom:
xfg ⊙ m = 2 · xfg ⊙ 0.5 · m. Thus we restrict the generators’ outputs to be in
range of [−1, 1] by adding a tanh function at the output of the ToRGB layer.

Coarse and fine mask generator. As shown in Fig. 3 (b), our mask generator
consists of a coarse mask network Gmcoarse

and a fine mask network Gmfine
. We

expect the coarse mask network to cover the overall shape and the fine mask
network to make up for the details missed in the coarse mask (e.g., cat whiskers,
fur, and hair). Each mask is normalized to the range of [0,1] by min-max nor-
malization and their summation becomes the final alpha mask. The final mask
m is computed as:

mcoarse = Gmcoarse
(f), mfine = Gmfine

(f), (2)

m = clip(mcoarse + γmfine, 0, 1), (3)

where f denotes the penultimate feature maps of the foreground generator. The
design details are described in the appendix (§ E). For stability, we fade in the
fine mask by linearly increasing γ from 0 to 1 over the first 5K iterations.

Discriminator with a mask predictor. We follow the discriminator architec-
ture of StyleGAN2 [16] and add an auxiliary mask predictor. The mask predictor
tries to reconstruct the mask of an input image given the 16× 16 feature maps.
It has minimal capacity for predicting the masks, i.e., two 1 × 1 convolutional
layers and residual connections. How it guides the generators will be discussed
in the following section (Eq. (4) and Eq. (5)).

3.3 Training objectives

Adversarial loss. As described in § 3.1, we impose adversarial losses on the
foreground image and the composite image. We adopt non-saturating loss [9]
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(a) Corner cases without mask consistency loss

(b) Illustration of the mask consistency loss

Fig. 4: Mask consistency loss. (a) Results without mask consistency loss show
inconsistency between foreground images and composite images, e.g., cutting off
long hair or adding shoulders. (b) Mask consistency loss computes discrepancy
between the predicted masks of the foreground and composite images. // denotes
a stop gradient operator.

and lazy R1-regularization [21,16] and skip defining trivial equations LD
adv, L

D
R1,

and LG
adv for brevity. Adversarial losses act as the primary source for driving

foreground-aware image synthesis.

Mask prediction loss. The auxiliary mask predictor Daux in the discriminator
aims to regress the generated mask given the generated image:

Lpred =
1

|m̂|
∥Downsample(m)− m̂∥22, (4)

where m̂ is the output of Daux for the generated images (xfg and xcomp). We
use bilinear interpolation for Downsample. The 16×16 prediction will be useful
for guiding the generator in conjunction with Eq. (5).

Mask consistency loss. We observe that object regions of foreground xfg and
composite xcomp can be inconsistent. For example, the mask may cut off the
long hair in the foreground so that the composite image becomes a face with
short hair. As another example, the missing body part of the foreground object
may be supplemented from the background (both cases are shown in Fig. 4(a)).

Hence, we demand the mask predicted from the composite image to be con-
sistent to the mask predicted from the foreground image (Fig. 4(b)):

Lconsistency =
1

|m̂comp|
∥Daux(stopgrad(xfg))− m̂comp∥22, (5)
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where m̂comp = Daux(xcomp) and stopgrad(·) denotes a stop gradient operator.
As the mask predictor regresses the mask from the mask generator given a

composite image, imposing consistency between the two masks encourages the
foreground object region and the generated mask to resemble each other.

Coarse mask loss. We adopt binarization loss and area loss following previous
methods [5,1]. The binarization loss pushes the alpha values in the masks to
either 0 or 1:

Lbinary = E[min(mcoarse, 1−mcoarse)]. (6)

The area loss penalizes the ratio of a mask being less than ϕ1 to promote using
the foreground images more than ϕ1, i.e., preventing the background image from
taking charge of everywhere, which is a degenerate solution:

Lcoarse
area = max(0, ϕ1 −

1

|mcoarse|
∑

mcoarse), (7)

where |m| denotes the number of pixels in the mask image and ϕ1 is set to 0.35
for all experiments (unless otherwise noted). The final coarse mask loss is:

Lmcoarse
= Lbinary + Lcoarse

area . (8)

Fine mask loss. The fine mask aims to capture details like hair, fur, and
whiskers. Such a thin body becomes transparent due to the property of light.
Hence, we do not use the binarization loss to free the masks to bear medium
values between 0 and 1. Instead, we impose an inverse area loss to prevent the
fine mask from taking charge of too large area:

Lmfine
= Lfine

area = max(0, ϕ2 −
1

|m̃fine|
∑

(1− m̃fine)), (9)

where m̃fine = m − mcoarse to penalize the area where the fine mask actually
contributes after clipping. ϕ2 is set to 0.01 in all experiments. More details about
the mask are illustrated in Appendix E.

Background participation loss. We sometimes observe that the alpha mask
tries to employ foreground images excessively. As a remedy, we penalize the
difference between the composite image and the background image. It indirectly
removes the excessive spread of the alpha mask.

Lreg =
1

|xcomp|
∥xcomp − xbg∥22 (10)

Intuitively, an easy way to reduce the difference between the composite image
and the background is to remove unnecessary foreground areas that do not harm
the realism of the composite image.
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Overall objective. Consequently, our full loss functions are:

LD
total = LD

adv + LD
R1 + Lpred, (11)

LG
total = LG

adv + Lconsistency + λcoarseLmcoarse + λfineLmfine
+ Lreg. (12)

4 Experiments

4.1 Implementation Detail

Our foreground generator and background generator are based on StyleGAN2[16].
For simplicity, we remove output skip connections in the synthesis network and
use a shallow mapping network [13]. The foreground and background generators,
Gfg and Gbg, use a slightly modified StyleGAN2 structure. Number of channels
of the latent codes and the feature maps in Gfg and Gbg become ¾ and ¼, respec-
tively. As a result, the total number of parameters reduces by about half. Similar
to [37], background codes are shared with foreground codes. More precisely, we
borrow the front part of the zfg ∼ N (0, I) and use it as zbg.

We train our model on a single RTX-3090 for a period of about 100 hours.
In all experiments, we trained our model for 300K iterations with a batch size
of 16. We follow training parameters from StyleGAN2 but do not use mixing
regularization. Mask consistency loss and background participation loss update
the model every other iteration. We set λcoarse = λfine = 5. The coefficient of
binarization loss is linearly reduced to 0.5 over the first 5K iterations.

4.2 Setup

Datasets. We evaluate our model on FFHQ[15] and AFHQv2-Cat[6,14]. FFHQ
has 70,000 high-quality images of human faces. It has faces of various races and
poses and also has good coverage of accessories such as eyeglasses, hats, etc.
AFHQv2-Cat contains 5000 images of cat faces. The rebuilt (v2) dataset has
higher quality due to proper resizing and compression. We also trained our model
on unaligned datasets such as LSUN-Object [39], and CUB[34] (see Appendix F
for details and results). All models are trained at 256×256 resolution.

Pseudo ground truth masks. We evaluate the generated mask quality to
show foreground-background separation performance. Because the generated im-
ages do not contain ground truth masks for evaluating the generated foreground
masks, we adopt TRACER [19] to prepare pseudo ground truth masks. It pro-
vides detailed masks including hair and whiskers, which are not captured by
segmentation networks used in PSeg [5] and Labels4Free [1]. Please refer to
Appendix B for their comparison.
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(a) Generated foreground on generated background (b) Generated foreground on real background

Fig. 5: Composite images. The same person is placed on the vertical axis, and
the same background is placed on the horizontal axis.
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Fig. 6: Latent space interpolation. We show the mask changes naturally as
the image changes.

Metrics. To quantitatively measure the quality of images, we compute Fréchet
Inception Distance (FID)[11] between generated foreground images and all train-
ing images. Unless otherwise specified, all results were obtained with 50,000 gen-
erated images following [13,14]. To quantitatively measure the quality of masks,
we employ intersection over union (IoU) for the foreground and background,
and their mean (mIoU). IoU and mIoU measure the overlap between prediction
masks and ground truth masks. Furthermore, we report standard segmentation
metrics: precision, recall, F1 score, and segmentation accuracy following [1].

4.3 Experiments about masked foregrounds

Thanks to the high quality mask generated by our model, the masked foreground
object can be naturally combined with various backgrounds, as shown in Fig. 5.
We sample random background latent codes for the backgrounds used in Fig. 5
(a). Fig. 6 shows that the interpolation in the foreground latent space not only
changes the image but also changes the shape of masks correspondingly.
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Fig. 7:Ablation of dual fake input strategy. Each row shows the early results
as training proceeds. (a)without dual fake input, foreground object has shown
in background image. (b)With dual fake input, it is separated naturally.

4.4 Ablation study

Dual fake input strategy. Fig. 7(a) shows that the foreground and mask
generator fail to synthesize meaningful foreground and mask, respectively, with-
out the dual fake input strategy. We suppose that it is easier for the generators
to focus on the background to synthesize realistic composite images because the
foreground generator has a more complicated task: producing foreground images
and the masks with more parameters. On the other hand, with the dual fake
input strategy, the foreground images have clear objects as they should resemble
the training images (Fig. 7(b)).

Ablation of losses. Fig. 8 visually compares the results without one compo-
nent at a time and our full method. Without background participation loss (Eq.
(10)), the masks tend to be wider than the foreground object area. Without
mask consistency loss (Eq. (5)), the mask does not align correctly with the fore-
ground object region. Without the fine mask network, the fine details in the mask
tend to be less accurate, especially on the region between hair and background.
With all components combined, our method produces fine masks aligned to the
foreground object region.

Table 1 provides quantitative ablation study. Decrease in quality of masks
show the necessity of background participation loss and mask consistency loss.
Ablating any of the components harms FID, implying that spatial understanding
in the generators is important for the quality of images. We suppose that the
influence of the fine mask generator is negligible in the metrics for the masks
because the metrics are not sensitive enough to reflect changes in small area.
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(d) Ours(a) w/o BG Participation Loss (b) w/o Mask Consistency Loss (c) w/o Fine Mask Network
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Fig. 8: Ablation of our methods. Three columns show the result without one
component. (a) The masks have background area. (b) The masks are not align
correctly with the foreground object region. (c) The masks bring the surrounding
background. (d) our method produces fine-grained masks.

Table 1: Quantitative comparison of ablation study on FFHQ.

Setting IoU(fg/bg) mIoU recall precision F1 Accuracy FID

w/o Fine Mask Network 0.93/0.83 0.88 0.95 0.98 0.96 0.93 9.48

w/o BG Participation 0.91/0.77 0.84 0.97 0.94 0.95 0.91 9.79

w/o Mask Consistency 0.92/0.81 0.86 0.93 0.98 0.96 0.92 9.53

Full ours 0.93/0.82 0.88 0.95 0.98 0.96 0.93 8.72

4.5 Comparisons

Competitors. We choose PSeg1 [5] and Labels4Free2 (L4F in short, [1]) as our
competitors. For a fair comparison, we trained L4F in FFHQ and AFHQ un-
der the same conditions, i.e., batch size, data augmentations, training iterations.
We pretrain StyleGAN23 for 256× 256 resolution and then train the alpha net-
work with its official setting. As Labels4Free does not conduct experiments on
AFHQ, we train their alpha network for the same number of iterations on FFHQ
(=1K), and manually find the working hyperparameters: λ2 = 3 and ϕ2 = 0.24.
For PSeg, we add additional layers to their networks for 256 × 256 resolution
since PSeg conducts their experiments in 128 × 128 resolution. When training
Pseg, we followed the default setting reported in the paper. We do not include
FineGAN [29] because it does not focus on foreground-background separation
and it requires an external pretrained object detector for supervision.

1 https://github.com/adambielski/perturbed-seg
2 https://github.com/RameenAbdal/Labels4Free
3 https://github.com/rosinality/stylegan2-pytorch
4 Without setting ϕ2, all masks of Labels4Free saturate to 1.
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CompositeMask BackgroundForeground CompositeMask BackgroundForeground
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(a) FFHQ (b) AFHQv2-Cat

Fig. 9: Qualitative comparison of image composition results on FFHQ and
AFHQv2-Cat.

Qualitative Results. Fig. 9 provides a qualitative comparison between the
methods. PSeg rarely succeeds in synthesizing proper foreground images and
mostly draws objects on the background images. We suppose the reason to be
the unmet assumption: for faces, the foreground cannot help touching the edges,
thus shifting the foreground will not be realistic. Labels4Free somewhat successes
separating foregrounds. However, their masks are not accurate enough and the
composition leaves artifacts on the boundaries. In contrast, our method produces
masks that accurately capture the foreground object, even including hair, fur,
and whiskers. Uncurated samples can be found in Appendix A

Quantitative Results. Table 2 reports how well the masks align with the fore-
ground object region. The pseudo ground truth masks are obtained by feeding
the foreground images to TRACER [19]. Our method consistently outperforms
the competitors in all settings: different levels of truncation and datasets. Ap-
pendix C provides the results with other choices of pseudo ground truth.

Table 3 quantitatively compares the visual quality of the generated images.
Our method achieves FIDs comparable to Labels4Free whose foreground gener-
ator equals the pretrained StyleGAN2 while drastically improving the masks.



FurryGAN 13

Table 2: Quantitative comparison of alpha mask results on FFHQ and AFHQv2-
Cat. We report the result with/without truncation(ψ=1.0, 0.7) and the threshold
for the mask is 0.5(Ours, PSeg) and 0.9(L4F).

ψ method IoU(fg/bg) mIoU recall precision F1 Accuracy

FFHQ

1.0

PSeg 0.05/0.23 0.14 0.05 0.18 0.07 0.05

L4F 0.87/0.70 0.78 0.92 0.94 0.93 0.87

Ours 0.93/0.82 0.88 0.95 0.98 0.96 0.93

0.7

PSeg 0.01/0.23 0.12 0.01 0.04 0.01 0.01

L4F 0.91/0.79 0.85 0.94 0.97 0.95 0.91

Ours 0.95/0.88 0.91 0.95 0.99 0.97 0.95

AFHQv2-Cat

1.0

PSeg 0.06/0.23 0.15 0.06 0.16 0.07 0.06

L4F 0.91/0.80 0.86 0.93 0.98 0.95 0.91

Ours 0.94/0.82 0.88 0.98 0.96 0.97 0.94

0.7

PSeg 0.01/0.19 0.10 0.01 0.12 0.01 0.01

L4F 0.91/0.79 0.85 0.94 0.97 0.95 0.91

Ours 0.95/0.87 0.91 0.98 0.97 0.97 0.95

Table 3: Quantitative comparison of generated foreground images on FFHQ and
AFHQv2-Cat. Foreground generator of L4F equals to the pretrained StyleGAN2.

FID

FFHQ AFHQv2-Cat

Pseg 62.44 12.71

Labels4Free (=StyleGAN2) 6.51 5.19

Ours 8.72 6.34

4.6 Segmenting real images.

In addition, we demonstrate an extension of our method for segmenting real
images. Following Labels4Free, we use 1K images and their ground truth seg-
mentation masks from CelebAMask-HQ dataset [18] for evaluation. We employ
the original inversion method from StyleGAN2. While Table 4 shows that our
method achieves similar performance, Fig. 10 shows that our method produces
much more accurate and finer masks.

5 Conclusion and discussion

Understanding spatial semantics in the synthesized images is an important re-
search problem in GANs. In this paper, we proposed a GAN framework for
foreground-aware image synthesis, generating images as a combination of fore-
ground and background according to a mask. Our method achieves dramatic
improvement in the fine details of the masks without any supervision or dataset-
tailored assumption. Our model also can be trained on unaligned datasets such
as LSUN, indicating that our method generally works well.
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Table 4: Quantitative comparison of alpha masks from inverted real images on
CelebAMask-HQ. We report the result with the original inversion method from
StyleGAN2 and the threshold for the mask is 0.5(Ours) and 0.9(Labels4Free).

IoU(fg/bg) mIoU recall precision f1 accuracy

Labels4Free 0.93/0.81 0.87 0.97 0.95 0.96 0.93

Ours 0.92/0.81 0.87 0.95 0.97 0.96 0.92

Real Image Ground Truth Labels4Free Ours Real Image Ground Truth Labels4Free Ours

Fig. 10: Visual comparison on segmenting real images.

모델파라미터수를재보니
PSeg
G = 52.2M (G_F = 26.1M, G_B = 26.1M)
D = 25.4M

Labels4Free (StyleGAN2)
G = 30.0M
D = 28.9M

Ours
G = 17.0M (G_F = 15.3M, G_B = 1.69M)
D = 29.2M

Fig. 11: Various kinds of failures in our model (foreground-mask pair).

However, we observe exceptional cases where the mask generator struggles in
Fig. 11. We suggest one of the main reasons to be the ambiguity of the task itself.
In CompCars [36], the road below the vehicles is often marked as foreground. It
is a reasonable choice because the road is physically close to the vehicles. Using
a minimal amount of human supervision for resolving such ambiguity would be a
sensible research direction, e.g., specifying foreground or background by scribbles
on one or a few images. In some cases, the mask misses a small portion of the
object area. This might be because the composite image is natural enough, even
if the mask is inappropriate. We hope that our success in the common datasets
in GAN literature sheds light on foreground-aware image synthesis.

Acknowledgement This work was supported by the National Research Foun-
dation of Korea(NRF) grant (No. 2022R1F1A107624111) funded by the Korea
government (MSIT).
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We provide the following supplementary materials:

A Uncurated visual comparison of Labels4Free and ours
B Choice of pseudo ground truth masks
C Quantitative results with alternative pseudo ground truth masks
D Examples of style mixing
E Additional details and visualization of the mask
F Results on unaligned datasets (LSUN-Church, LSUN-Horse, and CUB)
G User study on mask quality (between Lables4Free and ours)

A Uncurated comparison

Fig. S7-S8 (located at the end for clear spacing) present uncurated visual compar-
isons between Labels4Free and ours on FFHQ and AFHQv2-Cat. The columns
represent foreground images, alpha masks, and composite images with generated
backgrounds. While Labels4Free often misses clothes and whiskers, our method
produces more accurate and detailed masks, especially on hair, fur, and whiskers.
Consistency between the generated masks and the actual foreground region in
the composite image also demonstrates the superiority of our method.

B Choice of pseudo ground truth masks

In this section, we provide the grounds for choosing TRACER (TE7) [19] to
prepare pseudo ground truth masks over BiSeNet [38] (in Labels4Free [1]) and
Mask R-CNN1 (in PSeg [5]). As FFHQ do not have ground truth masks, we
manually annotate ten images for the evaluation. The images are broadly chosen
to cover various ages, genders, ethnic groups, and accessories. Fig. S1 shows the
chosen images, annotated ground truths, and the pseudo ground truths from the
methods. The quantitative comparison also reveals that TRACER achieves the
best performance. Note that CelebAMask-HQ does not suffice to serve as the
benchmark because BiSeNet is trained on it.

Fig. S2 further contrast the performance of the methods. On FFHQ, TRACER
captures even hair while BiSeNet struggles. On AFHQv2-Cat, TRACER pre-
cisely captures even long fur on the ears and the top of the heads.

⋆ Corresponding author
1 https://github.com/facebookresearch/maskrcnn-benchmark
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Fig. S1: Qualitative comparison of masks. We manually annotated ground
truth masks (second row). TRACER produces masks very similar to the ground
truth. BiSeNet also shows acceptable performance, but it often misclassifies the
background as a foreground (3rd, 9th column) and vice versa (10th column).
Mask R-CNN is relatively poor in quality, especially near the borders of the
mask.

method IoU(fg/bg) mIoU recall precision F1 Accuracy

Mask R-CNN 0.92/0.85 0.88 0.97 0.94 0.96 0.92

BiSeNet 0.98/0.96 0.97 0.99 0.99 0.99 0.98

TRACER 0.99/0.97 0.98 1.00 0.99 0.99 0.99

Table S1: Quantitative comparison of predicted masks on the ten se-
lected FFHQ images. We evaluate the performance of the models with ten
manually annotated ground truth masks.

C Quantitative evaluation with alternative pseudo
ground truth masks

In this section, we report quantitative results with other choices of generating
pseudo ground truth masks: BiSeNet for FFHQ and Mask R-CNN for AFHQv2-
Cat following Labels4Free2. Table S2 confirms the same rankings as the ones with
TRACER; our method consistently outperforms the competitors in all settings.

2 Labels4Free uses Mask R-CNN for LSUN-Cat.
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(a) Examples of predicted mask on FFHQ (b) Examples of predicted mask on AFHQv2-Cat

Fig. S2: Further comparison of TRACER and other methods. We evalu-
ate each model on real images from FFHQ and AFHQv2-Cat datasets.

ψ method IoU(fg/bg) mIoU recall precision F1 Accuracy

FFHQ

(BiSeNet)

1.0

PSeg 0.05/0.24 0.14 0.05 0.16 0.07 0.05

L4F 0.86/0.70 0.78 0.93 0.92 0.92 0.86

Ours 0.92/0.80 0.86 0.95 0.96 0.95 0.92

0.7

PSeg 0.01/0.23 0.12 0.01 0.04 0.01 0.01

L4F 0.94/0.87 0.91 0.96 0.99 0.97 0.94

Ours 0.95/0.89 0.92 0.96 0.99 0.97 0.95

AFHQv2-Cat

(Mask R-CNN)

1.0

PSeg 0.06/0.21 0.13 0.06 0.17 0.07 0.06

L4F 0.88/0.72 0.80 0.91 0.97 0.94 0.88

Ours 0.91/0.72 0.81 0.95 0.95 0.95 0.91

0.7

PSeg 0.01/0.17 0.09 0.01 0.13 0.01 0.01

L4F 0.91/0.77 0.84 0.92 0.98 0.95 0.91

Ours 0.92/0.77 0.84 0.95 0.96 0.96 0.92

Table S2: Quantitative comparison of alpha masks on FFHQ and
AFHQv2-Cat. We use results of BiSeNet trained on CelebAMask-HQ as
ground truth for FFHQ and results of Facebook’s Detectron2 Mask R-CNN
Model (R101-FPN) as ground truth for AFHQv2-Cat. We report the result
with/without truncation trick (ψ=0.7, 1.0). The threshold for the alpha mask is
0.5 in ours and PSeg, and 0.9 in Labels4Free.

D Style mixing

Our generator supports style mixing since it is based on StyleGAN2. As coarse
style affects shape in StyleGAN2, the masks of the coarse source determine the
masks of the mixed results in our generator (Fig. S3). Note that we do not use
mixing regularization during the training.
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Source A Source B Coarse from B Middle from B Fine from B

Fig. S3: The two leftmost columns are source images denoted by A and B. The
right side of the figure is the result of using the latent code of B instead of the la-
tent code of A in the coarse (42-82), middle (162-322), and fine (642-2562) layers,
respectively. We demonstrate masked foreground images to show the changes in
the foreground mask according to different style mixing. In addition, we provide
the composite image and mask in the upper left corner of each image.

ModConv+ReLUA

Ch-axis AvgpoolCoarse Mask 
Network
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Fig. S4: Architecture of the mask generator and the mask predictor.
Coarse and fine mask networks use the same structure shown in the upper right
corner of (a). γ is defined in Eq. (3). For brevity, we omit the LeakyReLU
activation function between the convolution layers of the right branch in (b).
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E Details about masks

In this section, we present the motivation for introducing fine masks and show
additional mask visualizations. We assumed that the binarization loss (Eq. (6))
makes it difficult for the model to learn the matting-like details in the mask.
These fine details are expected to occupy only a small part around the object
boundary. Accordingly, we do not use binarization loss for the fine masks and
use a very low threshold value for the inverse area loss (Eq. (9)).

We show some examples of coarse and fine masks in Fig. S5. As mentioned
in Eq. (9), we penalize the area where the fine mask actually contributes to
the final mask (the rightmost column of Fig. S5). Our generator can produce
detailed alpha masks using the fine mask as needed. Finally, Fig. S4 illustrates
architectures of the mask generator and the mask predictor.

(b) Mask(a) Foreground (c) Coarse Mask (d) Fine Mask (b) – (c)

Fig. S5: Visualization of coarse and fine masks. We generate a final mask
by summing up coarse and fine masks and then clipping it to the range in [0,1].
Due to the clipping operation, the area where the fine mask contributes to the
final mask is the difference between the final mask and the coarse mask.
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F Results on Unaligned Datasets

We also conducted training on unaligned datasets such as CUB and LSUN-
Object. There are some changes in the training setting for this: 1) The coefficient
of binarization loss is linearly reduced to 2.0 over the first 5K iterations. (default
is 0.5). 2) We apply mask consistency loss after 5K iterations. 3) The average
operation of the mask area loss is calculated for the mini-batch (not for each
sample). 4) we set ϕ1 = 0.2 for LSUN-Object, and ϕ1 = 0.1 for CUB (Eq. (7)).

For LSUN-Object datasets, we use the first 100K images. We preprocess all
datasets by center cropping and rescaling them to 256×256. Fig. S6 shows the
results of selected samples for three unstructured datasets.
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(a) CUB (b) LSUN-Church (c) LSUN-Horse

Fig. S6: Curated qualitative results on unaligned datasets.
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G User Study on Mask Quality

To further evaluate the mask performance of our model, we asked 50 partic-
ipants to choose more precise masks between ours and Labels4Free. In Table
S3 (a), we report the results for ten random matches of generated image-mask
pair used in Fig. S7-S8. In Table S3 (b), we report the results for the quality
of masks obtained through the inversion of 20 real images (CelebAMask-HQ).
For real image segmentation, both models were trained on FFHQ. Our model
outperforms Labels4Free in mask quality of generated images and segmentation
results of real images.

Table S3: The reported values mean the preference rate of mask outputs from
ours against Labels4Free.

(a) Generated (b) Real
AFHQv2-Cat FFHQ CelebA-HQ

Labels4Free 15.8% 11.2% 11.8%
Ours 84.2% 88.8% 88.2%
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(a) Labels4Free (b) Ours

Fig. S7: Uncurated qualitative comparison of image composition results on
FFHQ, with truncation setting ψ = 0.7.
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(a) Labels4Free (b) Ours
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Fig. S8: Uncurated qualitative comparison of image composition results on
AFHQ, with truncation setting ψ = 0.7.
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