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Fig. 1: Unique distortions in video frame interpolation results.

Abstract. Research on video frame interpolation has made significant
progress in recent years. However, existing methods mostly use off-the-
shelf metrics to measure the quality of interpolation results with the
exception of a few methods that employ user studies, which is time-
consuming. As video frame interpolation results often exhibit unique ar-
tifacts, existing quality metrics sometimes are not consistent with human
perception when measuring the interpolation results. Some recent deep
learning-based perceptual quality metrics are shown more consistent with
human judgments, but their performance on videos is compromised since
they do not consider temporal information. In this paper, we present a
dedicated perceptual quality metric for measuring video frame interpola-
tion results. Our method learns perceptual features directly from videos
instead of individual frames. It compares pyramid features extracted
from video frames and employs Swin Transformer blocks-based spatio-
temporal modules to extract spatio-temporal information. To train our
metric, we collected a new video frame interpolation quality assessment
dataset. Our experiments show that our dedicated quality metric out-
performs state-of-the-art methods when measuring video frame inter-
polation results. Our code and model are made publicly available at
https://github.com/hqqxyy/VFIPS.

1 Introduction

Video frame interpolation aims to generate frames between consecutive frames.
It has attracted a lot of attention because of its wide applications in video
editing [53], video generation [38, 39], optical flow estimation [49, 89], and video
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compression [87]. Consequentially, great progress has been made and many video
frame interpolation methods are available [4, 15, 30, 31, 40, 42, 57, 58, 64, 72, 73].

To evaluate the quality of video frame interpolation results, most interpo-
lation methods rely on traditional metrics, such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) [79]. These metrics
estimate perceptual similarity between images by comparing the difference be-
tween pixels or carefully designed low-level visual patterns. While such methods
achieve promising results, adapting them to measure video frame interpolation
results is challenging. First, these metrics have been designed for general tasks
such as video compression and other common low-level computer vision tasks,
like super resolution, deblurring, and denoising, not specifically for video frame
interpolation. Hence, these metrics are not optimal for measuring the quality
of video frame interpolation results. As shown in Figure 1, video frame inter-
polation methods exhibit unique distortions. For example, the telegraph pole
is twisted out of shape and the wings of the duck have ghosting artifacts. Sec-
ond, traditional metrics rely on low-level features, such as per-pixel distance,
and structure similarity [79]. However, human perception is highly complex, and
hence, low-level features are insufficient for assessing the perceptual quality [97].
These shortcomings motivate us to develop a dedicated quality metric for video
frame interpolation.

Our research is inspired by the recent deep learning approaches to image
quality assessment [6, 17, 20, 21, 32, 33, 35, 36, 41, 76, 91, 97]. Deep learning ap-
proaches, such as LPIPS [97], take an image and its reference image as input and
output the perceptual score. Instead of comparing low-level features, they learn
perceptual similarity from the internal features of deep convolutional networks.
Such methods have shown great success for image perceptual quality assessment.
However, applying these metrics to video frame interpolation results frame by
frame ignores the temporal information in the videos, which often make these
metrics inconsistent with human perception.

This paper presents a learned perceptual video similarity metric dedicated to
video frame interpolation results. It takes an interpolated video and its reference
ground-truth video as input and outputs the perceptual similarity between them.
It builds upon state-of-the-art image perceptual quality metrics but extends
to videos, leading to a naturally spatio-temporal architecture. Specifically, our
network extracts the features from each frame. Then, we design a dedicated
spatio-temporal module to capture the spatio-temporal information from videos.
This spatio-temporal module consists of the Swin Transformer blocks [47], which
can explore the interaction among different regions, learn to attend the important
regions, and extract spatio-temporal video information.

To train our network, we collected a large Video Frame Interpolation Per-
ceptual Similarity (VFIPS) dataset that contains 25,887 video triplets. Each
video triplet contains two interpolated videos, their reference video, and the
corresponding perceptual preference. Our dataset consists of various artifacts
generated by eleven state-of-the-art video frame interpolation methods [4, 5, 15,
30, 40, 42, 46, 57, 58, 59, 64]. With this dataset, we train our video perceptual
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metric using Binary Cross Entropy (BCE) as the loss function in an end-to-end
manner. Our experiments show that our metric outperforms existing metrics
significantly when measuring video frame interpolation results.

This paper contributes to the research on video frame interpolation and per-
ceptual quality assessment by 1) providing the first video perceptual similarity
metric dedicated to video frame interpolation, 2) designing a novel neural net-
work architecture for video perceptual quality assessment based on the Swin
Transformers, and 3) building a large video frame interpolation perceptual sim-
ilarity dataset.

2 Related Work

This paper investigates quality assessment of video frame interpolation results.
Below, we first briefly survey video frame interpolation methods. Then we discuss
traditional video quality metrics and recent deep-learning-based approaches. We
also discuss video quality assessment datasets and vision transformers.

Video frame interpolation. Video frame interpolation aims to estimate
intermediate frames between two consecutive frames. They can be classified into
three categories: kernel-based methods [59, 60, 61, 62, 92], phase-based meth-
ods [54, 55], and flow-based methods [4, 5, 13, 16, 18, 28, 29, 30, 40, 42, 46,
48, 57, 58, 64, 65, 68, 70, 73, 94, 96]. Kernel-based methods [59, 60, 61, 92]
estimate a kernel for each pixel in the frame indicating the weights for its neigh-
boring pixels to synthesize the new pixel. They generate the synthesized frame
in a local convolutional manner. Phase-based methods [54, 55] generate inter-
mediate frames by per-pixel phase modification. Currently, most of methods
are flow based [4, 5, 30, 40, 42, 46, 48, 57, 58, 64, 68, 70, 73, 94]. Typically,
their networks contain two modules: optical flow module and frame synthesized
module. The optical flow module is used to estimate the optical flow between in-
put frames. By warping the input frame based on the estimated optical flow, the
frame synthesized module synthesizes the intermediate frames. Most of the video
frame interpolation methods use PSNR and SSIM as their evaluation metrics.
Some methods [40, 58, 93] also explore Interpolation Error (IE) [2], Normalized
Interpolation Error (NIE) [2], and Learned Perceptual Image Patch Similarity
(LPIPS) [97] to measure their results. However, these metrics are insufficient to
evaluate the perceptual similarity. Traditional quality metrics, such as PSNR,
only use low-level features and LPIPS lacks temporal information. In this paper,
we propose a learned video quality metric dedicated to video frame interpolation.

Video quality metrics. Based on the availability of the reference video, tra-
ditional video quality metrics can be classified into No-Reference (NR), Reduced-
Reference (RR), and Full Reference (FR). Due to the limitation of space, we refer
readers to a comprehensive survey for traditional methods [85]. Our method is
most related to the FR methods, which have access to the reference video. Tra-
ditional FR methods infer the perceptual similarity from the differences from
pixels or low-level features [8, 23, 27, 50, 69, 81, 82, 83, 84, 86, 88, 90]. For in-
stance, Wange et al. observed that the human visual system (HVS) is adaptive



4 Hou et al.

to structural similarity [79]. They evaluated the perceptual similarity from the
structural deformity between a reference and distortion image. In comparison to
SSIM, Pinson et al. had a better correlation with HVS on video quality assess-
ment [66]. They also considered multiple perceptual-based features, including
blurring, unnatural motion, noise, color distortion, and block distortion. Li et
al. proposed a multi-method metric to fuse multiple video perceptual quality
metrics using a support vector machine [44]. It can preserve the strength of the
individual metrics and achieve promising results. However, these metrics only
use low-level features, which is insufficient for many nuances of human percep-
tion. Recently, with the success of deep learning, many research works introduce
the deep learning method to video quality assessment [12, 78]. However, these
metrics are designed for the traditional artifacts like video compression, while
our method focuses on artifacts that arise from video frame interpolation.

Deep learning based quality metrics. Our method is most related to the
recent deep learning based metrics for image quality assessment [6, 17, 20, 21,
32, 33, 35, 36, 41, 76, 91, 97]. Instead of using low-level features, these methods
learn features from deep convolutional networks and train a network in an end-
to-end manner. For full-reference image quality assessment (FR-IQA), Kim et
al. estimated the perceptual similarity using a deep network [32]. Their method
takes a distorted images and an error map as input and estimates the sensitivity
map. They get the subjective score by multiplying the sensitivity map with the
error map. Zhang et al. explored the convolutional features from a classification
network [97]. By comparing the features extracted using the convolutional net-
work, their method is able to predict the perceptual similarity robustly. They
also built a large-scale dataset for image perceptual quality assessment, which
contains traditional distortions and CNN-based distortions. Their dataset also
contains distortions from frame interpolation. However, it is designed for im-
age quality assessment and only contains single images. In contrast, our dataset
contains videos for frame interpolation, which enable us to learn the temporal
information. Ding et al. proposed an image quality metric with tolerance to tex-
ture resampling [21]. Bhardwaj et al. trained their metric using the information
theory-guided loss function [6]. Czolbe et al. trained an image quality metric for
GAN using Watson’s perceptual model [17]. While these methods have achieved
great success on image quality assessment, directly adapting these methods to
videos will be disadvantageous to these methods because they ignore the spatio-
temporal consistency. In contrast, our work builds upon these deep learning
methods and considers the spatio-temporal information in our spatio-temporal
network module, thus providing a dedicated solution to video frame interpolation
quality assessment.

Video quality datasets. Traditional video quality datasets focus on video
compression and transmission [1, 3, 24, 25, 56, 69, 71]. Video Quality Experts
Group (VQEG) dataset was proposed for the secondary distribution of tele-
vision [1]. Most videos in the VQEG dataset are interlaced. To address this
problem, Kalpana et al. built the Laboratory for Image and Video Engineering
(LIVE) Video Quality Database [3, 71]. It is designed for the H.264 compression,
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MPEG-2 compression, and video transmission. In their recent works, they ex-
tended the dataset for the distortion in the streaming [24, 56]. Li et al. proposed
a video quality dataset for video compressions, including H.264/AVC, HEVC,
and VP9 [69]. Different from these datasets, our work focuses on distortions
from video frame interpolation. Recently, Danier et al. proposed the BVI-VFI
dataset for video frame interpolation [19]. It is a relatively small dataset and
hence not suitable for training deep learning models. Therefore, we make use
of it as a test dataset to compare our method against various traditional and
recently proposed metrics.

Vision Transformer. There has been considerable interest in vision trans-
formers due to their impressive performance in image classification [22, 43, 47],
object detection [9], and image restoration [11]. Recently, the vision transform-
ers have also been introduced for the image quality assessment [14, 95]. Their
networks combined vision transformer [22] and CNN, and achieved promising
results for image quality assessment. Our work adapts the recent proposed Swin
Transformer [47] for video quality assessment.

3 Video Frame Interpolation Quality Dataset

We collected a Video Frame Interpolation Perceptual Similarity (VFIPS) dataset.
It consists of a wide variety of distortions from video frame interpolation. Each
sample consists of two videos synthesized from different interpolation methods,
its reference video, and its perceptual judgments h ∈ {0, 0.33, 0.66, 1}. We can
denote it as {VA,VB ,VR, h}. Below, we briefly describe how we prepare and
annotate this dataset.

3.1 Data Preparation

Source videos. From YouTube, we collected 96 videos under the Creative Com-
mons Attribution license (reuse allowed), which enables us to share this dataset
with the community. Among them, 45 videos are 120 fps, and 51 videos are 60
fps. Most videos last over 10 minutes. The resolutions of the source videos are
either 1080p or 4K. We downsampled these videos to 540p with the bicubic down-
sampling function from OpenCV. From these videos, we extracted video clips for
quality assessment. After eliminating the video clips containing cut shots or in-
terlaced frames, we curate, in total, 23,856 12-frame video clips. These 12-frame
sequences serve as a reference in our dataset.

Videos synthesized by frame interpolation methods. We generated the
synthesized videos for each reference video with 11 state-of-the-art video frame
interpolation methods, including SepConv [59], Super-SloMo [30], CtxSyn [57],
CyclicGen [46], MEMC-Net [5], DAIN [4], CAIN [15], RRIN [42], AdaCoF [40],
BMBC [64], and SoftSplat [58]. We set ×4 scale for 120-fps videos and ×2 scale
for 60-fps videos.

For each reference sequence, we need to compare two video frame interpola-
tion results. To make it easy to view and find differences between videos, we keep
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the size of the cropped video patches as 256 × 256. Specifically, we calculated
the mean ℓ1 error map between two synthesized videos and selected the patch
location with the highest error by sliding patch windows.

3.2 Annotation

Compared to annotating images, annotating videos often requires much greater
effort from users. For instance, a video contains many frames, but the distortions
might only show in one or just a few frames. In such cases, a user needs to play
the video multiple times to analyze differences and make a final judgment. In
our case, a user often takes more than 1 minute to annotate 1 sample. Hence,
can we make use of some existing perceptual quality metrics to help us annotate
more samples?

Recent developments in perceptual quality metrics show that considerable
progress has been made with regard to correlating these metrics with human
judgment [6, 17, 21, 32, 76, 97]. The result of a single image quality assessment
can provide helpful prior knowledge for the quality assessment of videos. For
instance, by visual inspection, we found that if all frames of one video have
significantly better quality than the frames in another video, this video often has
a better quality. Based on this observation, we make use of the widely adopted
state-of-the-art image quality metric LPIPS [97] to help annotate samples where
two videos have significantly different LPIPS scores. These LPIPS annotated
examples are only used for training and not used for testing. While they are not
perfect, they can be used to train a good VFI quality metric. A similar strategy
was also adopted in the PIEAPP metric [67]. For samples which is hard to make
a judgment via LPIPS, we collect human annotations.

Automatic annotation. We select 500 video triplets for our study to test the
hypothesis that when the difference in LPIPS scores of two videos is significant,
the judgment via LPIPS is consistent with the human judgment. We collect hu-
man annotations for these 500 triplets. Each video triplet contains one reference
video and two synthesized videos. For each synthesized video, we calculate its
LPIPS score as the mean of the LPIPS scores of the frames in that video. We
tested whether the judgments via LPIPS are consistent with the human judg-
ments. Evidence from this study suggests that the judgment via LPIPS can be
reliably used for annotating triplets with large LPIPS difference.

Figure 2 shows the LPIPS difference versus the human judgment, where the
LPIPS difference is the absolute difference between the LPIPS scores of a pair of
videos. The judgment via LPIPS is consistent with the human judgment with the
increase in the LPIPS difference. We can find that 97.6% judgments via LPIPS
are consistent with the human judgments when the LPIPS difference is greater
than 0.15. Based on this observation, we select 0.15 as the LPIPS-difference
threshold. If a new video triplet’s LPIPS difference is greater than 0.15, we take
the LPIPS judgment as its ground truth label. For the rest of the video triplets
where LPIPS difference is less than 0.15, we collect human annotations. It helps
save time and effort involved in the recruitment and collection of high-quality
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Fig. 2: LPIPS difference vs. human labeling result.

human annotations. In the end, for our dataset, we have 18,939 video triplets
with ground truth labels annotated via LPIPS.

Manual annotation. For the samples where LPIPS-difference is less than 0.15,
we collect judgments on perceptual quality by humans.

User interface. For the annotation, we presented participants with a refer-
ence video and two corresponding video frame interpolation results. The videos
were played simultaneously to help participants compare the two synthesized
videos. For judgment, participants were asked which of the two synthesized
videos has a higher perceptual quality. We played the videos in a loop with-
out interruption or human intervention. Figure 3 shows the user interface. It has
four options {“A(Sure)”, “A(Maybe)”, “B(Maybe)”, “B(Sure)”}. Please note
that the middle point in Figure 3 is not an option.

Playback setting. To find the best playback setting, we tested video clips
of length from 4 to 16 frames. If a video is too short, human annotators would
not get enough temporal information to make a decision. But a too-long video
often leads to ambiguity. For example, the quality of a video can be high in the
first half but be poor in the last half. In such cases, it is difficult for users to
make a decision. We empirically found that a video clip with 12 frames works
well for users to annotate the quality. We also explored the playback speed in our
study. At a high fps, such as 8 fps, users will find it extremely hard to compare
the distortions, as each frame only shows for a very short time. However, a low
fps will make it harder to judge the temporal consistency. We empirically found
that 2 fps works well.

We collected annotations on 5,948 video triplet samples from 41 participants.
Following LPIPS [97], each sample was labeled by 3 participants, and the mean
of the judgments was taken to decide which video had a higher quality. All
participants that we recruited were volunteers from diverse backgrounds. For
our training dataset, we randomly select 5,353 samples out of the 5,948 human-
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A Ref B

Which is better, the video on the left or right?

1 2 3 4 5

A
(Sure)

A
(Maybe)

B
(Maybe)

B
(Sure)

Next

Fig. 3: User interface. Two frame interpolation results and one reference are
played simultaneously in a loop.

annotated video triplets and all 18,939 sample triplets with judgment via LPIPS.
The rest 595 human-annotated samples were used for validation.

4 Video Frame Interpolation Quality Metric

Our method takes a video V = {I0, I1, · · · , IN} and its reference video VR =
{IR,0, IR,1, · · · , IR,N} as inputs and estimates the perceptual similarity d be-
tween these two videos, where N is the number of frames.

Figure 4 shows the architecture of our network. Our network first extracts
the feature maps for each image in the videos. For each feature map, we design
a spatio-temporal (ST) module to capture the spatio-temporal information and
estimate the perceptual similarity of features. Finally, we predict the perceptual
similarity between the input video V and its reference VR by averaging the
similarity across all features. Our network is trained in a Siamese manner. Below
we describe our network in more detail.

Feature extraction. As shown in Figure 4, we extract features from the
video V and its reference video VR. Specifically, we build a pyramid network
with five levels. Each level contains two 3 × 3 Conv2D layers. The stride of the
second Conv2D layer is set to 2 to have a large valid receptive field. From the
first to the fifth level, the numbers of channels are 16, 32, 64, 96, and 128. It can
be represented as follows.

{Flevel,i}Llevel=1 = fext(Ii), (1)

where fext(·) indicates the operation of the extraction network. F indicates the
extracted features. L indicates the number of feature levels. The feature ex-
traction network shares weights for all frames and videos. For each level, we
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Fig. 4: Our network architecture. (Left) Learned Perceptual Video Patch Simi-
larity (LPVPS) takes a video V and its reference VR as input and predicts their
perceptual similarity d. (Right) Our network is trained in a Siamese manner.

concatenate the features from all frames as the final features,

Flevel = fcat(Flevel,0, · · · ,Flevel,N ), (2)

where fcat(·) is the concatenation operation. N is the number of frames.
Spatio-temporal (ST) module is designed to measure the perceptual dis-

tance between the feature maps F and its reference FR. It first estimates the
difference between two normalized features as follows.

Fdiff = ∥fnorm(F)− fnorm(FR)∥1, (3)

where fnorm(·) indicates the operation of unit normalization in the channel di-
mension [97]. As reported in previous work on image perceptual metrics [26, 51,
52], the perceptual similarity is not only related to the difference between two
images, but also the content of images. Therefore, our network leverages both
the feature difference Fdiff and the source features.

Fcat = fcat(Fdiff , fnorm(F), fnorm(FR)). (4)

As shown in Figure 4, we first adopt a linear embedding layer to project the
features Fcat to a fixed dimension 32.

Femb = femb(Fcat), (5)

where femb(·) indicates the linear embedding layer that consists of a Conv2D

layer with a 1× 1 kernel.
We adopt a Swin Transformer block [47] to learn the temporal information

across frames. Compared to the original design of Swin Transformer block [47],
we do not use Layer Norm (LN) layers, which is critical to measure the difference
between two videos. LN layers normalize the differences between two features and
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compromise the accuracy of the network. We empirically find that the dimension
of the embeded features as 32, the head number as 2, and the window sizes of 4
can get good results and require relatively less computation and memory.

ST modules are applied to the features at different levels, which can capture
the spatio-temporal information at multiple scales. It is similar to the pyramid
architectures of optical flow networks [45, 75]. The final distance is calculated
by averaging the outputs at all the L levels from ST modules.

d =
1

LN

L∑
l=0

N∑
n=0

Fn
Swin,l (6)

where N indicates the number of elements in FSwin,l.
Loss function. As shown in Figure 4, our network is trained in a Siamese

manner. Given two videos with different distortions VA, VB , its reference video
VR, and its judgement ĥ, we first predict the perceptual similarity dA and dB
from (VA, VR) and (VB , VR), respectively. We calculate the probability p with
a sigmoid layer,

p = sigmoid(dA − dB). (7)

Then, we calculate the binary cross entropy loss LBCE as:

LBCE = −(ĥ log(p) + (1− ĥ) log(1− p)). (8)

Training. We use PyTorch to train our neural network. Following [97], our
learning rate is set to 0.0001. We use a mini-batch size of 8 and train the network
for 20 epochs. We randomly resize the videos in the scale of [0.5, 1]. Our network
is randomly initialized and uses AdamW [34] as the optimizer.

5 Experiments

We use the BVI-VFI [19] dataset as our test set. It contains 36 reference videos
at 3 different frame rates: 30fps, 60fps, and 120fps. All the videos last 5 seconds.
Each reference video has 5 distorted videos generated from different video frame
interpolation algorithms, including frame repeating, frame averaging, DVF [48],
QVI [93] and ST-MFNet [18]. Please note that video frame interpolation methods
used in the BVI-VFI dataset are different from the ones used in our VFIPS
dataset. To test our metric on the BVI-VFI dataset, we evaluate our metric in a
sliding-window manner and take the average score. We selected Spearman Rank
Order Correlation Coefficient (SROCC), Pearson Linear Correlation Coefficient
(PLCC), and Kendall Rank Order Correlation Coefficient (KROCC) scores as
our evaluation metrics. We calculated the scores for each reference video and
reported the mean score as the final result. We also report our results on our
VFIPS validation set. Following LPIPS [97], we report the Two Alternative
Forced Choice (2AFC) scores [97]. We compare our method to the representative
state-of-the-art metrics and conduct ablation studies to evaluate our metric.
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Table 1: Comparison with state-of-the-art methods.

Method VFIPS (val.) BVI-VFI [19] (test)
2AFC SROCC PLCC KROCC

Image

PSNR 0.763 0.742 0.722 0.656
SSIM [79] 0.784 0.739 0.746 0.639
MS-SSIM [80] 0.794 0.772 0.789 0.667
LPIPS (VGG) [97] 0.808 0.628 0.796 0.517
DISTS [21] 0.801 0.597 0.763 0.517
PIM-1 [6] 0.787 0.492 0.668 0.428
Watson-DFT [17] 0.800 0.628 0.706 0.538

Video
STRRED [7] 0.777 0.614 0.682 0.539
VMAF [69] 0.805 0.583 0.614 0.483
DeepVQA [77] 0.588 0.369 0.271 0.300
VSFA [41] 0.660 0.108 0.486 0.050
Ours 0.830 0.794 0.870 0.700

Table 2: Comparison on the X-TEST(4K) dataset [73].

Method PSNR SSIM [79] MSSSIM [80] LPIPS [97] STRRED [7] VMAF [69] Ours

2AFC 0.752 0.637 0.737 0.748 0.722 0.735 0.789

5.1 Comparisons to Existing Metrics

We compare our method to both the state-of-the-art image perceptual metrics,
including PSNR, SSIM [79], MS-SSIM [80], LPIPS(VGG) [97], DISTS [21], PIM-
1 [6], and Watson-DFT [17], and the state-of-the-art video perceptual metrics,
including VMAF [69], DeepVQA [32], and STRRED [74]. We also compare with
the Non-Reference metrics, VSFA [41]. For each method, we obtained the re-
sults by using the official codes/models provided by their authors, except for
DeepVQA which we adopt its re-implementation from Tencent [77]. For the im-
age perceptual similarity metrics, we evaluate the score per frame and take the
average as the final score for that video sequence.

As shown in Table 1, our method outperforms the state-of-the-art methods
by a considerable margin on both the VFIPS dataset and the BVI-VFI dataset.
Especially when compared to the image-based similarity methods such as LPIPS,
our method provides significant gains in terms of 2AFC on the VFIPS dataset
and SROCC, PLCC, and KROCC on the BVI-VFI dataset. We attribute this
improvement to the spatial-temporal module that captures spatio-temporal in-
formation. Compared to the video-based methods, our method again achieves
significant performance gains on all metrics on both datasets, specifically, 0.025
in terms of 2AFC on the VFIPS validation set and 0.180 in SROCC, 0.188 in
PLCC, 0.161 in KROCC on the BVI-VFI dataset. Figure 5 shows the visual
examples on the VFIPS validation set. The predictions of our method are more
consistent with humans. In the first example, Video 2 suffers less distortions to
the person’s head. In the second example, Video 2 is temporally consistent. In



12 Hou et al.

Video 1
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Ground 

Truth

Video 1

Video 2

✓ ✓

✓ ✓ ✓ ✓

Human LPIPS DISTS PIM1 VMAF Ours

✓ ✓ ✓ ✓

✓ ✓

Human LPIPS DISTS PIM1 VMAF Ours

✓ ✓ ✓ ✓

✓ ✓

Human LPIPS DISTS PIM1 VMAF Ours

Fig. 5: Visual examples on the VFIPS dataset. Green arrows are used to label the
area with noticeable difference. We mark the preference of each method using
“!”. Compared to other methods, our method is consistent with humans.

Human 4th 3rd 5th 1st 2nd

VMAF 4th 3rd 5th 2nd 1st

LPIPS 3rd 4th 5th 1st 2nd

Ours 4th 3rd 5th 1st 2nd

Human 4th 1st 5th 3rd 2nd

VMAF 1st 2nd 3rd 4th 5th

LPIPS 2nd 1st 5th 3rd 4th

Ours 4th 1st 5th 3rd 2nd

RefRef

Fig. 6: Visual examples on the BVI-VFI dataset [19]. Yellow rectangles are used
to show the reference video. We report the rank for the distorted videos. Com-
pared to other metrics, our metric is more consistent with humans.

the third example, the hand in Video 2 is distorted more. As indicated, our pre-
dictions are consistent with humans in these examples. Figure 6 shows the visual
examples from the BVI-VFI dataset [19]. For each reference video, it shows the
rank for the distorted videos. Our predictions are more consistent with humans.

We also conduct our experiments on the X-TEST dataset [73], which has 15
testing videos with 4K resolution. We use SepConv, Super-Slomo, AdaCof, and
XVFI to generate VFI results. Following Sim et al. [73], we set the temporal
distance of 32 frames for the large motion. For each video, we interpolate 32
frames and take the middle 12 frames for testing. There are 90 pairs in total. Each
pair is annotated by 3 users. As reported in Table 2, our method outperforms
other methods on such a large-motion dataset.

5.2 Ablation Studies

Feature extraction network. We investigate the impact of architectures of
the feature extraction network in Table 3. Following LPIPS [97], we replace our
extraction network with several classic architectures, including AlexNet [37],
I3D [10], and ours-3D network. We use the official implementation of AlexNet
and I3D [10]. For ours-3D, we replace the Conv2D layers in our feature extraction
module with Conv3D layers with 3× 3× 3 kernels. We measure the runtime for
a 12-frame 256× 256 video on a single Nvidia RTX A5000 GPU.
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Table 3: Effectiveness of different feature extraction network on the BVI-VFI
datasets [19].

Extractor SROCC PLCC KROCC Param(M) Runtime(ms)

AlexNet [37] 0.761 0.832 0.650 14.5 12.8
I3D [10] 0.659 0.758 0.550 20.3 33.2
Ours-3D 0.728 0.738 0.639 8.6 13.6

Ours-2D 0.794 0.870 0.700 4.6 10.4

As shown in Table 3, our method not only achieves the best performance but
also needs the least parameters. Compared to AlexNet, our feature extraction
network achieves better performance while our method only needs 34.1% param-
eters and is 1.23× faster. Compared to I3D and ours-3D, our network achieves
much better results and has less parameters. We attribute the improvement to
that our feature extraction network keeps more temporal information. Specifi-
cally, I3D and ours-3D downsample the features temporally, while our network
keeps features of all the frames. The temporal compression in the feature extrac-
tion network might hurt the performance of the whole metric.

Table 4: Effectiveness of the spatio-temporal
module on the BVI-VFI dataset [19].

ST Module SROCC PLCC KROCC

None 0.617 0.663 0.539
Conv3D 0.761 0.819 0.661

Original Swin 0.728 0.766 0.639
Ours-Swin w. LN 0.724 0.746 0.611

Ours-Swin 0.794 0.870 0.700

Spatio-temporal mod-
ule. We study the spatio-
temporal module in Table 4.
We use different blocks for
the spatio-temporal mod-
ule. “Conv3D” indicates the
Conv3D layers with 12 × 3 ×
3 kernels. “Original Swin”
indicates the official Swin
Transformer blocks. “Ours-
Swin w. LN” indicates our
Swin Transformer block with LN layers. Compared to the original Swin, it con-
tains fewer parameters, including 32 vs. 96 (channels), 4 vs. 7 (window size). It
has slightly worse performance. As shown in Table 4, original Swin and ours-
Swin w. LN do not perform as well as Conv3D. We attribute this performance
loss to the LN normalizing the differences between features. Removing the LN

layers improves the results by 0.070 on SROCC, 0.124 on PLCC, and 0.089 on
KROCC on the BVI-VFI dataset.

Table 5: Effectiveness of annotations on the BVI-
VFI dataset [19]

Annotations SROCC PLCC KROCC

Human 0.719 0.753 0.611
Automatic 0.653 0.687 0.567

All 0.794 0.870 0.700

Automatic annotations
by LPIPS. We study the
impact of annotations in Ta-
ble 5. As discussed in Sec-
tion 3.2, our training set
contains two parts: samples
obtained through automatic
annotation or human label-
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ing. We train our network with different training subsets: human annotations,
automatic annotations, and a combination of both. As shown in Table 5, the
combined set achieves the best performance. The automatic training data can
increase the diversity of the training set and improve the generalization capabil-
ity of the metric.

6 Limitations and Future Work

Many image-based quality assessment metrics can generate an error map be-
tween a distorted image and its reference to analyze altered pixels. However, our
metric cannot produce such an error map for individual frames in the video since
our spatio-temporal module contains convolutional layers that fuse features from
these frames at an early stage in the inference. In the future, it will be interesting
to design a network that can generate such error maps for each frame to provide
more information on the distortion within and across the frames.

Recently, image perceptual quality metrics, such as LPIPS [97], are used as
loss to create visually pleasant images or videos [63]. In theory, our network can
also be used as a loss function to train a video frame interpolation network to
produce visually pleasant videos. However, our metric has a high requirement
for GPU memory. It takes about 2500 Mb memory to process one 256 × 256
12-frame image sequence, which might become a bottleneck in training a video
frame interpolation network. In the future, we aim to reduce the network size
and study how our video frame interpolation quality metric will help optimize
video frame interpolation networks as a learned perceptual loss.

7 Conclusion

This paper presented a video perceptual quality metric for video frame interpo-
lation. Our metric first extracts pyramid features for individual frames in the
videos. Then it compares features at each level using a spatio-temporal mod-
ule to capture the spatio-temporal information. The spatio-temporal module is
composed of the Swin Transformer blocks to capture the spatio-temporal infor-
mation. We also collected a dataset for video frame interpolation. Our annota-
tions were from humans and a widely adopted image perceptual quality metric.
Our experiments showed that our dedicated video quality metric outperforms
existing metrics for assessing video frame interpolation results.
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