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Abstract. Recently, Implicit Neural Representations (INRs) parame-
terized by neural networks have emerged as a powerful and promising
tool to represent different kinds of signals due to its continuous, differen-
tiable properties, showing superiorities to classical discretized represen-
tations. However, the training of neural networks for INRs only utilizes
input-output pairs, and the derivatives of the target output with respect
to the input, which can be accessed in some cases, are usually ignored. In
this paper, we propose a training paradigm for INRs whose target output
is image pixels, to encode image derivatives in addition to image values in
the neural network. Specifically, we use finite differences to approximate
image derivatives. We show how the training paradigm can be lever-
aged to solve typical INRs problems, i.e., image regression and inverse
rendering, and demonstrate this training paradigm can improve the data-
efficiency and generalization capabilities of INRs. The code of our method
is available at https://github.com/megvii-research/Sobolev_INRs.

Keywords: implicit neural representations, finite differences, Sobolev
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1 Introduction

A promising recent direction in computer vision and computer graphics is encod-
ing complex signals implicitly by aid of multi-layer perceptron (MLP) named Im-
plicit Neural Representations (INRs) [28,21,33,25,24,31,32,35]. The MLPs (more
specifically, coordinate-based MLPs) take low-dimensional coordinates as inputs
and are trained to output a representation of shape, density, and/or colors at
each input location.

Compared to classical alternatives, i.e., discrete grid-based representation,
INRs offer two main benefits. (a) Due to the fact that MLPs are continuous
functions, they are significantly more memory efficient than discrete grid-based
representations and theoretically, signals parameterized by MLPs can be pre-
sented in arbitrary resolution. (b) INRs are naturally differentiable, so gradient
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Dataset 𝑔(x) ReLU+P.E. 𝑓𝚯(x) SIREN 𝑓𝚯(x) SIREN+S.T. 𝑓𝚯(x)

Fig. 1: Visualized approximation results of different training schemes and differ-
ent activation functions. P.E. stands for positional encoding [24,36]; S.T. stands
for Sobolev training. Top: dataset g (the target function to approximate) as well
as approximated functions fΘ (functions parameterized by neural networks) rep-
resented by MLPs within an image patch of 20×20 pixels. Bottom: vector fields
of the first-order derivatives, where red points are training samples (in a total
proportion of 6.25%) and remaining black points are unseen samples. When ac-
tivated by sine functions and trained with additional supervision on derivatives,
the network demonstrates the best approximation of both function values and
derivatives.

descent (GD) can be applied to optimize MLPs using modern auto-differentiation
tools, e.g., PyTorch [30], TensorFlow [1], JAX [6].

However, as will be discussed below, the training paradigm adopted by most
of the INRs only utilizes input-output pairs, which brings about bad general-
ization capabilities on unseen coordinates. In other words, if trained with low-
resolution training data, MLPs will yield heavily degraded predictions when the
target outputs are high-resolution. Based on this observation, an intuitive idea
is that we can take advantage of the differentiability of INRs to improve the
generalization capabilities. In this paper, we propose a training paradigm for
INRs whose training data and the desired results are both images, with both su-
pervision on values and derivatives enforced. Considering that the ground truth
representation (the “continuous” image) is agnostic, finite differences are applied
to approximate numerical first-order derivatives on images.

Further, we study some important peripheral problems relevant to the pro-
posed training paradigm, e.g., the choice of activation functions, the number of
layers in MLPs and the choice of image filters.

We find that in practice, most of the recent INRs build on ReLU-based
MLPs [24,36,9] fail to represent well the derivatives of target outputs, even if the
corresponding supervision is provided. For this reason, we use periodic activation
functions [27,31], i.e., sine function, to improve MLPs’ convergence property of
derivatives. As is shown in Fig. 1, INRs trained with traditional value-based
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schemes fail to explicitly constraint the behavior at unseen coordinates, leading
to poor generalization both in the image field and the vector field of the first-
order derivatives. Besides, with sine-activated MLPs trained with both value loss
and derivative loss, INRs are able to generalize well even if the training samples
only take a very limited proportion (6.25% in Fig. 1).

We show how the training paradigm can be adapted to specific problems,
namely direct image regression [31,36] and indirect inverse rendering [24,36].
Experiments results demonstrate that our training paradigm can improve the
data-efficiency and generalization capabilities of INRs. The main contributions
are summarized below.

- We propose a training paradigm for INRs whose training data as well as
target outputs are image pixels. With the paradigm, image values and image
derivatives are encoded into the INRs. Concretely, we use finite differences
to approximate the derivatives of the ground truth signal. To the best of our
knowledge, supervising network derivatives in INRs is minimally explored.

- We study the factor of activation functions in INRs when applying the pro-
posed training paradigm. By experiments, We use sine functions for better
convergence property of derivatives.

- Experiment results on two typical INRs problems demonstrate that with the
proposed paradigm we are able to train better INRs - representations that
require fewer training samples and generalise better on unseen inputs.

2 Related Work

2.1 Implicit Neural Representations

Implicit Neural Representations (INRs), which usually represent an object as a
multi-layer perceptron model that maps low-dimensional coordinates to signal
values, have drawn a lot of attention recently. Since this representation is con-
tinuous and can capture fine details of signals, it has been widely applied to novel
view synthesis [24,20,19,29,42,41,37], shape representation [10,28,22,7,4,14,44,39],
and multi-view 3D reconstruction [21,26,8,45]. As a milestone, Mildenhall et
al. [24] propose a novel view synthesis method that learns an implicit represen-
tation for a specific 3D scene by using a set of multi-view calibrated images.
Recent work from Park et al. [28] puts forward to learn a Signed Distance Func-
tion (SDF) to represent the shape of objects, and different SDFs can be inferred
with different input latent codes. However, the (approximated) ground truth
derivative information of the target signal has rarely been utilized to train INRs.

2.2 Derivative Supervision

Derivative information for neural networks has also been exploited in some pre-
vious work. Hornik [16] proves the universal approximation theorems for neu-
ral networks in Sobolev spaces - a vector space of functions equipped with a
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Fig. 2: An overview of the proposed training paradigm for INRs. Top: the under-
lying continuous signal g and its derivatives Dxg. Middle: the pixels of image I,
which can be considered as discrete but exact sampling of g and its derivatives
are obtained by numerical approximation at image space. Bottom: the MLP
denoted as fΘ used as a general approximator whose derivatives are analyti-
cal thanks to auto-differentiation tools. In the proposed training paradigm, we
enforce the supervision on both values and derivatives.

norm that is a combination of ℓp-norms of the function together with its deriva-
tives up to a given order. Hornik [16] shows that neural networks with non-
constant, bounded, continuous activation functions, with continuous derivatives
up to order K are universal approximators in the Sobolev spaces of order K. Fur-
ther, Czarnecki et al. [12] prove ReLU-based MLPs are universal approximators
for function values and first-order derivatives theoretically and propose Sobolev
training for neural networks. However, only the scenarios with analytical deriva-
tives are covered and the ReLU-based MLPs show relatively poor convergence
properties in practice. Gropp et al. [14] propose an Eikonal term which is a first-
order derivative related penalty term to regularize INRs. The Eikonal term is
different from our explicit derivative supervision with ground truth derivatives
approximation. Sitzmann et al. [31] verify that INRs with periodic activation
functions can fit derivatives robustly, while the supervision on both values and
derivatives and the property of Sobolev training in INRs remain unexplored.

3 Methodology

3.1 Formulation

Considering a continuous target signal g : RD → RC , which is sampled discretely
at {xi}Ni=1, the goal of INRs is to approximate g with a neural network (typically
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an MLP) fΘ : RD → RC , parameterized by weights Θ. The inputs to the
MLP are typically low dimensional coordinates x ∈ RD, e.g., D = 2 for image
coordinates, and the corresponding outputs are signal values, e.g., RGB colors.
Training pairs of most recent INRs are denoted as {(xi, g(xi))}Ni=1, where N is
the number of total training samples.

By measuring the distance between predictions of the MLP {fΘ(xi)}Ni=1 and
ground truth signal values {g(xi)}Ni=1 with certain metrics, we actually obtain
an optimization objective for tuning Θ. Benefiting from the natural differentia-
bility of MLPs, we are able to minimize the error using gradient descent (GD)
implemented by auto differentiation frameworks.

MLPs are known as a powerful approximator of functions and with their
continuous property, we are able to interpolate the discrete signal up to an ar-
bitrarily higher resolution. However, given the traditional training scheme, the
resulting ability to interpolate at unseen coordinates is usually not satisfactory.
In this paper, we alleviate this problem by leveraging the supervision on deriva-
tives, which is to say, we optimize Θ by supervising not only signal values, but
also derivatives at given coordinates.

The overall training paradigm is illustrated in Fig. 2. We therefore construct
a training dataset {(xi, g(xi), Dxg(xi))}Ni=1 for INRs. Since the analytical ex-
pression of g is unknown, its derivatives require to be approximated with finite
differences, which will be elaborated in Sec. 3.2. Considering that the task is a
standard regression task, we apply ℓ-2 error as the loss function. With the train-
ing set, the optimization objective evolves to a combination of both supervision
on signal values and first-order derivatives:

Θ = argmin
Θ

1

N

N∑
i=1

[Lval(g(xi), fΘ(xi)) + λLder(Dxg(xi), DxfΘ(xi))]

= argmin
Θ

1

N

N∑
i=1

(∥g(xi)− fΘ(xi)∥22 + λ∥Dxg(xi)−DxfΘ(xi)∥22).

(1)

We additionally extend this paradigm to enable both pre-processing of x
and post-processing of fΘ(x), for instances that INRs are used to be an inter-
mediate representation where the inputs to the MLP are calculated from x and
the outputs of the MLP require further processing to obtain the final results.
To formulate, we parameterize the MLP as fΘ, and denote the pre-processing
and post-processing as p and q respectively. The target signal g is therefore ap-
proximated as q(fΘ(p(x))). Assuming that both p and q are differentiable and
non-parametric, we can integrate these two processes into fΘ and follow the
aforementioned training paradigm. We will carry out experiments on tasks sat-
isfying this configuration in Sec. 4.2. Specially, if p and q are identical mappings,
the case degenerates to the original form.

Though can be applied under more circumstances, in this paper, we set the
scope of target signals to g : R2 → R3, that {xi}Ni=1 are image coordinates and
{g(xi)}Ni=1 are pixel values (colors). The loss supervision on derivatives Lder in
Eq. (1) is composed of partial derivatives w.r.t. u and v respectively.
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3.2 Approximate Derivatives with Finite Differences

To enable Sobolev training on image coordinates, the first-order derivative of
the target signal g is supposed to be known as a precondition. However, the
only information accessible at this stage is discrete sampled values {g(xi)}Ni=1

so we need to approximate derivatives from these values with finite differences,
or namely numerical differentiation (Fig. 2). Since we only consider cases that
x ∈ R2, the partial derivatives are

Dug(u, v) =
g(u+ h, v)− g(u− h, v)

2h
,

Dvg(u, v) =
g(u, v + h)− g(u, v − h)

2h
.

(2)

In this paper, we mainly apply the Sobel operator to obtain first-order deriva-
tives of images. It defines a template that convolves the image I to obtain the
partial derivative w.r.t. u while the transposed template for the partial derivative
w.r.t. v:

Du =

−1 0 1
−2 0 2
−1 0 1

 ∗ I, Dv =

−1 −2 −1
0 0 0
1 2 1

 ∗ I, (3)

where ∗ denotes the 2D convolution operation. We also study the choice of image
filters for derivatives in Sec. 4.3, the conclusion of which is that enforcing the
supervision of derivatives matters, regardless of the specific choice of filters.

3.3 Activation Functions

Activation functions are usually non-linear functions applied after each fully-
connected layer. ReLU (Rectified Linear Units) [2] is a universally applied choice
for its simple design, strong biological motivations and mathematical justifica-
tions. Due to the fact that the ReLU function is piecewise linear and its second
derivative is zero everywhere, ReLU can not fit derivatives well in practice even
the positional encoding is applied, just as shown in Fig. 3a. On the other hand,
[27,31] attempt to explore the potential of the sine function as activation func-
tions due to its periodicity, boundedness, arbitrary-order differentiability. The
superior convergence property of sine has been proved in [31] when supervising
the derivative only. In our setting, we try to replace ReLU with sine for better
convergence property in Sobolev space. As can be indicated from Fig. 3a, sine
indeed converges to a smaller derivative difference (close to 0) than ReLU when
the training in Sobolev space is enabled.

However, studying the properties of activation functions in-depth is a compli-
cated problem and in this paper, we mainly study the training paradigm applied
to MLPs with activation functions of (a) ReLU, whose first-order derivative is
piece-wise smooth, and (b) sine, whose arbitrary-order derivative is itself (with
phase shift). We also study other activation functions in the Supplementary
Material.
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Fig. 3: Convergence situations of Lder (a) and PSNR (b) w.r.t. iterations.

4 Experiments

In this section, we study the effectiveness of the proposed training paradigm on
specific tasks that satisfy the preconditions. We sort tasks involving INRs into
two categories, namely direct and indirect ones. Direct tasks are those where the
supervision labels are in the same space as the network outputs, where p and
q defined in Sec. 3.1 are both identical mappings. While in indirect tasks, the
network outputs are processed afterwards so that the observations in the same
space as the supervision labels are produced. We give an example of direct and
indirect tasks respectively in Sec. 4.1 and Sec. 4.2.

4.1 Direct: Image Regression

A typical direct task is image regression. Given an RGB image I, an MLP is
appointed to regress the mapping from image coordinates to RGB colors g :
R2 → R3. This task is fundamental regarding demonstrating the representation
ability of INRs.

Implementation

Dataset We construct a dataset based on the Set 5 dataset [5] to demonstrate
the great interpolatability of MLPs when trained with additional supervision on
derivatives. We split the pixels within an image into two groups, namely training
samples and evaluation samples, by performing nearest-neighbor downscaling by
a factor of 4. This is to say, for an image patch of 4×4, we have 1 training sample
and the remaining 15 pixels as evaluation samples.

Network Architecture For network architecture, we implement a fully-connected
MLP with 4 activated linear layers with 256 hidden units each and 1 output linear
layer. For the ReLU-based implementation, we follow the conclusion in [43,36]
and apply positional encoding (P.E.) to the inputs (additional 20 channels).
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Table 1: Quantitative results on the task of image regression on Set 5 dataset [5].
When trained with additional supervision on derivatives and activated by sine
and ReLU functions, the network achieves the best and second-best performance
respectively in terms of both PSNR and SSIM. We also provided interpolated
results by bilinear and bicubic interpolation. best second-best

Method Mean Baby Bird Butterfly Head Woman

PSNR ↑
Bilinear 24.14 26.98 24.88 18.68 28.04 22.10

Bicubic 23.63 26.52 24.46 18.23 27.43 21.52

ReLU+P.E. [24] 26.59 29.80 28.18 20.54 29.47 24.95

ReLU+P.E.+S.T. 28.63 31.93 31.22 21.93 31.11 26.97

SIREN [31] 26.22 30.48 28.07 20.73 28.22 23.62

SIREN+S.T. 30.28 33.36 33.34 24.42 31.64 28.62

SSIM ↑
Bilinear 0.716 0.778 0.754 0.636 0.674 0.736

Bicubic 0.705 0.773 0.746 0.625 0.655 0.727

ReLU+P.E. [24] 0.740 0.792 0.808 0.636 0.690 0.775

ReLU+P.E.+S.T. 0.809 0.867 0.888 0.708 0.757 0.827

SIREN [31] 0.722 0.849 0.804 0.698 0.635 0.625

SIREN+S.T. 0.890 0.918 0.955 0.870 0.795 0.910

Training & Evaluation We train the network with all training samples with
Adam optimizer for 50k iterations, at a learning rate of 10−4. Following the
common practice in image super resolution [17,34,38], we measure PSNR and
SSIM on the Y channel and ignore 4 pixels from the image border. For PSNR,
we only take the evaluation samples into account.

Results The quantitative scores are shown in Tab. 1, where we compare the
proposed training paradigm with the previous value-based training paradigm,
and with different activation functions. When trained with Lval alone, ReLU
and sine (SIREN [31]) functions lead to comparable results; while with addi-
tional supervision on image derivatives, a huge performance improvement has
been gained with both activations in both metrics. It is worth noting that in
all experiments, INRs demonstrate greater interpolatability than rule-based in-
terpolation methods, i.e., bilinear and bicubic interpolation. Fig. 4 gives some
example regions where our method produces clearer images and sharper edges
and also approximates better the derivatives. It can be observed that sine-based
MLPs outperform ReLU-based ones when Sobolev training is enabled. Even so,
Sobolev training still improves the results of ReLU-based INRs by a large margin.
As additional evidences, Fig. 3b shows the growth of PSNR w.r.t. the number
of iterations, where the combination of Sobolev training and sine leads to the
fastest convergence and the best performance.
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Ground Truth ReLU+P.E. ReLU+P.E.+S.T. SIREN SIREN+S.T.

(a)

(b)

(c)

Fig. 4: Results of regressed images and derivatives of the set Baby (a), Butterfly
(b) and Woman (c). When sine functions are adopted for activating linear layers
and Sobolev training is enabled, the MLP yields the best visual effects, especially
at high-frequency sharp edges, while ReLU-based MLPs fail to regress these
details.
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Table 2: Quantitative results on the task of inverse rendering on LLFF
dataset [23]. When trained with additional supervision on derivatives and ac-
tivated by sine functions, the network achieves the best performance in terms of
both PSNR and SSIM. best second-best

Method Mean Fern Flower Fortress Horns Leaves Orchids Room T-Rex

PSNR ↑
ReLU+P.E. [24] 23.42 21.82 25.03 27.89 24.75 18.14 18.92 27.22 23.62

ReLU+P.E.+S.T. 23.74 22.99 25.27 27.90 24.50 19.30 19.40 27.10 23.49

SIREN[31]+P.E. 23.38 21.61 25.30 27.60 24.73 18.22 18.99 26.89 23.69

SIREN+P.E.+S.T. 24.38 23.63 25.99 28.30 25.24 20.02 19.74 27.76 24.40

SSIM ↑
ReLU+P.E. [24] 0.706 0.651 0.755 0.769 0.729 0.535 0.544 0.877 0.791

ReLU+P.E.+S.T. 0.708 0.680 0.757 0.762 0.711 0.559 0.554 0.878 0.768

SIREN [31]+P.E. 0.682 0.596 0.739 0.763 0.720 0.495 0.525 0.851 0.768

SIREN+P.E.+S.T. 0.751 0.721 0.800 0.811 0.756 0.629 0.592 0.893 0.807

4.2 Indirect: Inverse Rendering

INRs are recently attention-drawing for their great power demonstrated when
representing 3D scenes. NeRF [24], which is a typical example of the kind, lever-
ages an MLP fΘ : R5 → R4, to regress the mapping from (x, y, z, θ, ϕ) to
(r, g, b, σ), where x, y, z are 3D coordinates and θ, ϕ are the view directions while
the outputs are emitted colors c = (r, g, b) and volume density σ. In the pipeline
of NeRF, the 3D sampling points (x, y, z), as well as view directions (θ, ϕ), of the
MLP are determined from 2D image coordinates and corresponding calibrated
camera parameters. After obtaining (r, g, b, σ) for each sampling point, a numer-
ical approximation of volume rendering is applied to obtain the integral colors.
Considering that both pre-processing and post-processing are differentiable, we
can adapt the extended formulation of proposed training paradigm mentioned
in Sec. 3.1 to perform inverse rendering of scenes.

Implementation

Dataset We carry out experiments on LLFF dataset [23]. Similarly, we down-
sample the training images to 189× 252 while the resolution of target images to
render is 756× 1008.

Network Architecture We implement a simplified version of NeRF [24] (x, y, z) →
(r, g, b, σ), removing the skip connection, the strategy of hierarchical sampling
and view dependence. For network architecture, we implement a fully-connected
MLP with 8 activated linear layers with 256 hidden units each and 1 output layer.
We apply positional encoding (additional 60 channels) to both sine-activated and
ReLU-activated MLPs.



Sobolev Training for INRs 11

Table 3: Results for comparisons on the task of inverse rendering on LLFF
dataset [23] when the training resolution is larger. It is worth noting that even
only trained with 1/16 samples, the MLP trained with the proposed paradigm
is able to outperform the ReLU-activated network on both metrics in the set of
Flower.

H ×W Method Mean Fern Flower Fortress Horns Leaves Orchids Room T-Rex

PSNR ↑
756× 1008 ReLU+P.E. 24.69 24.26 25.92 28.58 25.32 20.39 19.99 28.54 24.52

378× 504 ReLU+P.E. 24.55 23.93 25.90 28.46 25.22 20.20 19.97 28.30 24.42

378× 504 SIREN+P.E.+S.T. 24.67 24.27 26.16 28.37 25.37 20.64 19.94 27.99 24.61

189× 252 SIREN+P.E.+S.T. 24.38 23.63 25.99 28.30 25.24 20.02 19.74 27.76 24.40

SSIM ↑
756× 1008 ReLU+P.E. 0.755 0.744 0.788 0.792 0.746 0.646 0.606 0.900 0.816

378× 504 ReLU+P.E. 0.750 0.734 0.785 0.790 0.744 0.637 0.603 0.897 0.813

378× 504 SIREN+P.E.+S.T. 0.766 0.753 0.805 0.815 0.762 0.666 0.614 0.899 0.815

189× 252 SIREN+P.E.+S.T. 0.751 0.721 0.800 0.811 0.756 0.629 0.596 0.893 0.807

Training & Evaluation At the stage of training, we train the network with a
batch size of 128 with Adam optimizer for 400k iterations, at a learning rate
of 5× 10−4. For evaluation metrics, we report PSNR and SSIM on all channels
(RGB) of the rendered images.

Results Tab. 2 demonstrates the PSNR and SSIM on all scenes of LLFF
dataset [23] and Fig. 5 provides some results of novel view synthesis. The con-
clusions drawn are similar to the task of image regression.

Data-efficiency To provide more insights of the data-efficiency brought about
by the proposed training paradigm, we also conduct experiments with different
image resolution, namely different amount of training samples under different
training paradigms. For the valued-based paradigm, we train MLPs with images
of resolution 378 × 504 and 756 × 1008 respectively and render novel views of
756×1008. For the proposed paradigm, we additionally train MLPs with images
of 378× 504 and render novel views of 756× 1008.

The quantitative comparisons demonstrating the data-efficiency of Sobolev
training are shown in Tab. 3. The following two points can be observed and indi-
cated. (a) Even with only 1/16 training samples, the Sobolev trained MLP some-
times exceeds the ReLU-activated MLP with the value-based training paradigm,
e.g., on Flower in terms of PSNR and SSIM, on Fortress and Horns in terms of
SSIM. (b) The Sobolev trained MLP using images of 378×504 gets similar PSNR
and even higher SSIM compared to the ReLU-activated MLP trained with the
value-based paradigm using images of 756 × 1008. Note that the former case is
trained only with 1/4 samples as the latter.
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(a)

(b)

(c)

(d)

(e)

(f)

Ground Truth ReLU+P.E. ReLU+P.E.+S.T. SIREN+P.E. SIREN+P.E.+S.T.

Fig. 5: Results of novel view synthesis by INRs in the task of inverse rendering.
Top to bottom: Fern (a), Leaves (b), Room (c), Orchids (d), T-Rex (e), Horns
(f). Supervision on derivatives, applied with sine-activated MLPs, helps to render
clear images and sharp edges at unseen views.

4.3 Ablation Study

Image Derivative Filters We compare the network performance with another
image filter as finite differences approximating derivatives, namely vanilla image
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Table 4: Quantitative comparison on
the choice of image filters when ap-
proximating derivatives of g. Experi-
ments are carried out with MLPs ac-
tivated by sine functions. PSNR and
SSIM stand for mean values over all
scenes.

Task Filter PSNR SSIM

Image Vanilla 30.24 0.886
Regression Sobel 30.28 0.890

Inverse Vanilla 24.28 0.746
Rendering Sobel 24.38 0.751

Table 5: Quantitative comparison on
the number of layers in MLPs under
the task of inverse rendering. PSNR
and SSIM stand for mean values over
all scenes.

#layers Method PSNR SSIM

4

ReLU+P.E. 23.29 0.685
SIREN+P.E. 23.17 0.654

ReLU+P.E.+S.T. 23.35 0.689
SIREN+P.E.+S.T. 23.66 0.697

8

ReLU+P.E. 23.42 0.706
SIREN+P.E. 23.38 0.682

ReLU+P.E.+S.T. 23.74 0.708
SIREN+P.E.+S.T. 24.38 0.751

derivative filter whose templates are

Tu =

 0 0 0
−1 0 1
0 0 0

 , Tv =

 0 −1 0
0 0 0
0 1 0

 . (4)

It considers the same neighborhood as Sobel operator but removes the spatial
smoothing operation included in Sobel operator. The quantitative comparisons
are shown in Tab. 4.

Though the results with Sobel operator are slightly better than the vanilla
image derivative filter, the performance gap is relatively small, indicating the
specific choice of filters is not crucial to the performance.

Network Capacity A simple intuition towards the fitting ability, including
both values and derivatives, of a neural network is that the more parameters a
network possesses, the more complex functions it can represent. We present the
quantitative results obtained with networks with different number of layers (4
and 8 respectively) in the task of inverse rendering in Tab. 5. Other experiment
settings are aligned with Sec. 4.2. It can be indicated that when the layer number
increases to 8 from 4, the representation ability of INRs is stronger so it can
obtain more performance gain from derivatives.

5 Discussions

5.1 Future Work

To restate, the preconditions of the proposed training paradigm are that (a) the
raw dataset is in the form of {(xi, g(xi))}Ni=1, where {xi}Ni=1 are spatial coor-
dinates; (b) the derivatives of g can be obtained or approximated with limited
{g(xi)}; (c) {xi} do not necessarily be the direct inputs of the MLP, and the
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target values {g(xi)} do not necessarily be the direct outputs if and only if the
pre-processing p is differentiable w.r.t. to x and the post-processing q is differ-
entiable w.r.t. fΘ(p(x)).

Theoretically, referring to the formulation in Sec. 3.1, the training paradigm
can further generalize to more tasks, e.g., audio regression (please refer to the
Supplementary Material) and video regression, as long as their partial derivatives
can be obtained by numerical approximation. Take the task of video regression
(u, v, t) → (r, g, b) as an example, whose partial derivatives w.r.t. u and v are the
same on images. We can approximate the partial derivative w.r.t. t by subtracting
consecutive frames.

5.2 Limitations

We summarize the limitations of the proposed training paradigm as below.

- The computation of analytical derivatives is computationally expensive and
occupies a considerable amount of memory. For example, both PyTorch [30]
and TensorFlow [1] cannot calculate derivatives for each sample in a batch
separately, leading to redundant computation.

- Though the proposed training paradigm can be applied to various INRs-
based tasks, the scope of application is still limited. Since the derivatives are
approximated with finite differences, the distribution of {xi} is supposed to
be as uniform as possible at its domain, which is not always satisfied.

6 Conclusion

In this paper, we put forward a novel training paradigm for INRs in Sobolev
space, where supervision on both signal values and first-order derivatives is en-
forced for network training. The formulation of the task is generalized to any
circumstance that the inputs are 2D image coordinates and the outputs are im-
age values (e.g., RGB) as long as the pre-processing is differentiable w.r.t. the
coordinates and the post-processing is differentiable w.r.t. the MLP’s outputs.
We obtain approximated image derivatives by the Sobel operator.

Experiments are carried out on the task of image regression (direct) and
inverse rendering (indirect) and results show that the training paradigm brings
remarkable improvement to the quality of reconstructed images, especially when
applied together with an MLP whose activation functions are sine.

In addition, we study some important and interesting peripheral problems
relevant to the proposed training paradigm and give insights based on our ob-
servations.

Acknowledgements The authors would like to thank Zhongtian Zheng from
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A Additional Details & Results

A.1 Image Regression

For image regression task, we set the angular velocity of the sinusoidal function
to 30 and initialize the weights of MLPs following [31]. We provide other results
of Set 5 dataset [5] in Fig. 6. We also report the memory consumption as well
as training time required in Tab. 6. The proposed training paradigm requires
more memory and time at the training phase for additional computation and
storage of derivatives but it is worth noting that the time, as well as the memory
consumption at the inference phase, is the same with or without the derivative
supervision.

A.2 Inverse Rendering

For inverse rendering task, we set the angular velocity of the sinusoidal function
to 1 and initialize the weights of MLPs according to the method described in [15].
LLFF dataset [23,24] consists of 8 scenes captured with a handheld cellphone,
captured with 20 to 62 images. We follow [24] to hold out 1

8 of images for the
evaluation set. All of the training images are 756 × 1008, but the dataset also
provides the raw cellphone images of 3024×4032, which will be used to evaluate
high resolution rendering results in Appendix D.

We provide other results of LLFF dataset [23,24] in Fig. 7. Tab. 7 reports
the training-time memory consumption and time. Similar to image regression,
the additional cost is only at training-time.

B Audio Regression

As mentioned in the discussions of the main paper, the training paradigm we
proposed can further generalize to more tasks, as long as the tasks satisfy the
formulation in Sec. 3.1 of the main paper. Here we follow [31] to conduct the
task of audio signal representation.

Implementation

Dataset Following [31], we use two different audio signals, one for music and one
for speech. For music data, we use the first 7 seconds from Bach’s Cello Suite No.1
(Bach)⋆, and for the speech, we use stock audio of a male actor counting from
0 to 9 (Counting)⋆⋆. Both audio signals share a sampling rate of 44100Hz, and
in total there are 308207 samples in Bach and 537936 samples in Counting. We
normalize signal values to the range of [−1, 1]. Same as other tasks, we separate

⋆ Audio file available at https://www.yourclassical.org/episode/2017/04/04/

daily-download-js-bach--cello-suite-no-1-prelude.
⋆⋆ Audio file available at http://soundbible.com/2008-0-9-Male-Vocalized.html.

https://www.yourclassical.org/episode/2017/04/04/daily-download-js-bach--cello-suite-no-1-prelude
https://www.yourclassical.org/episode/2017/04/04/daily-download-js-bach--cello-suite-no-1-prelude
http://soundbible.com/2008-0-9-Male-Vocalized.html
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Table 6: GPU memory consumption at training phase and training time of 1000
epochs in image regression task of Baby. P.E. stands for positional encoding;
S.T. stands for Sobolev training.

Method Memory(MB) Time(s)

ReLU+P.E. [24] 130 4.678

ReLU+P.E.+S.T. 316 20.548

ReLU+P.E.+S.T.∗ 401 14.081

SIREN [31] 176 3.977

SIREN+S.T. 753 22.963

SIREN+S.T.∗ 704 16.556

* The new PyTorch 1.11.0 supports compu-
tation of per-sample derivatives, so we also
report the statistics obtained.

all samples within an audio clip into two groups, namely training samples and
evaluation samples, by performing nearest-neighbor downscaling by a factor of
5. The approximated derivatives are obtained by two-sided differences method,
similar to the vanilla derivative filter of the task on images.

Network Architecture We implement a fully-connected MLP with 4 activated
linear layers with 256 hidden units and 1 output linear layer. We set the angular
velocity of the sinusoidal function to 30 and follow the initialization strategy in
[31] to initialize the weights of MLPs.

Training & Evaluation At the stage of training, we use the entire set of training
samples to train the network as a batch with Adam optimizer, at a learning rate
of 5× 10−5. For evaluation, we measure PSNR only on the evaluation samples.

Results The quantitative results in PSNR of regressing these two audio clips are
shown in Tab. 8. Sobolev training significantly improves the regression quality of
both audio clips. We further illustrate the visualized comparisons respectively in
Fig. 8 and Fig. 9, showing the regression error of the derivative-trained network
is smaller.

As our results show ReLU-activated networks can not fit audio signals well,
which is consistent with the result of [31], we only report the results of Sine-
activated networks.

C Different Activation Functions

Recent ReLU-based MLPs normally have poor convergence property under deriva-
tive supervision, we mainly investigate the performance difference between ReLU
and periodic activation function, i.e., sine, in the main paper. In this part, an
experiment is designed to study the convergence properties of derivatives with
different activation functions. The scope of the investigation is shown in Tab. 9.
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Table 7: GPU memory consumption at training phase and training time of 1000
iterations in inverse rendering task of Fern.

Method Memory(MB) Time(s)

ReLU+P.E. 228 87.264

ReLU+P.E.+S.T. 912 190.434

SIREN+P.E. 348 86.642

SIREN+P.E.+S.T. 1827 204.748

Table 8: Quantitative PSNR results on the task of audio regression on Bach
and Counting. 1/5 samples are used for training, and rest samples are used for
evaluation. When trained with additional supervision on derivatives, PSNR is
significantly improved.

Method Mean Bach Counting

SIREN [31] 35.89 41.50 30.28

SIREN+S.T. 41.23 48.89 33.57

Dataset We convert the RGB image Bird of Set 5 [5] to grayscale as our dataset.
The original image shape is 288× 288× 1, we use the Sobel operator to get ap-
proximate image partial derivatives, resulting the derivative image with shape
288 × 288 × 2, w.r.t. u and v respectively. We perform nearest-neighbor down-
sampling on the original image and derivative image by a factor of 4.

Network Architecture The network architecture is the same as the image regres-
sion task in the main paper, except for the channel number of the last linear
layer is 1 instead of 3. The angular velocity of the sinusoidal function and weight
initialization method are both the same as image regression task. Taking the
conclusion in [36,43] into consideration, we do two parallel experiments with
and without positional encoding for all activation functions except for sine.

Training & Evaluation We use the downsampled 1/16 pixels as our training data
and the remaining pixels as evaluation samples. The network is optimized for
10k iterations at a learning rate of 10−4.

Results Fig. 10 and Fig. 11 respectively show the convergence curve of deriva-
tive loss with and without positional encoding. Sine demonstrates its great power
in fitting the network’s derivative compared with other activation functions. It
is worth noting that positional encoding is helpful to improve the MLPs’ ability
of approximating derivatives when applied with other activation functions. The
corresponding quantitative results are shown in Tab. 10.
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Table 9: Different activation functions and their definitions and weight initial-
ization

Activation Definition Derivative Initialization

ReLU [2] f(x) =

{
x, x > 0

0, x ≤ 0
f ′(x) =

{
1, x > 0

0, x < 0
Kaiming normal[15]

ELU [11] f(x) =

{
x, x > 0

α(ex − 1), x ≤ 0
f ′(x) =

{
1, x > 0

αex, x < 0
Normal

SELU [18] f(x) =

{
λx, x > 0

λα(ex − 1), x ≤ 0
f ′(x) =

{
λ, x > 0

λαex x ≤ 0
Normal

Sigmoid f(x) = 1
1+e−x f ′(x) = f(x)(1− f(x)) Xavier normal [13]

Softplus f(x) = ln(1 + ex) f ′(x) = 1
1+e−x Kaiming normal[15]

Tanh f(x) = ex−e−x

ex+e−x f ′(x) = 1− (f(x))2 Xavier normal [13]

Sine [31] f(x) = sin(x) f ′(x) = cos(x) Specific uniform [31]

D Precision of Approximate Image Derivatives

In all aforementioned experiments, the partial derivatives we leverage for super-
vision are obtained by applying Sobel filters on the images before downsampling
and for training, we perform nearest-neighbor downsampling for both image
values and approximated derivatives. This is generally reasonable since in real
applications, the original images are usually of very high resolution, such as
LLFF dataset [23,24], whose original resolution is 3024× 4032. Without getting
deteriorated rendering results, we would like the training data of INRs to be as
few as possible for faster training and a direct solution is to downscale the im-
ages. As our results in the main paper show, by keeping the derivatives obtained
at a high resolution, the problem of downgraded performance will get alleviated.

We also conduct experiments of image regression and inverse rendering where
derivatives are obtained from the downsampled images, abandoning the data
dependence of the raw data before downsampling, which is to say, we will use
all samples in hand for training.

D.1 Image Regression

The dataset we used consists of 5 images of 1356 × 2040, which are generated
by uniformly sampling images from DIV2K [3] validation set. We downsample
the original images by nearest-neighbor interpolation with a factor of 4 and use
Sobel filters to calculate the approximate derivatives on downsampled images.
The network architecture and training & evaluation settings are consistent with
the image regression task of the main paper.

Results The quantitative results are shown in Tab. 11. From Tab. 11, we can
see training with derivatives from downsampled images still gives a great per-
formance improvement than value-based training paradigm.
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Table 10: Quantitative comparisons of different activation functions on the task
of (grayscale) image regression.

Activation PSNR↑ SSIM↑
ReLU 25.06 0.711

ReLU P.E. 29.36 0.856

ELU 21.13 0.537

ELU P.E. 29.76 0.879

SELU 20.20 0.433

SELU P.E. 28.55 0.837

Sigmoid 18.06 0.408

Sigmoid P.E. 24.27 0.638

Softplus 18.38 0.417

Softplus P.E. 24.24 0.639

Tanh 23.27 0.635

Tanh P.E. 31.14 0.902

Sine 33.13 0.960

D.2 Inverse Rendering

The experiment settings are different from the main paper. Here we do not per-
form downsampling to images; instead, we use images of 756× 1008 for training
and render novel views of 756× 1008 and 3024× 4032. The approximated image
derivatives are calculated from images of 756×1008. As mentioned earlier, LLFF
dataset [23] provides raw images of 3024 × 4032 so we can evaluate rendering
results at a higher resolution.

Results The quantitative results on rendering views of different resolutions are
shown in Tab. 12. As can be proven by the results, we can still get a slight
performance improvement when training with approximated derivatives from
downsampled training images. Also, the performance gap is enlarged, when the
rendering views’ resolutions are higher, indicating the great generalizability of
Sobolev trained MLPs.

The difference between the two sources of image derivatives is basically the
precision of approximated derivatives. As shown in the results of both tasks,
the precision of approximated derivatives does not affect much. It is using the
derivatives for supervision that matters.

E Use of Existing Assets

Some codes of image regression task and audio regression task are borrowed
from SIREN [31]. The implementation of inverse rendering task are based on
NeRF-PyTorch [40], which is a PyTorch version of original NeRF [24].

https://github.com/vsitzmann/siren
https://github.com/yenchenlin/nerf-pytorch
https://github.com/bmild/nerf
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Table 11: Quantitative results on the task of image regression on DIV2K valida-
tion set.

Method Mean
DIV2K Validation Set

0820 0840 0860 0880 0900

PSNR ↑
ReLU+P.E. [24] 23.34 20.44 25.75 18.62 29.36 22.51

ReLU+P.E.+S.T. 23.91 20.90 26.30 19.17 30.00 23.18

SIREN [31] 22.69 19.70 24.87 17.23 29.21 22.45

SIREN+S.T. 24.44 21.58 26.87 19.35 30.64 23.74

SSIM ↑
ReLU+P.E. [24] 0.577 0.497 0.651 0.371 0.817 0.547

ReLU+P.E.+S.T. 0.625 0.559 0.692 0.401 0.843 0.629

SIREN [31] 0.594 0.508 0.650 0.356 0.842 0.616

SIREN+S.T. 0.703 0.663 0.754 0.488 0.875 0.733

Table 12: Quantitative results of using different paradigms when training with
images of resolution 756 × 1008 and rendering novel views of 756 × 1008 and
3024× 4032.

Method Render H ×W Mean Fern Flower Fortress Horns Leaves Orchids Room T-Rex

PSNR ↑

ReLU+P.E. [24]
756× 1008 24.69 24.26 25.92 28.58 25.32 20.39 19.991 28.54 24.52
3024× 4032 23.12 22.24 24.93 27.22 23.66 18.90 19.258 26.24 22.54

SIREN+P.E.+S.T.
756× 1008 24.72 24.33 26.06 28.66 25.40 20.65 19.985 28.03 24.68
3024× 4032 23.22 22.32 25.07 27.26 23.72 19.10 19.261 26.14 22.88

SSIM ↑

ReLU+P.E. [24]
756× 1008 0.755 0.744 0.788 0.792 0.746 0.646 0.606 0.900 0.816
3024× 4032 0.723 0.714 0.773 0.819 0.703 0.570 0.616 0.860 0.732

SIREN+P.E.+S.T.
756× 1008 0.767 0.755 0.807 0.819 0.760 0.666 0.614 0.899 0.818
3024× 4032 0.729 0.717 0.781 0.830 0.705 0.581 0.622 0.859 0.736



24 W. Yuan et al.

Ground Truth ReLU+P.E. ReLU+P.E.+S.T. SIREN SIREN+S.T.

(a)

(b)

Fig. 6: Additional results of image regression. Bird (a), Head (b).

(a)

(b)

Ground Truth ReLU+P.E. ReLU+P.E.+S.T. SIREN+P.E. SIREN+P.E.+S.T.

Fig. 7: Additional results of inverse rendering. Flower (a), Fortress (b).
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(a) SIREN [31]
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Fig. 8: Regressed waveforms of the INRs trained with and without derivative
supervision on the clip of Bach. From top to bottom: ground truth waveform,
regressed waveform and error detected. We zoom in the waveform marked with
red at the right column accordingly.
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(a) SIREN [31]
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Fig. 9: Regressed waveforms of the INRs trained with and without derivative
supervision on the clip of Counting. From top to bottom: ground truth waveform,
regressed waveform and error detected. We zoom in the waveform marked with
red at the right column accordingly.
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Fig. 10: Derivative loss of different activation functions.
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Fig. 11: Derivative loss of different activation functions with positional encoding.
P.E. means positional encoding.
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