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Abstract. Visual counterfeits 4 are increasingly causing an existential
conundrum in mainstream media with rapid evolution in neural image
synthesis methods. Though detection of such counterfeits has been a tax-
ing problem in the image forensics community, a recent class of forensic
detectors – universal detectors – are able to surprisingly spot counter-
feit images regardless of generator architectures, loss functions, training
datasets, and resolutions [87]. This intriguing property suggests the pos-
sible existence of transferable forensic features (T-FF) in universal detec-
tors. In this work, we conduct the first analytical study to discover and
understand T-FF in universal detectors. Our contributions are 2-fold: 1)
We propose a novel forensic feature relevance statistic (FF-RS) to quan-
tify and discover T-FF in universal detectors and, 2) Our qualitative
and quantitative investigations uncover an unexpected finding: color is
a critical T-FF in universal detectors. Code and models are available at
https://keshik6.github.io/transferable-forensic-features/

1 Introduction

Visual counterfeits are increasingly causing an existential conundrum in main-
stream media [21,70,1,26,53,61,33,32,74]. With rapid improvements in CNN-
based generative modelling [30,39,38,94,66,19,10,62,97,45,3,81,96,82,83,48,86,44],
detection of such counterfeits is increasingly becoming challenging and critical.
Nevertheless, a recent class of forensic detectors known as universal detectors are
able to surprisingly spot counterfeits regardless of generator architectures, loss
functions, datasets and resolutions without any extensive adaptation [87]. i.e.:
Publicly released ResNet-50 [35] universal detector by Wang et al. [87] trained
only on ProGAN [37] counterfeits, surprisingly generalizes well to detect coun-
terfeits from unseen GANs including StyleGAN2 [41], StyleGAN [40], BigGAN
[10], CycleGAN [97], StarGAN [18] and GauGAN [62]. This intriguing cross-
model forensic transfer property suggests the existence of transferable forensic
features (T-FF) in universal detectors.

4 We refer to CNN-generated images as counterfeits throughout this paper
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ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

Fig. 1. Color is a critical transferable forensic feature (T-FF) in universal detectors:
Large-scale study on visual interpretability of T-FF discovered through our proposed
forensic feature relevance statistic (FF-RS), reveal that color information is critical for
cross-model forensic transfer. Each row represents a color-conditional T-FF and we
show the LRP-max response regions for different GAN counterfeits for the publicly
released ResNet-50 universal detector by Wang et al. [87]. This detector is trained
with ProGAN [37] counterfeits [87] and cross-model forensic transfer is evaluated on
unseen GANs. All counterfeits are obtained from the ForenSynths dataset [87]. The
consistent color-conditional LRP-max response across all GANs for these T-FF clearly
indicate that color is critical for cross-model forensic transfer in universal detectors. We
further observe similar results using an EfficientNet-B0-based [78] universal detector
following the exact training / test strategy proposed by Wang et al. [87] in Fig. 3. More
visualizations are included in Supplementary G.

1.1 Transferable Forensic Features (T-FF) in Universal Detectors

This work is motivated by a profound and challenging thesis statement: What
transferable forensic features (T-FF) are used by universal detectors for counter-
feit detection? A more elemental representation of this thesis statement would
be: given an image of a real car and a high fidelity synthetic car generated by
an unseen GAN (i.e.: StyleGAN2 [41]), what T-FF are used by the universal
detector, such that it detects the synthetic car as counterfeit accurately? Though
Wang et al. [87] hypothesize that universal detectors may learn low-level CNN
artifacts for detection, no qualitative / quantitative evidence is available in con-
temporary literature to understand T-FF in universal detectors. Our work takes
the first step towards discovering and understanding T-FF in universal detec-
tors for counterfeit detection. A foundational understanding on T-FF and their
properties are of paramount importance to both image forensics research and
image synthesis research. Understanding T-FF will allow to build robust foren-
sic detectors and to devise techniques to improve image synthesis methods to
avoid generation of forensic footprints.

1.2 Our contributions

Our work conducts the first analytical study to discover and understand T-FF in
universal detectors for counterfeit detection. We begin our study by comprehen-
sively demonstrating that input-space attribution – using 2 popular algorithms
namely Guided-GradCAM [72] and LRP [5] – of universal detector decisions are
not informative to discover T-FF. Next, we study the forensic feature space of
universal detectors to discover T-FF. But investigating the feature space is an
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extremely daunting task due to the sheer amount of feature maps present. i.e.:
ResNet-50 [35] architecture contains approximately 27K feature maps. To tackle
this challenging task, we propose a novel forensic feature relevance statistic (FF-
RS), to quantify and discover T-FF in universal detectors. Our proposed FF-RS
(ω) is a scalar which quantifies the ratio between positive forensic relevance of
the feature map and the total unsigned relevance of the entire layer that con-
tains the particular feature map. Using our proposed FF-RS (ω), we successfully
discover T-FF in the publicly released ResNet-50 universal detector [87].

Next, to understand the discovered T-FF, we introduce a novel pixel-wise
explanation method based on maximum spatial Layer-wise Relevance Propaga-
tion response (LRP-max). Particularly we visualize the pixel-wise explanations
of each discovered T-FF in universal detectors independently using LRP-max
visualization method. Large-scale study on visual interpretability of T-FF reveal
that color information is critical for cross-model forensic transfer. Further large-
scale quantitative investigations using median counterfeits probability analysis
and statistical tests on maximum spatial activation distributions based on color
ablation show that color is a critical T-FF in universal detectors. Our findings
are intriguing and new to the research community, as many contemporary im-
age forensics works focus on frequency discrepancies between real and counterfeit
images [24,25,92,12,71,42]. In summary, our contributions are as follows:

– We propose a novel forensic feature relevance statistic (FF-RS) to quantify
and discover transferable forensic features (T-FF) in universal detectors for
counterfeit detection.

– We qualitatively – using our proposed LRP-max visualization for feature
map activations – and quantitatively – using median counterfeits probability
analysis and statistical tests on maximum spatial activation distributions
based on color ablation – show that color is a critical transferable forensic
feature (T-FF) in universal detectors for counterfeit detection.

2 Related Work

Counterfeit detection. Recent works have studied counterfeit detection both
in the RGB domain [67,54,20,92,60,85,87] and frequency domain [25,24,12,27,51].
Particularly, notable number of works have proposed to use hand-crafted features
for counterfeit detection [25,24,12,60]. Using simple experiments, Mccloskey et
al. [56] showed that detection based on the frequency of over-exposed pixels
can provide good discrimination between real images and counterfeits. Li et al.
observed disparities between GAN images and real images in the residual do-
main of the chrominance color components [46]. Some recent works have also
proposed methods to detect and attribute counterfeits to the generating archi-
tectures [91,55]. Anomaly detection techniques leveraging on pre-trained face
recognition models have also been proposed [85].

Cross-model forensic transfer.Most counterfeit detection works do not focus
on cross-model forensic transfer. Among the works that study forensic transfer,
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Cozzolino et al. [20] and Zhang et al. [92] observed that counterfeit detectors
generalized poorly during cross-model forensic transfer. In order to solve poor
forensic transfer performance, Cozzolino et al. [20] proposed an autoencoder
based adaptation framework to improve cross-model forensic transfer. The work
by Wang et al. [87] was the first work to show that counterfeit detectors – univer-
sal detectors – can generalize well during cross-model forensic transfer without
any re-training / fine-tuning / adaptation on the target samples suggesting the
possible existence of transferable forensic features. Furthermore, Chai et al. [11]
showed that patch-based detectors with limited receptive fields often perform
better at detecting unseen counterfeits compared to full-image based detectors.

Interpretability methods. A number of interpretability methods in machine
learning aim to summarize the relations which a model has learnt as a whole, such
as PCA and t-SNE [63,52], or to explain single decisions of a neural network. The
latter may follow different lines of questioning, such as identifying similar training
samples in k-NN and prototype CNNs [49,14], finding modified samples such as
pertinent negatives [23], or model-based uncertainty estimates [29]. One class of
algorithms aims at computing input space attributions. This includes Shapley
values [77,50,15] suitable for tabular data types, and methods for data types for
which dropping a feature is not well defined, relying on modified gradients such
as Guided Backprop [75], Layer-wise Relevance Propagation (LRP) [5], Guided-
GradCAM [72], Full-Grad [76], and class-attention-mapping inspired research
[22,84,36,28,59]. Bau et al. proposed frameworks for interpreting representations
at the feature map level for classifiers [7] and GANs [8].

3 Dataset / Metrics

We use the ForenSynths dataset proposed by Wang et al. [87]. ForenSynths
is the largest counterfeit benchmark dataset containing CNN-generated images
from multiple generator architectures, datasets, loss functions and resolutions. In
addition to ProGAN [37], we select 6 candidate GANs to comprehensively study
cross-model forensic transfer in this work namely, StyleGAN2 [41], StyleGAN
[40], BigGAN [10], CycleGAN [97], StarGAN [18] and GauGAN [62]. Following
Wang et al. [87], we use AP (Average Precision) to measure cross-model forensic
transfer of universal detectors. Particularly, we also show the accuracies for real
and counterfeit images as we intend to understand counterfeit detection. For
detector calibration, we follow [87] and use the oracle threshold obtained using
geometric mean of sensitivity and specificity.

4 Discovering Transferable Forensic Features (T-FF)

4.1 Input-space attribution methods

Interpretable machine learning algorithms are useful exploratory tools to visual-
ize neural networks’ decisions by input-space attribution [9,72,76,22,84,36,28,59].
We start from the following question: Are interpretability methods suitable to dis-
cover T-FF in universal detectors?
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Fig. 2. Pixel-wise explanations of universal detector decisions are not informative to
discover T-FF : We show pixel-wise explanations using Guided-GradCAM (GGC) (row
2) [72] and LRP (row 3) [5] for the ResNet-50 universal detector [87] for ProGAN
[37], CycleGAN [97], StarGAN [18], BigGAN [10] and StyleGAN2 [41]. The universal
detector predicts probability p >= 95% for all counterfeit images shown above. All
these counterfeits are obtained from ForenSynths dataset [87]. For LRP [5], we only
show positive relevances. We also show pixel-wise explanations of ImageNet classifier
decisions for the exact counterfeits using GGC (row 4) and LRP (row 5). This is
shown as a control experiment to emphasize the significance of our observations. As
one can clearly observe, pixel-wise explanations of universal detector decisions are not
informative to discover T-FF (rows 2, 3) as the explanations appear to be random and
not reveal any meaningful visual features used for counterfeit detection. Particularly, it
remains unknown as to why the universal detector outputs high detection probability
(p >= 95%) for these counterfeits. On the other hand, pixel-wise explanations of
ImageNet classifier decisions produce meaningful results. i.e.: GGC (row 4) and LRP
(row 5) explanation results for cat samples (columns 1, 2, 5, 6) show that ImageNet
uses features such as eyes and whiskers to classify cats. This shows that interpretability
techniques such as GGC and LRP are not informative to discover T-FF in universal
detectors. In other words, we are unable to discover any forensic footprints based on
pixel-wise explanations of universal detectors. More examples in Supplementary I.

We use 2 popular interpretability methods namely Guided-GradCAM [72]
and LRP [5] to analyse the pixel-wise explanations of universal detector deci-
sions. These methods were chosen due to their relatively low amount of gradient
shattering noise [6]. We show the pixel-wise explanation results of ResNet-50
universal detector [87] decisions for ProGAN [37] and 4 GANs not used for
training – CycleGAN [97], StarGAN [18], BigGAN [10] and StyleGAN2 [41]– in
Fig. 2. As one can observe in Fig. 2, pixel-wise explanations of universal detector
decisions are not informative to discover T-FF due to their focus on spatial lo-
calization. Particularly, we are unable to discover any forensic footprints based
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Table 1. Sensitivity assessments using feature map dropout showing that our pro-
posed FF-RS (ω) successfully quantifies and discovers T-FF : We show the results for
the publicly released ResNet-50 universal detector [87] (top) and our own version of
EfficientNet-B0 [78] universal detector (bottom) following the exact training and test
strategy proposed in [87]. We show the AP, real and GAN image detection accuracies for
baseline [87], top-k, random-k and low-k forensic feature dropout. The random-k exper-
iments are repeated 5 times and average results are reported. Feature map dropout is
performed by suppressing (zeroing out) the resulting activations of target feature maps
(i.e.: top-k). We can clearly observe that feature map dropout of top-k corresponding
to T-FF results in substantial drop in AP and GAN detection accuracies across Pro-
GAN and all 6 unseen GANs [41,40,10,97,18,62] compared to baseline, random-k and
low-k results. This is consistently seen in both ResNet-50 and EfficientNet-B0 univer-
sal detectors. This shows that our proposed FF-RS (ω) can successfully quantify and
discover the T-FF in universal detectors. k ≈ 0.5% of total feature maps. More details
included in Supplementary D.

ResNet-50
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

k = 114 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline [87] 100. 100.0 100. 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
top-k 69.8 99.4 3.2 55.3 89.4 11.3 56.6 90.6 13.7 55.4 86.3 18.3 61.2 91.4 17.4 72.6 89.4 35.9 71.0 95.0 18.8

random-k 100. 99.9 96.1 98.6 89.4 96.9 98.7 91.4 96.1 88.0 79.4 85.0 96.6 81.0 96.2 97.0 88.0 91.7 98.7 91.9 97.1
low-k 100. 100. 100. 99.1 95.6 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4

EfficientNet-B0
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

k = 27 AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline [87] 100. 100. 100. 95.9 95.2 85.4 99.0 96.1 94.3 84.4 79.7 75.9 97.3 89.6 93.0 96.0 92.8 85.5 98.3 94.1 94.4
top-k 50.0 100. 0.0 54.5 94.3 7.0 52.1 97.3 2.6 53.5 97.4 3.8 47.5 100. 0.0 50.0 100. 0.0 46.2 100. 0.0

random-k 100. 99.9 100. 96.5 91.9 89.8 99.2 91.2 97.5 84.5 59.4 89.1 96.9 82.6 95.8 96.7 82.5 93.3 98.1 87.8 96.2
low-k 100. 100. 100. 95.3 88.7 88.3 98.9 90.8 96.1 83.5 70.8 80.8 96.6 85.2 94.1 95.4 91.0 85.4 98.1 91.2 96.4

on pixel-wise explanations of universal detector decisions. This is consistently
seen across both Guided-GradCAM [72] and LRP [5] methods. We remark that
these observations do not indicate failure modes of Guided-GradCAM [72] or
LRP [5] methods, but rather suggest that universal detectors are learning more
complex T-FF that are not easily human-parsable.

4.2 Forensic Feature Space

Given that input-space attribution methods are not informative to discover T-
FF, we study the feature space to discover T-FF in universal detectors for
counterfeit detection. Particularly, we ask the question: which feature maps in
universal detectors are responsible for cross-model forensic transfer? This is a
challenging problem as it requires quantifying the importance of every feature
map in universal detectors for counterfeit detection. The ResNet-50 universal
detector [87] consists of approximately 27K intermediate feature maps.

Forensic feature relevance statistic (FF-RS). We propose a novel FF-RS
(ω) to quantify the relevance of every feature map in universal detectors for
counterfeit detection. Specifically, for feature map at layer l and channel c, ω(lc)
computes the forensic relevance of this feature map for counterfeit detection. We
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describe the important design considerations and intuitions behind our proposed
FF-RS (ω) below and include the pseudocode in Algorithm 1:

– We postulate the existence of a set of feature maps in universal detectors
that are responsible for cross-model forensic transfer. In particular, we hy-
pothesize that there is a set of common transferable forensic feature maps
that mostly gets activated when passing counterfeits from ProGAN [37] and
unseen GANs.

– Our proposed FF-RS (ω) is a scalar that quantifies the forensic relevance
of every feature map. In particular, ω for a feature map quantifies the ratio
between positive forensic relevance of the feature map and the total unsigned
forensic relevance of the entire layer that contains the particular feature
map. This is shown in Line 8 in Algorithm 1. For the numerator we are only
interested in positive relevance, therefore use a max operation to select only
positive relevance (identical to a ReLU operation).

– The relevance scores are calculated using LRP [5] (More details on LRP
[5] in Supplementary A). This is shown in Line 5 in Algorithm 1 where
ri(l, c, h, w) is the estimated relevance of the feature map at layer l, channel
c at the spatial location h,w

– ω is calculated over large number of counterfeit images and is bounded be-
tween [0, 1]. i.e.: ω = 1 indicates that the particular feature map is the most
relevant forensic feature and ω = 0 indicates vice versa.

– Finally we use ω to rank all the feature maps and identify the set of T-FF.
We refer to this set as top-k in our experiments.

Experiments : Sensitivity assessments of discovered T-FF using algo-
rithm 1.We perform rigorous sensitivity assessments using feature map dropout
experiments to demonstrate that our proposed FF-RS (ω) is able to quantify
and discover T-FF. Feature map dropout suppresses (zeroing out) the result-
ing activations of the target feature maps. Particularly, feature map dropout of
T-FF should satisfy the following sensitivity conditions:

1. Significant reduction in overall AP across ProGAN [37] and all unseen GANs
[41,40,10,97,18,62] indicating poor cross-model forensic transfer.

2. Significant reduction in GAN /counterfeit detection accuracies across Pro-
GAN [37] and all unseen GANs [41,40,10,97,18,62] compared to real image
detection accuracies as ω is calculated for counterfeits.

Test bed details. We use the ForenSynths test set [87]. ω is calculated using
1000 ProGAN [37] counterfeits (validation set). We use the following experiment
codes:

– top-k : Set of T-FF discovered using FF-RS (ω)

– random-k : Set of random feature maps used as a control experiment.

– low-k : Set of low-ranked feature maps corresponding to extremely small
values of ω, i.e.: ω ≈ 0.
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Algorithm 1: Calculate FF-RS (ω) (Non-vectorized)

Input:
forensics detector M ,
data D = {x}ni=1, D is a large counterfeit dataset where xi indicates the ith

counterfeit image.
Output:
ω(lc) where l, c indicates the layer and channel index of forensic feature maps.
Every forensic feature map can be characterized by a unique set of l, c.

1 R← [ ] ; /*List to store feature map relevances*/

2 Set M to evaluation mode
3 for i in {0, 1, , ...., n} do
4 f(xi)←M(xi) ; /*logit output*/

5 ri ← LRP (M,xi, f(xi)) ; /*calculate LRP scores for counterfeits*/

6 for l′ in ri.size(0) do
7 for c′ in ri.size(1) do

8 ri(l
′, c′, h, w)← max(0,ri(l

′,c′,h,w))∑
c,h,w

||ri(l′,c,h,w)||

9 R.append(ri) ; /*ri.size():(layer, channel, height, width)*/

10 end

11 end

12 end
13 ω(lc)←

∑
h,w

1
N

∑n
i Ri(l, c, h, w) ; /*forensic feature relevance*/

14 return ω(lc)

Results. We show the results in Table 1 for ResNet-50 and EfficientNet-B0 uni-
versal detectors. We clearly observe that feature map dropout of top-k features
corresponding to T-FF satisfies both sensitivity conditions above indicating that
our proposed FF-RS (ω) is able to quantify and discover transferable forensic
features. We also observe that feature map dropout of low-k (low-ranked) foren-
sic features has little / no effect on cross-model forensic transfer which further
adds merit to our proposed FF-RS (ω).

5 Understanding Transferable Forensic Features (T-FF)

Given the successful discovery of T-FF using our proposed FF-RS (ω), in this
section, we ask the following question: what counterfeit properties are detected
by this set of T-FF? Though Wang et al. [87] hypothesize that universal de-
tectors may learn low-level CNN artifacts for cross-model forensic transfer, no
evidence is available to understand as to what features in counterfeits are being
detected during cross-model forensic transfer.

5.1 LRP-max explanations of T-FF

We approach this problem from a visual interpretability perspective. In this
section, we introduce a novel pixel-wise explanation method for feature map ac-
tivations based on maximum spatial Layer-wise Relevance Propagation response
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ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

Fig. 3. Color is a critical T-FF in universal detectors: Large-scale study on visual
interpretability of T-FF discovered through our proposed FF-RS (ω) reveal that color
information is critical for cross-model forensic transfer. Each row represents a color-
based T-FF and we show the LRP-max response regions for ProGAN and all 6 unseen
GAN [41,40,10,97,18,62] counterfeits for our own version of EfficientNet-B0 [78] univer-
sal detector following the exact training / test strategy proposed by Wang et al. [87].
This detector is trained with ProGAN [37] counterfeits [87] and cross-model forensic
transfer is evaluated on other unseen GANs. All counterfeits are obtained from the
ForenSynths dataset [87]. The consistent color-conditional LRP-max response across
all GANs for these T-FF clearly indicate that color is critical for cross-model forensic
transfer in universal detectors. More visualizations are included in Supplementary G.

(LRP-max). The idea behind LRP-max is to independently visualize which pix-
els in the input space correspond to maximum spatial relevance scores for each
T-FF. Particularly, instead of back-propagating using the detector logits, we
back-propagate from the maximum spatial relevance neuron of each T-FF inde-
pendently. LRP-max automatically extracts image regions for every T-FF and
does not depend on external modules such as segmentation used in [7,8]. The
pseudocode is included in 2.

Color is a critical T-FF in universal detectors: LRP-max visualizations of
T-FF uncover the unexpected observation that a substantial amount of T-FF ex-
hibits color-conditional activations. We show the LRP-max regions for ProGAN
[37] and all unseen GANs [41,40,10,97,18,62] for ResNet-50 and EfficientNet-B0
universal detectors in Fig. 1 and 3 respectively. As one can observe, the consis-
tent color-conditional LRP-max response across all GANs for these T-FF clearly
indicate that color is critical for cross-model forensic transfer in universal detec-
tors. This is notably surprising and observed for the first time in transferable
image forensics research. In the next section, we conduct quantitative studies to
rigorously verify that color is a critical T-FF in universal detectors.

5.2 Color Ablation Studies

In this section, we conduct 2 quantitative studies to show that color is a criti-
cal transferable forensic feature in universal detectors. Our studies measure the
sensitivity of universal detectors before and after color ablation.

Study 1. We investigate the change in probability distribution of universal
detectors when removing color information in counterfeits during cross-model
forensic transfer. We specifically study the change in median counterfeit proba-
bility when removing color information (median is not sensitive to outliers). The
results for both ResNet-50 and EfficientNet-B0 universal detectors are shown in
Fig. 4. As one can clearly observe, color ablation causes the median probability
predicted by the universal detector to drop by more than 89% across all un-
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Algorithm 2: Obtain LRP-max pixel-wise explanations ( For a single
feature map, for a single sample )

Input:
forensics detector M ,
counterfeit image x where x.size() = (3, xheight, xwidth),
forensic feature map l, c where l, c indicate layer and channel index
respectively.
Output:
Êlc(x) where E indicates the LRP-max pixel-wise explanations for sample x
corresponding to forensic feature map at layer index l and channel index c.
Do note that Êlc(x).size() is (xheight, xwidth).
Every forensic feature map can be characterized by a unique set of l, c.

1 zlc(x)← LRP − FORWARD(Mlc(xi)) ; /*(h, w) relevance scores*/

2 h∗, w∗ ← argmax(zlc(x)) ; /*find index of max relevance*/

3 zmax
lc (x)← zlc(x)[h

∗, w∗] ; /*LRP-max response neuron*/

4 Elc(x)← LRP −BACKWARD(zmax
lc (x)) ; /*explain LRP-max neuron*/

5 Êlc(x)←
∑3

k=0(Elc(x)(k, xheight, xwidth) ; /*spatial LRP-max*/

6 return Êlc(x)

ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]
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Fig. 4. Color is a critical T-FF in universal detectors: We show the box-whisker plots
of probability (%) predicted by the universal detector for counterfeits before (Baseline)
and after color ablation (Grayscale) for 7 GAN models. The red line in each box-plot
shows the median probability. We show the results for the ResNet-50 universal detec-
tor [87] (top row) and our version of EfficientNet-B0 [78] universal detector following
the exact training / test strategy proposed in [87] (bottom row). These detectors are
trained with ProGAN counterfeits and cross-model forensic transfer is evaluated on
other unseen GANs. All counterfeits are obtained from the ForenSynths dataset [87].
We clearly show that color ablation causes the median probability for counterfeits to
drop by more than 89% across all unseen GANs. This is consistently seen across both
universal detectors. These observations quantitatively show that color is a critical T-FF
in universal detectors. AP and accuracies shown in Supplementary H.1.

seen GANs showing that color is a critical T-FF in universal detectors. This is
observed in both ResNet-50 and EfficientNet-B0 universal detectors.

Study 2. In this study, we measure the percentage of T-FF that are color-
conditional. Particularly, we conduct a statistical test to compare the maximum
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Algorithm 3: Statistical test over maximum spatial activations for T-
FF (Non-vectorized)

Input:
forensics detector M ,
data D = {x}ni=1, D is a large counterfeit dataset where xi indicates the ith

counterfeit image.
T-FF set S
Output:
p(lc) where l, c indicates the layer and channel index of forensic feature maps.
p indicates p-value of the statistical test.
Every forensic feature map can be characterized by a unique set of l, c.

1 Set M to evaluation mode
2 for l′, c′ in S do
3 Ab ← [ ] ; /*store baseline counterfeits activations*/

4 Ag ← [ ] ; /*store grayscale counterfeits activations*/

5 for i in {0, 1, , ...., n} do
6 ab ← GLOBAL MAXPOOL(Mlc(xi)) ; /*baseline*/

7 ag ← GLOBAL MAXPOOL(Mlc(grayscale(xi))) ; /*grayscale*/

8 Ab.append(ab)
9 Ag.append(ag)

10 end
11 p(l′c′)←MEDIAN − TEST (Ab, Ag) ; /*median test*/

12 end
13 return p(lc)

globally pooled spatial activation distributions of each T-FF before and after
color ablation. The intuition is that with color ablation, color-conditional T-FF
will produce lower amount of activations for the same sample and we perform a
hypothesis test to measure whether the maximum spatial activation distributions
are statistically different before (Baseline) and after color ablation (Grayscale).
Particularly, we use Mood’s median test (non-parametric, low-power) with a
significance level of α = 0.05 in our study. The pseudocode is shown in Algorithm
3. The results for ResNet-50 and EfficientNet-B0 universal detectors are shown
in Table 2 (rows 1, 2). Our results show that substantial amount of T-FF in
universal detectors are color-conditional indicating that color is a critical T-FF.
We also show the maximum spatial activation distributions for several color-
conditional T-FF for ResNet-50 and EfficientNet-B0 universal detectors in Fig.
6. As one can observe, maximum spatial activations are suppressed for these T-
FF across ProGAN [37] and all unseen GANs [41,40,10,97,18,62] when removing
color information. This clearly suggests that these T-FF are color-conditional.

6 Applications : Color-Robust (CR) Universal Detectors

Reliance on substantial amount of color information for cross-model forensic
transfer exposes universal detectors to attacks via color-ablated counterfeits.
This is particularly unfavourable. In this section, we propose a data augmenta-
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Fig. 5. CR-universal detectors trained using our proposed data augmentation scheme
(Sec. 6) are more robust to color ablation during cross-model forensic transfer: These
universal detectors are trained with data augmentation where color is ablated 50%
of the time during training. This ensures that T-FF do not substantially rely on
color information. We show the box-whisker plots of probability (%) predicted by
the CR-universal detectors for counterfeits before (Baseline) and after color ablation
(Grayscale) for 7 GAN models. The red line in each box-plot shows the median proba-
bility. We show the results for the ResNet-50 CR-universal detector [87] (top row) and
EfficientNet-B0 [78] CR-universal detector (bottom row). We clearly observe that the
median probability for counterfeits have similar values (compared to Fig. 4) before and
after color ablation indicating CR-universal detectors are more robust to color-ablated
counterfeit attacks. AP and accuracies shown in Supplementary H.2.

Table 2. Median Test Results. 1○ Significant amount of T-FF are color-conditional
(rows 1, 2): We show the percentage(%) of color-conditional T-FF in ResNet-50 and
EfficientNet-B0 universal detectors measured using Mood’s median test. We show the
results for ProGAN [37] and all 6 unseen GANs [41,40,10,97,18,62]. Particularly, we
consider a T-FF to be color conditional if the p-value of the median test is less than
the significance level of α = 0.05. As one can clearly observe, significant amount of
T-FF are color-conditional. This quantitatively shows that color is a critical T-FF in
universal detectors. 2○ CR-universal detectors have lower amount of color-conditional
T-FF (rows 3,4): We clearly observe that training universal detectors using our pro-
posed data augmentation scheme (Sec 6) results in detectors that contain noticeably
lower amount of color-conditional T-FF.

% Color-conditional ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

ResNet-50 85.1 74.6 73.7 68.4 86.8 71.1 70.2

Efficient-B0 51.9 48.1 40.7 40.7 44.4 44.4 37.0

CR-ResNet-50 55.3 33.3 48.2 31.6 56.1 48.2 39.5

CR-EfficientNet-B0 20.0 30.0 20.0 10.0 20.0 20.0 10.0

tion scheme to build Color-Robust (CR) universal detectors that do not substan-
tially rely on color information for cross-model forensic transfer. The crux of the
idea is to randomly remove color information from samples during training (both
for real and counterfeit images). Particularly, we perform random Grayscaling
during training with 50% probability to maneuver universal detectors to learn
T-FF that do not substantially rely on color information.

Results. Median probability analysis results for ResNet-50 and EfficientNet-B0
CR-universal detectors are shown in Fig. 5. We clearly observe that with our



Discovering Transferable Forensic Features 13

ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

ResNet-50

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#11

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#11

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#11

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#11

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#11

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#11

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#11

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#35

2 4
max spatial activation

0

5
de

ns
ity

layer2.1.conv1.#35

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#35

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#35

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#35

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#35

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#35

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#68

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#68

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#68

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#68

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#68

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#68

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#68

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#92

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#92

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#92

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#92

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#92

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#92

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#92

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#126

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#126

2 4
max spatial activation

0

5

de
ns

ity

layer2.1.conv1.#126

2 4
max spatial activation

0

10
de

ns
ity

layer2.1.conv1.#126

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#126

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#126

2 4
max spatial activation

0

10

de
ns

ity

layer2.1.conv1.#126

EfficientNet-B0

25 50
max spatial activation

0.0

0.1

de
ns

ity

_blocks.0._project_conv.#1

20 40
max spatial activation

0.0

0.1

de
ns

ity

_blocks.0._project_conv.#1

25 50
max spatial activation

0.0

0.1

de
ns

ity

_blocks.0._project_conv.#1

0 25 50
max spatial activation

0.0

0.1

de
ns

ity

_blocks.0._project_conv.#1

20 40
max spatial activation

0.0

0.2
de

ns
ity

_blocks.0._project_conv.#1

20 40
max spatial activation

0.0

0.2

de
ns

ity

_blocks.0._project_conv.#1

25 50 75
max spatial activation

0.0

0.2

de
ns

ity

_blocks.0._project_conv.#1

0 10 20
max spatial activation

0

2

de
ns

ity

_blocks.0._depthwise_conv.#12

0 5 10
max spatial activation

0

2

de
ns

ity

_blocks.0._depthwise_conv.#12

0 10
max spatial activation

0

1

de
ns

ity

_blocks.0._depthwise_conv.#12

0 10 20
max spatial activation

0

2

de
ns

ity

_blocks.0._depthwise_conv.#12

0 10
max spatial activation

0

2

de
ns

ity

_blocks.0._depthwise_conv.#12

0.0 2.5 5.0
max spatial activation

0

5

de
ns

ity

_blocks.0._depthwise_conv.#12

0 10 20
max spatial activation

0

2

de
ns

ity

_blocks.0._depthwise_conv.#12

2 4
max spatial activation

0

5

de
ns

ity

_conv_stem.#12

2 4
max spatial activation

0

5

de
ns

ity

_conv_stem.#12

2 4
max spatial activation

0

5

de
ns

ity

_conv_stem.#12

2 4
max spatial activation

0

5

de
ns

ity

_conv_stem.#12

2 4
max spatial activation

0

5

de
ns

ity

_conv_stem.#12

2 4
max spatial activation

0

25

de
ns

ity

_conv_stem.#12

2 4
max spatial activation

0

5

de
ns

ity

_conv_stem.#12

Baseline Grayscale

Fig. 6. Color-conditional T-FF in ResNet-50 and EfficientNet-B0: Each row represents
a color-conditional T-FF. These are the exact same T-FF shown in Fig. 1 (ResNet-50)
and Fig. 3(EfficientNet-B0). We show the maximum spatial activation distributions for
7 GAN models before (Baseline) and after color ablation (Grayscale). We remark that
for each counterfeit in the ForenSynths dataset [87], we apply global max pooling to
the specific T-FF to obtain a maximum spatial activation value (scalar). We can clearly
observe that these T-FF are producing noticeably lower spatial activations (max) for
the same set of counterfeits after removing color information. This clearly indicates
that these T-FF are color-conditional.

proposed data augmentation scheme, CR-universal detectors are more robust
to color ablation during cross-model forensic transfer indicating that they learn
T-FF that do not substantially rely on color information. We further show the
percentage of color-conditional T-FF in CR-ResNet-50 and CR-EfficientNet-B0
in Table 2 (rows 3, 4), quantitatively showing that CR-universal detectors learn
substantially lower amount of color-conditional T-FF.

T-FF in CR-Universal Detectors. We further discover T-FF in CR-
universal detectors using our proposed FF-RS (ω). We show LRP-max visu-
alization of T-FF in CR-ResNet-50 in Supplementary Fig. H.1. These T-FF
largely correspond to patterns / artifacts (i.e.: wheels). We emphasize that our
proposed method can identify different types of T-FF in addition to color.



14 K. Chandrasegaran et al.

7 Discussion and Conclusion

We conducted the first analytical study to discover and understand transferable
forensic features (T-FF) in universal detectors. Our first set of investigations
demonstrated that input-space attribution methods such as Guided-GradCAM
[72] and LRP [5] are not informative to discover T-FF (Sec 4.1). In light of these
observations, we study the forensic feature space of universal detectors. Particu-
larly, we propose a novel forensic feature relevance statistic (FF-RS) to quantify
and discover T-FF in universal detectors. Rigorous sensitivity assessments using
feature map dropout convincingly show that our proposed FF-RS (ω) is able to
successfully quantify and discover T-FF (Sec 4.2).

Further investigations on T-FF uncover an unexpected finding: color is a
critical T-FF in universal detectors. We show this critical finding qualitatively
using our proposed LRP-max visualization of discovered T-FF (Sec 5.1). Fur-
ther we validate this finding quantitatively using median counterfeit probability
analysis and statistical tests on maximum spatial activation distributions of T-
FF based on color ablation (Sec 5.2). i.e.: We showed that ≈ 85% of T-FF
are color-conditional in the publicly released ResNet-50 universal detector [87].
Finally, we propose a simple data augmentation scheme to train Color-Robust
(CR) universal detectors (Sec 6). We remark that color is not the only T-FF,
but it is a critical T-FF in universal detectors. We also discuss computational
complexity of FF-RS (ω) and LRP-max in Supplementary B. A natural ques-
tion would be why is color a critical T-FF. Though this is not a straight-forward
question to answer, we provide our perspective: Color distribution of real images
is non-uniform, and we hypothesize that most GANs struggle to capture the
diverse, multi-modal color distribution of real images. i.e.: low-density color re-
gions. This may result in noticeable discrepancies between real and GAN images
(counterfeits) in the color space which can be used as T-FF to detect coun-
terfeits. To conclude, through this work we discover and understand T-FF in
universal detectors for counterfeit detection, and hope that our contributions
will inspire further research in image forensics and image synthesis methods.

Limitations / Broader Impact. With deepfakes-in-the-wild being generated
using diverse techniques in addition to GAN-based methods including shallow
methods (i.e.: Photoshop) and face-swapping frameworks (i.e.: DeepFaceLab
[64]), studying transferable forensic features in such synthesis methods are essen-
tial to build robust general-purpose image forensics detectors. With increasing
usage of machine learning methods in proliferating mis- and disinformation, we
hope that our discovery on transferable forensic features can open-up more plau-
sible research directions to combat the fight against visual disinformation.
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Supplementary Materials

Contents

This Supplementary provides additional experiments, analysis, discussion and
code / reproducibility details to further support our findings. The Supplementary
materials are organized as follows:

– Section A: A brief overview of the LRP-algorithm used
– Section B: Computational complexity of FF-RS (ω) / LRP-max.
– Section C: Non Color-conditional T-FF
– Section D: k hyper-parameter in top-k for T-FF
– Section E: Cross-model forensic transfer using BigGAN [10] pre-training

dataset
– Section F: Is the performance degrade in universal detectors due to unseen

corruptions (OOD)?
– Section G: Color-conditional T-FF (Additional Results)
– Section H: CR-Universal Detectors (Additional Results)
– Section I: Pixel-wise explanations are not informative to discover T-FF (Ad-

ditional Results)
– Section J: Research Reproducibility / Code Details
– Section K: Future Work: Can we identify globally relevant channels for coun-

terfeit detection in a Generator?

A A brief overview of the LRP-algorithm used

Layer-wise relevance propagation (LRP) [5] is a modified-gradient type algorithm
for backward passes in neural networks and other models. LRP is based on the
idea of replacing the partial derivatives, which are usually flowing back along
the edges of a graph, by terms derived from Taylor decompositions for single
layers [58] of the network. While the ϵ-LRP-rule is similar to gradient-times-
input, other rules such as the β-rule [57] result in explanations which exhibit
visually low noise and are robust to gradient shattering effects [6] common in
deep neural networks due to its normalization properties. Consider a neuron y
with inputs xi, weights wi, and a relevance score being already computed for its
output being Ry. The relevance score Ry is the analogue for the total derivative
dz
dy in conventional backpropagation started at output logits, however computed
using LRP. Then the relevance score for the input xi according to the β = 0-rule
is given as

Ri = Ry
(wixi)+∑
k(wkxk)+

(1)

where (·)+ is the positive part.This measures the proportion of the positive part
of the weighted input (wixi)+ for the input neuron i relative to the positive
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weighted inputs from all inputs used to compute the value of neuron y. There-
fore it redistributes relevance from an output to the inputs proportional to this
fraction and proportional to the relevance Ry of the output neuron. We used
the β = 0-rule for all convolution layers and the ϵ-rule for the top-most fully
connected layer. Before applying LRP, we fuse batchnorm layers into convolu-
tion layers and reset the batchnorm layers. The backpropagation in the resetted
batchnorm layers uses the identity. Technically the base LRP algorithm is im-
plemented in PyTorch as custom static autograd functions. This results for con-
volution layers in relevance scores having a shape of (1, C,H,W ) in the gradient
field.

LRP scores computed in the input space of neural networks have been shown
to perform well on metrics regarding the ordering of input space regions accord-
ing to the computed explanation scores and the correlation of this ordering to
changes in model output logits [68,65,4] when modifying the highest scoring
regions.

B Computational Complexity of FF-RS (ω) / LRP-max

Both FF-RS (ω) and LRP-max require an additional forward and backward
pass during computation. We emphasize that FF-RS (ω) and LRP-max are not
used during training, and are only used for analysis / interpretability. Therefore,
computational overhead is not substantial. All our experiments were performed
using a single Nvidia RTX 3090 GPU.

C Non Color-conditional T-FF

There are a few T-FF that are not color-conditional. In this section, we show non
color-conditional T-FF. We show LRP-max response image regions for ResNet-
50 and EfficientNet-B0 in Fig. C.1 and C.3 respectively. We further show the
maximum spatial activation distributions before and after color ablation for
ResNet-50 and EfficientNet-B0 in Fig. C.2 and C.4 respectively. As one can ob-
serve using LRP-max response image regions, these non color-conditional T-FF
contain frequency / texture artifacts. The maximum spatial activation distribu-
tions clearly show that these non color-conditional T-FF produce identical /
similar distributions before and after color ablation.

D k hyper-parameter in top-k for T-FF

In this section, we include more discussion regarding the k hyper-parameter in
top-k. We show that as we increase k, AP and GAN detection accuracies drop
across ProGAN [37] and all unseen GANs [41,40,10,97,18,62]. For our analysis,
we identify the smallest k with a substantial drop in cross-model forensic transfer
as indicated by AP and GAN detection accuracies. The results for ResNet-50
and EfficientNet-B0 detectors are shown in Table D.1
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ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

Fig. C.1. T-FF that are not color-conditional in ResNet-50 Universal detector: We
show the LRP-max response regions for 5 non color-conditional T-FF for ProGAN [37]
and all 6 unseen GANs [41,40,10,97,18,62]. Each row represents a non color-conditional
T-FF. We emphasize that T-FF are discovered using our proposed forensic feature
relevance statistic (FF-RS). This detector is trained with ProGAN [37] counterfeits [87]
and cross-model forensic transfer is evaluated on other unseen GANs. All counterfeits
are obtained from the ForenSynths dataset [87]. Visual inspection of LRP-max regions
of non color-conditional T-FF shows frequency / texture artifacts. i.e.: rapid changes
in pixel intensities. This shows that the universal detector also uses frequency / texture
artifacts for cross-model transfer although color is a critical T-FF as ≈ 85% of T-FF
are color-conditional. We emphasize that our proposed method is capable of identifying
different types of T-FF (i.e.: frequency / texture artifacts).

ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]
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Fig. C.2. Non Color-conditional T-FF in ResNet-50: Each row represents a non color-
conditional T-FF (exact same T-FF as shown in Fig. C.1), and we show the maximum
spatial activation distributions for ProGAN [37], StyleGAN2 [41], StyleGAN [40], Big-
GAN [10], CycleGAN [97], StarGAN [18] and GauGAN [62] counterfeits before (Base-
line) and after color ablation (Grayscale). We remark that for each counterfeit in the
ForenSynths dataset [87], we apply global max pooling to the specific T-FF to obtain a
maximum spatial activation value (scalar). We can clearly observe that these T-FF are
producing identical / similar spatial activations (max) for the same set of counterfeits
after removing color information which demonstrates that these T-FF do not respond
to color information. This clearly indicates that these T-FF are not color-conditional
(Confirmed by Mood’s median test).
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Fig. C.3. T-FF that are not color-conditional in EfficientNet-B0 Universal detec-
tor: We show the LRP-max response regions for 5 non color-conditional T-FF for
ProGAN [37] and all 6 unseen GANs [41,40,10,97,18,62]. Each row represents a non
color-conditional T-FF. We emphasize that T-FF are discovered using our proposed
forensic feature relevance statistic (FF-RS). This detector is trained with ProGAN [37]
counterfeits [87] and cross-model forensic transfer is evaluated on other unseen GANs.
All counterfeits are obtained from the ForenSynths dataset [87]. Visual inspection of
LRP-max regions of non color-conditional T-FF shows frequency / texture artifacts.
i.e.: rapid changes in pixel intensities. This shows that the universal detector also uses
frequency / texture artifacts for cross-model transfer although color is a critical T-FF
as ≈ 52% of T-FF are color-conditional. We emphasize that our proposed method is
capable of identifying different types of T-FF (i.e.: frequency / texture artifacts).

ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]
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Fig. C.4. Non Color-conditional T-FF in EfficientNet-B0: Each row represents a
non color-conditional T-FF (exact same T-FF as shown in Fig. C.3), and we show the
maximum spatial activation distributions for ProGAN [37], StyleGAN2 [41], StyleGAN
[40], BigGAN [10], CycleGAN [97], StarGAN [18] and GauGAN [62] counterfeits before
(Baseline) and after color ablation (Grayscale). We remark that for each counterfeit
in the ForenSynths dataset [87], we apply global max pooling to the specific T-FF to
obtain a maximum spatial activation value (scalar). We can clearly observe that these
T-FF are producing identical spatial activations (max) for the same set of counterfeits
after removing color information which demonstrates that these T-FF do not respond
to color information. This clearly indicates that these T-FF are not color-conditional.
(Confirmed by our Mood’s median test).
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Table D.1. Sensitivity assessments for different k values using feature map dropout
of discovered T-FF : We show the results for the publicly released ResNet-50 universal
detector [87] (top) and our own version of EfficientNet-B0 [78] universal detector (bot-
tom) following the exact training / test strategy proposed in [87]. We show the AP,
real and GAN detection accuracies for baseline [87] and different top-k forensic feature
dropout. Feature map dropout is performed by suppressing (zeroing out) the resulting
activations of target feature maps (i.e.: top-k). We can clearly observe that feature
map dropout of topk-k corresponding to T-FF results in substantial drop in AP and
GAN detection accuracies across ProGAN and all 6 unseen GANs [41,40,10,97,18,62]
as we increase k. Given that we aim to identify the smallest k, we identify k = 114
and k = 27 as the suitable k for ResNet-50 and EfficientNet-B0 universal detectors.

ResNet-50
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline [87] 100.0 100.0 100.0 99.3 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4
top-29 98.6 99.9 40.7 84.9 89.2 62.3 84.9 92.9 52.4 66.8 85.1 35.4 76.9 89.4 42.2 87.7 98.2 30.4 85.6 94.0 45.6
top-57 96.8 99.9 26.3 84.0 91.1 54.9 84.0 92.4 50.6 63.2 83.3 30.9 71.4 88.9 30.6 86.0 98.1 29.0 82.4 92.7 41.2
top-114 69.8 99.4 3.2 56.6 89.4 11.3 56.6 90.6 13.7 55.4 86.3 18.3 61.2 91.4 17.4 72.6 89.4 35.9 71.0 95.0 18.8
top-228 58.6 99.3 2.3 49.2 29.2 76.6 49.2 24.5 76.2 51.6 48.1 50.6 50.2 83.0 16.2 59.3 46.7 66.4 60.7 65.5 52.5

EfficientNet-B0
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

baseline [87] 100. 100. 100. 99.0 95.2 85.4 99.0 96.1 94.3 84.4 79.7 75.9 97.3 89.6 93.0 96.0 92.8 85.5 98.3 94.1 94.4
top-5 91.8 99.9 14.5 68.9 75.1 53.7 68.9 74.6 38.3 57.4 74.6 38.3 78.9 85.5 54.4 82.4 94.2 40.8 70.7 97.4 13.9
top-27 50.0 100. 0.0 52.1 94.3 7.0 52.1 97.3 2.6 53.5 97.4 3.8 47.5 100.0 0.0 50.0 100. 0.0 46.2 100. 0.0
top-49 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0 50.0 100. 0.0

E Cross-model forensic transfer using BigGAN [10]
pre-training dataset

In this section, we show that color is a critical T-FF using an additional train-
ing dataset. We use BigGAN real / fake as second dataset with 1.04M images
to train universal detectors following Wang et al. [87] and verify our findings.
We remark that ForenSynths [87] uses ProGAN real / fake dataset. We perform
large-scale experiments using EfficientNet-B0 universal detector. We report me-
dian counterfeit probability results for all 7 GANs [41,40,10,97,18,62] in Fig.
E.1. Our results show on a second dataset that color ablation causes counterfeit
probability to drop by > 50% for all unseen GANs. These results on another
dataset further support that color is a critical T-FF in universal detectors for
counterfeit detection.

F Is the performance degradation in universal detectors
due to unseen corruptions (OOD)?

We remark that some performance degrade is due to CNNs’ poor generaliza-
tion to unseen corruptions / OOD (grayscale), but here we show that significant
amount of degradation is due to color being a critical transferable forensic feature
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Fig. E.1. Color is a critical T-FF in universal detectors (Shown using BigGAN [10]
pre-training dataset): We show the box-whisker plots of probability (%) predicted
by the universal detector for counterfeits before (Baseline) and after color ablation
(Grayscale) for BigGAN [10], ProGAN [37], StyleGAN2 [41], StyleGAN [40], Cycle-
GAN [97], StarGAN [18] and GauGAN [62]. The red line in each box-plot shows the
median probability. We show the results for the EfficientNet-B0 universal detector fol-
lowing the exact training / test strategy proposed in [87]. Using BigGAN real / fake
dataset we verify that Color is a critical T-FF in Universal Detectors. We show that
color ablation results in median probability for counterfeits drop by > 58% across all
unseen GANs. Do note that median probability does not drop significantly for BigGAN
during color ablation showing the importance of color for cross-model forensic transfer.

(T-FF) in the universal detector, therefore ablation of color (i.e., grayscale) leads
to significant performance degrade. Specifically, we perform an experiment using
official EfficientNet-B0 ImageNet classifier (architecture identical to our univer-
sal detector) under Grayscale (OOD) setup. We measure the median probability
of the correct class before and after Grayscale (OOD) and observe only 17%
drop due to Grayscale. Comparing the within-model OOD setup with the cross-
model setup, the median probability drop during cross- model forensic transfer
is much larger, i.e.: median probability drop during cross-model forensic transfer
is > 89% (ProGAN pre-training, Fig. 4) and > 58% (BigGAN pre-training, Fig.
E.1) for EfficientNet-B0 universal detector. This shows that color is critical in
forensic transfer compared to within-model OOD setups. See row 1, col 1 in Fig.
4 and Fig. E.1, col 1 to verify that the median probability does not drop much
for the GAN used to train universal detectors under Grayscale (OOD).

G Color-conditional T-FF (Additional Results)

In this section, we show more color-conditional T-FF to support our finding that
color is a critical T-FF. We show LRP-max response image regions for ResNet-
50 and EfficientNet-B0 in Fig. G.1 and G.3 respectively. We further show the
maximum spatial activation distributions before and after color ablation for
these color-conditional T-FF in Fig. G.2(ResNet-50) and Fig. G.4(EfficientNet-
B0) respectively.
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Fig.G.1. Additional results demonstrating that color is a critical transferable forensic
feature (T-FF) in universal detectors (ResNet-50): Large-scale study on visual inter-
pretability of T-FF discovered through our proposed forensic feature relevance statistic
(FF-RS), reveal that color information is critical for cross-model forensic transfer. Each
row represents a color-conditional T-FF and we show the LRP-max response regions
for ProGAN [37], StyleGAN2 [41], StyleGAN [40], BigGAN [10], CycleGAN [97], Star-
GAN [18] and GauGAN [62] counterfeits for the publicly released ResNet-50 universal
detector by Wang et al. [87]. This detector is trained with ProGAN [37] counterfeits
[87] and cross-model forensic transfer is evaluated on other unseen GANs. All counter-
feits are obtained from the ForenSynths dataset [87]. The consistent color-conditional
LRP-max response across all GANs for these T-FF clearly indicate that color is critical
for cross-model forensic transfer in universal detectors.

H CR-Universal Detectors (Additional Results)

We show the AP, real and GAN detection accuracies for the universal Detectors
in Table H.1 and CR-Universal Detectors trained using our proposed data aug-
mentation scheme in Table H.2. As one can observe, our proposed CR-universal
detectors are more robust and can avoid attacks from color-ablated counterfeits
compared to the original detectors proposed by Wang et al. [87].

Table H.1. Universal detectors are more susceptible to color ablated counterfeit at-
tacks as color is a critical T-FF : We show the results for the publicly released ResNet-50
universal detector [87] (top) and our own version of EfficientNet-B0 [78] universal de-
tector (bottom) following the exact training and test strategy proposed in [87]. We
show the AP, real and GAN image detection accuracies for Baseline and Grayscale
(color ablated) images. As one can observe, AP and GAN detection accuracies drop
substantially during cross-model transfer when removing color information from coun-
terfeits.

ResNet-50
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 99.1 95.5 95.0 99.3 96.0 95.6 90.4 83.9 85.1 97.9 93.4 92.6 97.5 94.0 89.3 98.8 93.9 96.4

Grayscale 99.9 100.0 81.5 89.1 92.7 61.9 96.7 94.6 84.8 75.2 85.8 48.8 84.2 94.5 41.0 89.2 93.4 60.7 97.6 97.7 78.8

EfficientNet-B0
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 99.0 95.2 85.4 99.0 96.1 94.3 84.4 79.7 75.9 97.3 89.6 93.0 96.0 92.8 85.5 98.3 94.1 94.4

Grayscale 99.9 100.0 80.0 91.0 95.2 26.6 91.0 97.2 56.0 68.4 91.7 28.9 86.5 96.4 40.0 91.8 91.3 72.9 93.7 99.7 48.2
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Fig.G.2. Additional results showing Color-conditional T-FF in ResNet-50: Each row
represents a color-conditional T-FF (exact same T-FF as shown in Fig. G.1), and
we show the maximum spatial activation distributions for ProGAN [37], StyleGAN2
[41], StyleGAN [40], BigGAN [10], CycleGAN [97], StarGAN [18] and GauGAN [62]
counterfeits before (Baseline) and after color ablation (Grayscale). We remark that for
each counterfeit in the ForenSynths dataset [87], we apply global max pooling to the
specific T-FF to obtain a maximum spatial activation value (scalar). We can clearly
observe that these T-FF are producing noticeably lower spatial activations (max) for
the same set of counterfeits after removing color information. This clearly indicates
that these T-FF are color-conditional (Confirmed by Mood’s median test).

Table H.2. CR-Universal detectors trained using our proposed data augmentation
scheme are more robust to color ablated counterfeits: We show the results for the
ResNet-50 universal detector [87] (top) and our own version of EfficientNet-B0 [78]
universal detector (bottom) following the exact training / test strategy proposed in [87].
We show the AP, real and GAN image detection accuracies for Baseline and Grayscale
(color ablated) images. As one can observe, AP and GAN detection accuracies remain
similar during forensic transfer when removing color information from counterfeits.

CR-ResNet-50
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 98.5 94.4 92.8 99.5 97.4 95.3 89.9 80.3 86.8 96.6 90.2 90.3 96.2 91.2 88.8 99.5 96.5 96.8

Grayscale 100.0 100.0 100.0 98.0 90.0 95.0 99.6 95.1 98.0 87.6 72.7 88.8 91.1 81.6 81.8 95.4 87.0 89.5 99.4 95.1 97.2

CR-EfficientNet-B0
ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN AP Real GAN

Baseline 100.0 100.0 100.0 98.1 92.3 74.5 98.1 97.2 90.5 82.3 78.0 70.3 95.7 89.0 88.5 95.9 90.2 87.3 99.0 96.4 94.5

Grayscale 100.0 100.0 100.0 98.8 91.4 77.9 98.8 95.7 94.4 81.0 76.5 71.3 91.3 85.9 78.5 94.8 90.5 84.0 98.8 95.2 94.1
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I Pixel-wise explanations are not informative to discover
T-FF (Additional Results)

In this section, we show additional results to demonstrate that direct pixel-wise
explanations of universal detector decisions are not informative to discover T-FF.
Similar to main paper, we use 2 popular interpretation methods namely Guided-
GradCAM [72] and LRP [9] to analyse the pixel-wise explanations of universal
detector decisions. We show additional results for ResNet-50 detector in Fig. I.1.
We also show results for EfficientNet-B0 in Fig. I.2 and I.3. As one can observe
from Fig. I.1, I.2 and I.3 pixel-wise explanations of universal detector decisions
are not informative to discover T-FF due to their focus on spatial localization.

J Research Reproducibility / Code Details

Code: Pytorch code is available at here. Refer to README for step-by-step
instructions. The codebase is clearly documented. The code is structured as
follows:

– lrp/: Base Pytorch module containing LRP implementations for ResNet and
EfficientNet architectures. This includes all Pytorch wrappers.

– fmap ranking/: Pytorch module to calculate FF-RS (ω) for counterfeit
detection.

– sensitivity assessment/: Pytorch module to perform sensitivity assess-
ments for T-FF and color ablation.

– patch extraction/: Pytorch module to extract LRP-max response image
regions for every T-FF.

– activation histograms/: Pytorch module to calculate maximum spatial
activation for images for every T-FF.

– utils/: Contains all utilities, helper functions and plotting functions.

ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

Fig.G.3. Additional results demonstrating that color is a critical T-FF in universal
detectors (EfficientNet-B0): Large-scale study on visual interpretability of T-FF dis-
covered through our proposed FF-RS (ω) reveal that color information is critical for
cross-model forensic transfer. Each row represents a color-based T-FF and we show the
LRP-max response regions for ProGAN [37], StyleGAN2 [41], StyleGAN [40], BigGAN
[10], CycleGAN [97], StarGAN [18] and GauGAN [62] counterfeits for our own version
of EfficientNet-B0 [78] universal detector following the exact training / test strategy
proposed by Wang et al. [87]. This detector is trained with ProGAN [37] counterfeits
[87] and cross-model forensic transfer is evaluated on other unseen GANs. All counter-
feits are obtained from the ForenSynths dataset [87]. The consistent color-conditional
LRP-max response across all GANs for these T-FF clearly indicate that color is critical
for cross-model forensic transfer in universal detectors.

https://keshik6.github.io/transferable-forensic-features/
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ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]
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Fig.G.4. Additional results showing Color-conditional T-FF in EfficientNet-B0: Each
row represents a color-conditional T-FF (exact same T-FF as shown in Fig. G.3), and
we show the maximum spatial activation distributions for ProGAN [37], StyleGAN2
[41], StyleGAN [40], BigGAN [10], CycleGAN [97], StarGAN [18] and GauGAN [62]
counterfeits before (Baseline) and after color ablation (Grayscale). We remark that for
each counterfeit in the ForenSynths dataset [87], we apply global max pooling to the
specific T-FF to obtain a maximum spatial activation value (scalar). We can clearly
observe that these T-FF are producing noticeably lower spatial activations (max) for
the same set of counterfeits after removing color information. This clearly indicates
that these T-FF are color-conditional (Confirmed by Mood’s median test).

ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97] StarGAN [18] GauGAN [62]

Fig.H.1. T-FF in CR-ResNet-50: Each row represents a T-FF. As visible, these T-
FF are largely faintly colored. Notable patterns include wheels (row 5 in ProGAN [37],
StyleGAN2 [41], StyleGAN [40]) and stripes in Zebra (rows 1-5 in CycleGAN [97]). We
remark that CR-Universal detectors also contain a few color-conditional T-FF.

Pre-trained models: All pretrained models can be found at here. We pro-
vide both ResNet-50 and EfficientNet-B0 pretrained universal detectors. We also
include CR-universal detector models. All our claims reported in Main / Sup-
plementary can be reproduced using these checkpoints.

Docker information: For training /analysis in containerised environments
(HPC, Super-computing clusters), please use nvcr.io/nvidia/pytorch:20.12-py3
container.

Experiment details and hyper-parameters: For training universal de-
tectors, we use the exact setup proposed in [87] with Adam optimizer (β1 =
0.9, β2 = 0.999), batch size of 64 and initial learning rate of 1e−4. For data
augmentation, we use the exact setup proposed in [87] that includes random
cropping (224x224), random horizontal flip and 50% JPEG + Blurring. All ex-
periments were repeated 3 times. For LRP, we use β = 0 rule. For statistical
tests, we use Mood’s median test with a significance level of α = 0.05.

https://keshik6.github.io/transferable-forensic-features/
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ProGAN [37] StyleGAN2 [41] StyleGAN [40] BigGAN [10] CycleGAN [97]

I
m

a
g
e

Pixel-wise explanations of universal detector decisions [87] using Guided-GradCAM (GGC) [72] and LRP [5]

G
G

C
[7

2
]

L
R

P
[5

]

Pixel-wise explanations of ImageNet classifier decisions using Guided-GradCAM (GGC) [72] and LRP [5]

G
G

C
[7

2
]

L
R

P
[5

]

Fig. I.1. Additional results showing that pixel-wise explanations of universal detector
decisions are not informative to discover T-FF : We show pixel-wise explanations using
Guided-GradCAM (GGC) (row 2) [72] and LRP (row 3) [9] for the ResNet-50 univer-
sal detector [87] for ProGAN [37], CycleGAN [97], StarGAN [18], BigGAN [10] and
StyleGAN2 [41]. The universal detector predicts probability p >= 95% for all coun-
terfeit images shown above. All these counterfeits are obtained from the ForenSynths
dataset [87]. For LRP [9], we only show the positive relevances. We also show the
pixel-wise explanations of ImageNet classifier decisions for the exact counterfeits using
GGC (row 4) and LRP (row 5). This is shown as a control experiment to emphasize
the significance of our observations. As one can clearly observe, pixel-wise explanations
of universal detector decisions are not informative to discover T-FF (row 2 and 3) as
the explanations appear to be random and not reveal any meaningful visual features
used for counterfeit detection. Particularly, it remains unknown as to why the universal
detector outputs high detection probability (p >= 95%) for these counterfeits. On the
other hand, pixel-wise explanations of ImageNet classifier decisions produce meaning-
ful results. i.e.: The GGC (row 4) and LRP (row 5) explanation results for car samples
(columns 5, 6) show that ImageNet uses features such as wheels/body to classify cars.
This clearly shows that interpretability techniques such as GGC and LRP are not in-
formative to discover T-FF in universal detectors. In other words, we are unable to
discover any forensic footprints based on pixel-wise explanations of universal detectors.
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Pixel-wise explanations of universal detector decisions [87] using Guided-GradCAM (GGC) [72] and LRP [5]
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Fig. I.2. Additional results showing that pixel-wise explanations of universal detector
decisions are not informative to discover T-FF (EfficientNet-B0): We show pixel-wise
explanations using Guided-GradCAM (GGC) (row 2) [72] and LRP (row 3) [9] for our
version of EfficientNet-B0 universal Detector following the exact training / test strat-
egy proposed in [87] for ProGAN [37], CycleGAN [97], StarGAN [18], BigGAN [10] and
StyleGAN2 [41]. The universal detector predicts probability p >= 95% for all coun-
terfeit images shown above. All these counterfeits are obtained from the ForenSynths
dataset [87]. For LRP [9], we only show the positive relevances. We also show the
pixel-wise explanations of ImageNet classifier decisions for the exact counterfeits using
GGC (row 4) and LRP (row 5). This is shown as a control experiment to emphasize
the significance of our observations. As one can clearly observe, pixel-wise explanations
of universal detector decisions are not informative to discover T-FF (row 2 and 3) as
the explanations appear to be random and not reveal any meaningful visual features
used for counterfeit detection. Particularly, it remains unknown as to why the universal
detector outputs high detection probability (p >= 95%) for these counterfeits. On the
other hand, pixel-wise explanations of ImageNet classifier decisions produce meaning-
ful results. i.e.: The GGC (row 4) and LRP (row 5) explanation results for car samples
(columns 5, 6) show that ImageNet uses features such as wheels / body to classify
cars. This clearly shows that interpretability techniques such as GGC and LRP are not
informative to discover T-FF in universal detectors. In other words, we are unable to
discover any forensic footprints based on pixel-wise explanations of universal detectors.
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Fig. I.3. Additional results showing that pixel-wise explanations of universal detector
decisions are not informative to discover T-FF (EfficientNet-B0): We show pixel-wise
explanations using Guided-GradCAM (GGC) (row 2) [72] and LRP (row 3) [9] for our
version of EfficientNet-B0 universal Detector following the exact training / test strat-
egy proposed in [87] for ProGAN [37], CycleGAN [97], StarGAN [18], BigGAN [10] and
StyleGAN2 [41]. The universal detector predicts probability p >= 95% for all coun-
terfeit images shown above. All these counterfeits are obtained from the ForenSynths
dataset [87]. For LRP [9], we only show the positive relevances. We also show the
pixel-wise explanations of ImageNet classifier decisions for the exact counterfeits using
GGC (row 4) and LRP (row 5). This is shown as a control experiment to emphasize
the significance of our observations. As one can clearly observe, pixel-wise explanations
of universal detector decisions are not informative to discover T-FF (row 2 and 3) as
the explanations appear to be random and not reveal any meaningful visual features
used for counterfeit detection. Particularly, it remains unknown as to why the universal
detector outputs high detection probability (p >= 95%) for these counterfeits. On the
other hand, pixel-wise explanations of ImageNet classifier decisions produce meaning-
ful results. i.e.: The GGC (row 4) and LRP (row 5) explanation results for cat samples
(columns 1, 2, 5, 6) show that ImageNet uses features such as eyes and whiskers to
classify cats. This clearly shows that interpretability techniques such as GGC and LRP
are not informative to discover T-FF in universal detectors. In other words, we can not
discover any forensic footprints based on pixel-wise explanations of universal detectors.
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K Future Work: Can we identify globally relevant
channels for counterfeit detection in a Generator?

ProGAN / LSUN-Bedroom / 
β = 0 LRP rule

(A) (B)
(C)

Fig.K.1. (A) ResNet-50 detector [87] scores before and after masking the 5% chan-
nels in the generator according to highest LRP scores computed for the generator.
(B) ResNet-50 detector [87] scores before and after masking the 5% channels selected
randomly in the generator. The orange line depicts the median of the box plot. Higher
difference between both box plots within a subplot is better. Computed over 500 gener-
ated images trained over the LSUN-Bedrooms [90] class using a ProGAN [37]. One can
see that masking 5% channels found by LRP in the generator leads to a very strong
drop in detector scores (A) compared to masking 5% randomly selected channels re-
sults in a much smaller score decrease (B). (C) Original and ablated GAN samples
with corresponding detector probabilities.

This section serves to motivate future directions from an image synthesis per-
spective. Particularly, we ask the question as to whether it’s possible to identify
feature maps in GANs that are responsible for generating forensic features that
are detected by universal detectors.

In this section, we show preliminary results suggesting that it’s possible to
identify such globally relevant channels in a generator. Particularly, we perform
LRP all the way into the Generator to identify the top highest scoring GAN
channels that are responsible for counterfeit detection (i.e.: In the computa-
tional graph, the image is generated from a pre-trained ProGAN [37] model).
We show that ablating these top-scoring GAN channels consequently results in
large drop in probability predicted by the universal detector (We use the pub-
licly released ResNet-50 in this experiment). This result is shown in Fig. K.1
that propagating LRP into the generator is able to identify the globally top-5%
relevant channels for images. The box plot (A) shows a strong decrease after
ablating these high-scoring GAN channels (though ablated GAN samples have
poor visual quality). This can be compared to (B) where 5% of randomly selected
GAN channels are ablated, which results in a very small decrease in counter-
feit detection scores. These results show promising directions for understanding
image synthesis methods, and we hope to explore this area in future work. We
also hope to explore the properties of Fair Generative models [88,69,80,17,79],
GANs / detectors trained using different techniques (regularization, knowledge
transfer, pruning, few-shot learning, self-supervised learning) [13,2,89,34] and
face-forgery detectors [43,16,73,93,95,47,31].
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