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Abstract. This paper presents an end-to-end learning-based video com-
pression system, termed CANF-VC, based on conditional augmented
normalizing flows (CANF). Most learned video compression systems adopt
the same hybrid-based coding architecture as the traditional codecs. Re-
cent research on conditional coding has shown the sub-optimality of
the hybrid-based coding and opens up opportunities for deep generative
models to take a key role in creating new coding frameworks. CANF-VC
represents a new attempt that leverages the conditional ANF to learn
a video generative model for conditional inter-frame coding. We choose
ANF because it is a special type of generative model, which includes
variational autoencoder as a special case and is able to achieve better
expressiveness. CANF-VC also extends the idea of conditional coding to
motion coding, forming a purely conditional coding framework. Exten-
sive experimental results on commonly used datasets confirm the supe-
riority of CANF-VC to the state-of-the-art methods. The source code of
CANF-VC is available at https://github.com/NYCU-MAPL/CANF-VC.

1 Introduction

Video compression is an active research area. The video traffic continues to grow
exponentially due to an increased demand for various emerging video applica-
tions, particularly on social media platforms and mobile devices. The traditional
video codecs, such as HEVC [33] and VVC [7], are still thriving towards being
more efficient, hardware-friendly, and versatile. However, their backbones follow
the hybrid-based coding framework-namely, spatial/temporal predictive coding
plus transform-based residual coding—which has not changed since decades ago.

The arrival of deep learning spurs a new wave of developments in end-to-end
learned image and video compression [30,9,28,15,23,32]. The seminal work [4]
by Ballé et al. connects for the first time the learning of an image compression
system to learning a variational generative model, known as the variational au-
toencoder (VAE) [19]. VAE involves learning the autoencoder network jointly
with the prior distribution network by maximizing the variational lower bound
(ELBO) on the image likelihood p(x). Many follow-up works have been centered
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around enhancing the autoencoder network [9,8] and/or improving the prior
modeling [30,9]. Lately, there have been few attempts at introducing normaliz-
ing flow models [28,13] to learned image compression

Inspired by the success of learned image compression, research on learned
video compression is catching up quickly. However, most end-to-end learned
video compression systems [26,27,24,14,32] were developed based primarily on
the traditional, hybrid-based coding architecture, replacing key components,
such as inter-frame prediction and residual coding, with neural networks. The
idea of residual coding is to encode a target frame z; by coding the predic-
tion residual r; = x; — z. between x; and its motion-compensated reference
frame x.. The recent revisit of residual coding as a problem of conditional
coding in [21,22,23] opens up a new dimension of thinking. Arguably, the en-
tropy H(xzy — x.) of the residual between the coding frame z; and its motion-
compensated reference frame x. is greater than or equal to the conditional en-
tropy H(z¢|zc), i.e. H(xy —x.) > H(x¢|x.). How to learn p(xt|x.) is apparently
the key to the success of conditional coding.

In this paper, we present a conditional augmented normalizing flow-based
video compression (CANF-VC) system, which is inspired partly by the ANF-
based image compression (ANFIC) [13]. However, while ANFIC [13] adopts ANF
to learn the (unconditional) image distribution p(x) for image compression, we
address video compression from the perspective of learning a video generative
model by maximizing the conditional likelihood p(x¢|x.). We choose the condi-
tional augmented normalizing flow (CANF) to learn p(x:|x.), because ANF is
a special type of generative model, which includes VAE as a special case and is
able to achieve superior expressiveness to VAE.

Our work has three main contributions: (1) CANF-VC is the first normaliz-
ing flow-based video compression system that leverages CANF to learn a video
generative model for conditional inter-frame coding; (2) CANF-VC extends the
idea of conditional inter-frame coding to conditional motion coding, forming
a purely conditional coding framework; and (3) extensive experimental results
confirm the superiority of CANF-VC to the state-of-the-art methods.

2 Related Work

2.1 Learned Video Compression

End-to-end learned video compression is a hot research area. DVC [26] presents
the first end-to-end learned video coding framework based on temporal predic-
tive coding. Since then, there have been several improvements on learning-based
motion-compensated prediction. Agustsson et al. [2] estimate the uncertainty
about the flow map in forming a frame predictor, with a scale index sent for
each pixel to determine a spatially-varying Gaussian kernel for blurring the ref-
erence frame. Liu et al. [25] perform feature-domain warping in a coarse-to-fine
manner. Hu et al. [15] adopt deformable convolution for feature warping. Lin
et al. [24] and Yang et al. [37] form a multi-hypothesis prediction from multiple
reference frames. To reduce motion overhead, Lin et al. [24] use predictive mo-
tion coding by extrapolating a flow map predictor from the decoded flow maps.
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Fig.1: The architectures of ANF: (a) N-step ANF, (b) N-step hierarchical ANF, and
(c) ANF for image compression (ANFIC).

Rippel et al. [32] use the flow map predictor for motion compensation and signal
an incremental flow map between the resulting motion-compensated frame and
the target frame. Hu et al. [14] adapt, either locally or globally, the resolution of
the flow map features. Most learned video codecs encode the residual frame or
the residual flow map by a variational autoencoder (VAE)-based image coder [4].
Some additionally leverage a recurrent neural network to propagate causal, tem-
poral information in forming a temporal prior for entropy coding [38,25].

2.2 Conditional Coding

The idea of encoding the residual signal has recently been revisited from the
information-theoretic perspective. Ladune et al. [21] show that coding a video
frame z; conditionally based on its motion-compensated reference frame x. can
achieve a lower entropy rate than coding the residual signal x; — x. uncondition-
ally. The fact motivates their converting the VAE-based residual coder into a
conditional VAE by concatenating x. and x; for encoding, and their latent rep-
resentations for decoding. The idea was extended in [22] for conditional motion
coding, which encodes motion latents in an implicit, one-stage manner. However,
Fabian et al. [6] show that these conditional VAE-based approaches [21,22] may
suffer from the bottleneck issue; that is, the latent representation of x. produced
by a neural network for conditional decoding may not capture all the informa-
tion of ., which serves as a condition for encoding ;. Such information loss and
asymmetry can harm the efficiency of conditional coding. Li et al. [23] improve
the work in [21] by ensuring that the same information-rich latent representation
of . is utilized for both conditional encoding and decoding. Likewise, the work
in [12] creates the same coding context for conditional encoding and decoding
via a feedback recurrent module that aggregates the past latent information. In
common, these approaches do not evaluate any residual signal explicitly.

2.3 Augmented Normalizing Flows (ANF)

To learn properly the conditional distribution p(z;|z.) for conditional coding, we
turn to augmented normalizing flows (ANF), a special type of generative model
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able to achieve superior expressiveness to VAE. Different from the vanilla flow
models [20,18,10], ANF [16] augments the input z with an independent noise
e, (Fig. 1a), allowing the augmented noise to induce a complex marginal on
x [16]. ANF contains the autoencoding transform g, as a basic building block,
where the encoding transformation g™ from (z,e,) to (z, z) and the decoding
transformation g2°¢ from (z,2) to (y, 2) are specified by

9z (@, e2) = (2,57 (2) © e + mT"(2)) = (2, 2), (1)
97w, 2) = (& — p59(2)) Jo5(2), 2) = (y, 2), (2)
enc enc dec dec

respectively. s&™¢, mZ™¢, ¢ and o5°° are element-wise affine transform param-
eters, and they are driven by neural networks parameterized by .

The training of ANF aims to maximize the augmented data likelihood—namely,
arg maxy pr(z,e,) = p(gr(x,e,))|det(0gr(x,e,)/0(x,e,))|. Performing one au-
toencoding transformation (y,z) = gr(x,e.) (known as the one-step ANF) is
equivalent to training a VAE by maximizing the evidence lower bound (ELBO)
on the log-marginal log p,(x) [19]. As such, the learned image compression with
the factorized prior [3] can be viewed as an one-step ANF that adopts a purely
additive autoencoding transform (i.e. s¢"¢(x) = 09¢(2) = 1) and an augmented
noise e, ~ U(—0.5,0.5) modeling the uniform quantization. In this case, the
latents y, z follow the standard Normal A/(0, I) and the learned factorized prior,
respectively. In particular, the hyperprior extension [4] has a similar structure
to the hierarchical ANF (Fig. 1b), an enhanced form of ANF [16] with gé”c,ggec
playing a similar role to the hyper codec. For better expressiveness, one can stack
multiple one-step ANF’s as the multi-step ANF. In [13], Ho et al. introduce the
first ANF-based image compression (Fig 1c), which combines the multi-step and
the hierarchical ANF’s.

3 Proposed Method

3.1 Problem Statement

In this section, we formally define our task and objective. Let z1.p € RTX3XH*W
denote a (RGB) video sequence of width W and height H to be encoded, and
Z1.7 the decoded video. The video compression task is to strike a good bal-
ance between the distortion d(Z1.7, z1.7) of the decoded video &1.7 and the rate
r(&1.7) needed to represent it. When T' = 1, the task reduces to image com-
pression, of which the problem is cast as learning a VAE by maximizing the
ELBO on the log-likelihood log p(z) in [4]. The same perspective is applicable to
video compression yet with the aim of learning a VAE that maximizes the joint
log-likelihood log p(x1.7). Because p(x1.7) factorizes as Hthl p(zi|x <), with x4
representing collectively the video frames up to time instance ¢ — 1, video com-
pression is often done frame-by-frame by learning the conditional distribution
p(z¢|z<t). In our task, the decoded frames & .; are used in place of z;.

With the traditional predictive coding framework, the ELBO on log p(x+|Z <)
has a form of

Eq(ft,ma:t,fc«) logp(xt\ft,ft,:i<t) - DKL(Q(ft7f't|$ta j7<t)||p(fta Felt<t)),  (3)
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where the latents f, € R2XHXW 7, ¢ R3*H*XW represent the (quantized) opti-
cal flow map and the (quantized) motion-compensated residual frame associated
with z; € R3XHXW, respectively. The encoding distribution q(ft, Te|ae, T<p) =
q(ft|xt,§:<t) (rt\ft,act, Z<¢) specifies the generation of ft, ¢, while the decoding
distribution p(sct|ft,rt,a:<t) = N (% + warp(mt 1 ft)7 2)\1) models the recon-
struction process of x;, with warp(&i—1; ft) denoting the backward warping of
21 based on ft, and i being the variance of the Gaussian. Assuming the use of
uniform quantization function for obtaining ft, 7t, the Kullback—Leibler (KL) di-
vergence Dgr,(+||-) evaluates to the rate costs associated with their transmission:

Dicr(q(fo, Pelwe, &) |Ip(fr, 7|2 <)) (4)
=E,j tenion)(— log p(fil&<t) — log p(Fi| fi, <1)).

Substituting Eq. (4) into Eq. (3) and applying the law of total expectation yields

Eq(ft|$h§7<t)(RDr(xt|ft,:2'<t) + 10gp(ft|i<t))v (5)

where
RD, (x| fr, i) = Eq(ft\fmzt,@t)(logp(xt|ft,7%50<t) +log p(Fi|fi, #<1)),  (6)

which bears the interpretation of the ELBO on log p(:z:t|ft, Z <), with the latent
being the quantized residual frame 7.

From Egs. (5) and (6), we see that the traditional predictive coding of a video
frame x; includes (1) encoding the residual frame 7; based on ft, T<¢ in order to
maximize the log-likelihood log p(a¢| fi, #<¢) and (2) encoding the flow map frin
a way that strikes a good balance between the maximization of log p(act| fr, Tet)
and the (negative) rate E w0 logp(ft|xx<t) needed to signal f;.

In this work, we propose to turn the maximization of the log-likelihood
1ogp(ast|ft, Z<t), i.e. Eq. (6), into a problem of conditional coding, where ft, Tt
are utilized to formulate the motion-compensated frame z, € R3*HXW 35 3
condition. Unlike the existing works [21,22,23,12], which adopt the conditional
VAE, our conditional coder is constructed based on multi-step CANF in model-
ing p(x¢|z.) for its better expressiveness.

3.2 System Overview

Fig. 2a depicts our CANF-based video compression system, abbreviated as CANF-
VC. It includes two major components: (1) the CANF-based inter-frame coder
{Gr,G;'} and (2) the CANF-based motion coder {Fy, F-'}. The inter-frame
coder encodes a video frame x; conditionally, given the motion-compensated
frame x.. It departs from the conventional residual coding by maximizing the
conditional log-likelihood p(z¢|z.) with CANF model (Section 3.3). The motion



6 Ho et al.

Input Frame

Tt

Inter-frame Coder

Motion Coder

Frame Buffer
. f c Motion !
"\ Motion Buffer Extrapolation .
:
‘ z
F, Q :

Bi-1, 812,243 !

=

T5

Tt | Motion | &1 ¢ e
Estimation

(a) (b)

€h

N

Fig. 2: Tllustration of (a) the proposed CANF-VC framework and (b) the CANF-based
inter-frame coder {G,G5"'}. The CANF-based motion coder {Fr, F; '} follows the
same design as the inter-frame coder, with z, z. replaced by f:, f., respectively.

coder shares a similar architecture to the inter-frame coder. It extends con-
ditional coding to motion coding, in order to signal the flow map f;, which
characterizes the motion between x; and its reference frame Z;_;. In our work,
f is estimated by PWC-Net [34]. The compressed flow map ft serves to warp
the reference frame &;_1, with the warped result enhanced further by a motion
compensation network to arrive at x.. To formulate a condition for conditional
motion coding, we introduce a flow extrapolation network to extrapolate a flow
map f. from three previously decoded frames Z;_1, %+ 2, Z¢_3 and two decoded
flow maps ft,l, ft,g. Note that we expand the condition of p(x;|Z<;) from pre-
viously decoded frames {Z;} to include also previously decoded flows { f<t}.

3.3 CANF-based Inter-frame Coder

Fig. 2b presents the architecture of our CANF-based inter-frame coder, which
aims to learn the conditional distribution p(z:|x.) of the coding frame x; given
the motion-compensated frame x.. This is achieved by maximizing the aug-
mented likelihood p(z¢, €., ep,|z.) in the CANF framework, where e, € RE* 16X %,
en, € ROX6iX6i are the two augmented noise inputs. It is shown in [16] that
maximizing p(z¢, e, ep|z) is equivalent to maximizing a lower bound on the
marginal likelihood p(x¢|x.).

Architecture: Motivated by [13], our conditional inter-frame coder is a hy-
brid of the two-step and the hierarchical ANF’s. The two autoencoding trans-
forms {g5"°, gﬁfc}v {g75°, g;‘ij”} convert x, e, into their latents ys, 22, respectively,
while the hierarchical autoencoding transform {57, hﬁgc} acts as the hyperprior
codec, encoding the latent z5 into the hyperprior representation hs. The volume
preserving property of CANF requires that the latents ya, 2o (or 22), hs have the
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same dimensions as their respective inputs ¢, e,, e. One notable distinction be-
tween CANF and ANFIC [13] is the incorporation of the condition z. into the
autoencoding transforms and the prior distribution, as will be detailed next.
Conditional Encoding: The core idea of our conditional coding is to let
the latent ys, which represents a transformed version of the target frame xy,
approximate the condition z., with the latents 25, ho encoding the information
necessary for instructing the transformation. Specifically, the two autoencoding
transforms operate similarly and successively. Taking {g¢"°, gﬁfc} as an example
(see Fig.2b), we have

gy, ez|we) = (24, €2 +my (24, ) = (24, 21), (7)
93 (x4, 21) = (w1 — pd(21), 21) = (y1,21). (8)

That is, the one-step transformation from x; to y; is done by subtracting the
decoder output £9°°(z1) from z;. Note that 12°“(z) decodes the latent z1, which
aggregates the information of x4, z., and the augmented noise e,. We remark that
the encoding process is made conditional on z. by concatenating z. and x; to
form the encoder input. Intuitively, supplying x. as an auxiliary signal should
ease the transformation from z; to z.. This process is repeated by taking y; and
21 as the inputs to the next autoencoding transform {gg’°, g;‘ﬁgc}. In fact, the
number of the autoencoding transforms is flexible. In comparison with Egs. (1)
and (2), our autoencoding transform is purely additive (i.e. s¢"¢, gd¢¢ in Eqgs. (1)
and (2) are set to 1), which is found beneficial in terms of training stability.
The hierarchical autoencoding transform {h57°, hiic} serves to estimate the

probability distribution of z for entropy coding. It operates according to

hee(za,e5) = (22, €n + Mm%(22)) = (22, ha), (9)

hie (2o, holae) = (lz2 — pldee(ho, PO (2,))], ha) = (22, ha),  (10)

where |-] (depicted as Q in Fig. 2b) denotes the nearest-integer rounding, which
is needed to express zp in fixed-point representation for lossy compression. At
training time, the rounding effect is modeled by additive quantization noise.
It is worth noting that x. is provided as an auxiliary input to pd°® to exert a
combined effect of the hyperprior and the temporal prior (hffgmpom in Fig. 2b).

Conditional Decoding: The decoding process of our inter-frame coder up-
dates the motion-compensated frame . successively to reconstruct z;. It starts
by entropy decoding the latents 2o, hs, and substituting x. for y3. The quantized
zo will then be recovered and decoded to reconstruct uféc(@), which updates z.
as y1 = Te + ,uféc(zZ). Subsequently, y; will be encoded conditionally based on
x. using ms2°(y1, x.) in order to update the latent zp as z1 = 22 — Mm% (y1, x¢).
Finally, z; is decoded by ,uffic(zl) to update y; as the reconstructed version
Ty = y1 + uﬁfc(zl) of ;. In a sense, the reconstruction of z; is achieved by
passing the latent 25 through the composition of the decoding and encoding
transforms to update x..

Conditional Prior Distribution: Another strategy we adopt to learn

p(xy, e, enlze) is to introduce a conditional prior distribution p(ys, 2o, ﬁ2|xc).



8 Ho et al.

Specifically, we assume that it factorizes as follows:

P(y2, 22, holze) = p(yalze)p(2alha, me)p(ha). (11)

Because we require y2 to approximate x., it is natural to choose p(yz|z.) to be

N(z,, ﬁ] ) with a small variance ﬁ Moreover, following the hyperprior [4],

p(%2|ha, z.) and p(hs) are modeled by

p(22lha, x0) = N(0, (02 (ho, hiemPorel (3,.)))21) % U(—0.5,0.5)
plha) =Py, *U(—0.5,0.5),

where * denotes convolution and szzl plsa factorized prior parameterized by .

The use of the motion-compensated frame z. along with hs in estimating the
distribution of Z combines temporal prior (hf%mp"ml in Fig. 2b) and hyperprior.

Augmented Noises e, e;: In the theory of ANF [16], the augmented noises
are meant to induce a complex marginal on the input z. For the compression
task, we fix e, at 0 during training and test, in order not to increase the entropy
rate at Zo. For training, the quantization Q in Fig. 2b is simulated by additive
noise. In contrast, we draw e; ~ U(—0.5,0.5) for simulating the quantization
of the hyperprior at training time, and set it to zero at test time when the
hyperprior is actually rounded.

Extension to Conditional Motion Coding: The CANF-based motion
coder follows the same design as the CANF-based inter-frame coder. The coding
frame x; is replaced with the optical low map f; and the motion-compensated
frame x, with the extrapolated flow map f.. In addition, the temporal prior
takes the extrapolated frame warp(&i—1; f.) as input. To perform the flow map
extrapolation, we adopt a U-Net-based network (see supplementary document).

In the supplementary document, we provide another CANF implementation,
which additionally accepts x. as input to the decoding transforms. We choose the
current implementation due to its comparable performance and simpler design.

3.4 Training Objective

We train the conditional inter-frame and motion coders end-to-end. Inspired by
Eq. (5), we first turn the maximization of the ELBO (i.e. RD, in Eq. (6)) on
log p(x¢| ft, T<¢) into maximizing log p(z¢, €., en|x.). That is, to minimize

—log p(a1, €z, enlae) = —log p(hs) — log p(2a|ha, )
aG'n’(‘rtv €z, eh|xc)

A — 2.|1? = log |det
+ 1Hy2 CH g 6(.’L‘t,€z,€h)

To ensure the reconstruction quality, we follow [13] to replace the negative log-
determinant of the Jacobian with a weighted reconstruction loss Aod(x¢, &),
arriving at
- logp(xt, €z, €h|$c) ~ — logp(iLQ) - 10gp(,’22|]t),27 J,‘C) +A1||y2 - -rcH2 + )\2d(mt; i‘t)y
————
R D
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which includes the rate R needed to signal the transformation between z, and
z., the regularization term requiring ys to approximate x., and the distortion D
of #;. To complete the loss function, we also follow the second term in Eq. (5)
to include the conditional motion rate used to signal f; given f., which leads to

L = —logp(hs) —logp(Za|ha, z) + M lya — |2

X o R (12)
- logpf(h2) - logpf(z2|h2, fe) + Xod(xy, T4),

where py (respectively, p) describes the prior distribution over the motion (re-
spectively, inter-frame) latents.

3.5 Comparison with ANFIC and Other VAE-based Schemes

Our CANF-VC is based on ANF, as well as ANFIC, a learned image compression
system proposed in [13]. However, they significantly differ from each other, not
only because they refer to different applications. ANFIC [13] adopts an uncondi-
tional ANF to learn the image distribution p(x) for image compression, whereas
CANF-VC uses two conditional ANF’s (CANF’s) to learn the conditional distri-
bution p(z¢|z.) for inter-frame coding and the conditional rate needed to signal
the motion part, respectively. As a result, CANF-VC is a complete video coding
framework. Note that how the conditional information x. and f. are both incor-
porated in the respective autoencoding transforms and in the respective prior
distributions is first proposed in this work.

CANF-VC is also distinct from conditional VAE-based frameworks, such as
DCVC [23] and [22]. CANF-VC bases the compression backbone on CANF,
which is a flow-based model and includes VAE as a special case. As compared
with DCVC [23], CANF-VC additionally features conditional motion coding.
Although conditional motion coding also appears in [22], their VAE-based ap-
proach does not explicitly estimate a flow map prior to conditional coding, and
may suffer from the bottleneck issue [6] (Section 2.2). In contrast, CANF-VC
takes an explicit approach and avoids the bottleneck issue by using the same x.
symmetrically in the encoder and the decoder due to its invertible property.

4 Experiments

4.1 Settings and Implementation Details

Training Details: We train our model on Vimeo-90k [36] dataset, which con-
tains 91,701 7-frame sequences with resolution 448 x 256. We randomly crop
these video clips into 256 x 256 for training. We adopt the Adam [17] optimizer
with the learning rate 10~* and the batch size 32. Separate models are trained
to optimize first the mean-square error with Ay = {256,512,1024, 2048} and
A1 = 0.01 x Ay (see Eq. (12)). We then fine-tune these models for Multi-scale
Structural Similarity Index (MS-SSIM), with Ay set to {4,8,16,32,64}. All the
low-rate models are adapted from the one trained for the highest rate point.
Evaluation Methodologies: We evaluate our models on commonly used
datasets, including UVG [29], MCL-JCV [35], and HEVC Class B [11]. We follow
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Intra coder BD-rate (%) PSNR-RGB  BD-rate (%) MS-SSIM-RGB

(PSNR-RGB/MS-SSIM-RGB) UVG MCL-JCV HEVC-BE UVG MCL-JCV HEVC-B %
DVC_Pro [27] -/- -3.0 - -13.1 -5.2 - -20.8 29M
M-LVC [24] BPG/BPG -15.3 188 -38.6 0.2 4.7 -37.9 -
RaFC [14] hyperprior/hyperprior -11.1 44 -9.3 -25.5  -27.9 -37.2 -
FVC [15] BPG/BPG -16.9 -3.8 -17.8 -45.0 -46.1 -54.3 26M
HM (LDP, 4 refs) -/- 2294 -13.9 296 -189  -13.8 -17.1 -
CANF-VC* BPG/BPG -35.5 -14.6 -35.4 -46.6 -46.7 -53.2 31M
DCVC [23] cheng2020-anchor/hyperprior  -23.8  -14.4 -34.9 -43.9  -44.9 -50.7 8M
DCVC (ANFIC) ANFIC/ANFIC 248  -13.6  -34.0  -41.9 -43.7 511 sM
CANF-VC Lite ANFIC/ANFIC -37.3 -14.3 -39.8 -47.6 -44.2 -56.8 15M
CANF-VC ANFIC/ANFIC -42.5 -21.0 -40.1 -51.4 -47.6 -54.7 31M

Table 1: BD-rate comparison with GOP size 10/12. The anchor is x265 in veryslow
mode. The best performer is marked in red and the second best in blue.

common test protocols to provide results in Table 1 for 100-frame encoding with
GOP ! size 10 on HEVC Class B, and full-sequence encoding with GOP size
12 on the other datasets. Additionally, we present results for GOP size 32 in
Table 2, to underline the contributions of our inter-frame and motion coders. For
this additional setting, all the learned codecs use ANFIC [13] as the intra-frame
coder and encode only the first 96 frames in every test sequence. To evaluate the
rate-distortion performance, the bit rates are measured in bits per pixel (bpp),
and the quality in PSNR-RGB and MS-SSIM-RGB. Moreover, we use x265 in
veryslow mode as the anchor for reporting BD-rates.

Baseline Methods: The baseline methods for comparison include x265,
HEVC Test Model (HM) [1] and several recent publications, including DVC_Pro
[27], M-LVC [24], RaFC [14], FVC [15] and DCVC [23]. Because these baseline
methods adopt different intra-frame coders (see the second column of Table 1),
which are critical to the overall rate-distortion performance, we provide results
with ANFIC [13] (CANF-VC) and BPG (CANF-VC¥*) as the intra-frame coders
to ease comparison. Note that ANFIC [13] shows comparable performance to
cheng2020-anchor [5]. It is to be noted that x265, HM [1], DVC_Pro [27], and
M-LVC [24] use the same model optimized for PSNR to report PSNR-RGB
and MS-SSIM-RGB results. While the other methods train separate models in
reporting these results. We also present CANF-VC~ and CANF-VC Lite as
two additional variants of CANF-VC. CANF-VC~ disables conditional motion
coding while CANF-VC Lite implements a lightweight version of CANF-VC by
reducing the channels in the autoencoding and the hyperprior transforms, and
adopting SPyNet [31] as the flow estimation network.

4.2 Rate-Distortion and Subjective Quality Comparison

Rate-Distortion Comparison: The upper part of Table 1 compares the com-
peting methods with their intra-frame coders, e.g. hyperprior [3], performing
comparably to BPG. We see that our CANF-VC* (with BPG as the intra-frame
coder) outperforms most of these baselines across different datasets in terms
of PSNR-RGB. Its slight rate inflation (3%) as compared to M-LVC [24] on

! GOP refers to Group-of-Pictures and is often used interchangeably with the intra
period in papers on learned video codecs.
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Intra coder BD-rate (%) PSNR-RGB ~ BD-rate (%) MS-SSIM-RGB
(PSNR-RGB/MS-SSIM-RGB) UVG MCL-JCV HEVC-B UVG MCL-JCV HEVC-B
M-LVC (ANFIC) ANFIC/ANFIC 121 53 97 75 84 188
DCVC (ANFIC) ANFIC/ANFIC 163 -21.3  -105 -38.8 -48.9 -39.3
CANF-VC Lite ANFIC/ANFIC -36.1  -26.5 -30.3 -37.9 -47.8 -44.2
CANF-VC~ ANFIC/ANFIC -31.1 -29.5 -23.6 -36.2  -47.8 -38.0
CANF-VC ANFIC/ANFIC -35.9 -32.0 -27.7 -40.3 -49.6 -41.3
HM (LDP, 4 refs) - -41.6 -38.6  -32.1 343 -320 -31.0

Table 2: BD-rate comparison with GOP size 32. All the competing methods (except
HM) use ANFIC [13] as the intra-frame coder. The anchor is x265 in veryslow mode.
The best performer is marked in red and the second best in blue.
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Fig. 3: Rate-distortion performance evaluation with GOP size 10/12 on UVG, HEVC
Class B, and MCL-JCV datasets for both PSNR-RGB and MS-SSIM-RGB.

HEVC-B class may be attributed to the not-fully-aligned rate range in which
the BD-rate is measured (see Fig. 3). Note that M-LVC [24] is initially trained
for GOP size 100. With no access to its training software, a rate shift occurs
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Fig. 4: Subjective quality comparison between CANF-VC and DCVC (ANFIC).

when its test code is re-run for GOP size 10/12. Another observation is that
CANF-VC* shows similar MS-SSIM-RGB results to FVC [15], while surpassing
the others considerably. The lower part of Table 1 further shows that in terms
of both quality metrics, our full model CANF-VC performs consistently better
than both DCVC variants, where one uses ANFIC [13] and the other adopts
cheng2020-anchor [5] as their respective intra-frame coders. The same obser-
vation can be made with CANF-VC~ and CANF-VC Lite, except that they
perform similarly to DCVC [23] on MCL-JCV.

Under the long GOP setting (Table 2), the gain of our schemes (all three
variants) over DCVC (ANFIC) and M-LVC (ANFIC) becomes more significant
in terms of PSNR-RGB, while CANF-VC~ and CANF-VC Lite show comparable
or better MS-SSIM-RGB results than DCVC (ANFIC). Interestingly, the gap
in PSNR-RGB between the more capable HM and the learned coders is still
considerable, although the latter outperform HM in terms of MS-SSIM-RGB.

Subjective Quality Comparison: Fig. 4 presents a subjective comparison
between our CANF-VC and DCVC (ANFIC). Both schemes are trained for
PSNR-RGB and MS-SSIM-RGB, use ANFIC as the intra-frame coder, and set
GOP size to 32. Our CANF-VC is seen to preserve better the shape of the objects
and has no color bias, as compared to DCVC (ANFIC).

4.3 Ablation Experiments

In this section, unless otherwise stated, all the experiments are conducted on
UVG dataset [29], with the BD-rates reported against x265 in veryslow mode.
Conditional Inter-frame Coding vs. Residual Coding: To single out
the gain of conditional inter-frame coding over residual coding, Table 3a presents
a breakdown analysis in terms of BD-rate savings. In this ablation experiment,
the conditional motion coding is disabled and replaced with the motion coder
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from DVC [26]. Besides, the residual coding schemes adopt ANFIC [13] for cod-
ing the residual frame x; — z. as an intra image. The variants with the temporal
prior additionally involve the motion-compensated frame x. in estimating the
coding probabilities of the latent code (i.e. 25 in Fig. 2b). As seen in the table,
the conditional inter-frame coding outperforms the residual coding significantly,
whether the temporal prior is enabled or not. This suggests that a direct appli-
cation of ANFIC to residual coding is unable to achieve the same level of gain as
our CANF-based inter-frame coding. The temporal prior additionally improves
the rate savings of both schemes by 2.5% to 4.2%.

Conditional Motion Coding vs. Predictive/Intra Motion Coding:
This ablation experiment addresses the benefits of conditional motion coding.
To this end, different competing settings employ the same conditional inter-frame
coding, but change the way the flow map f; is coded. The baseline settings use
ANFIC [13] to code f; as an intra image or the flow map residual f; — f. without
any condition. For the conditional motion coding, we additionally present results
by simply using the previously decoded flow map ft—1 as the condition. Separate
models are trained for each test case. From Table 3b, our conditional motion
coding (i.e. coding f; based on f.) achieves the best performance. In terms of
rate savings, its gain over the two unconditional variants, i.e. coding f; or f; — fe
unconditionally, is quite significant. This result corroborates the superiority of
our conditional motion coding to predictive motion coding (i.e. coding f; — f).
As expected, the quality of the condition has a crucial effect on compression
performance. The trivial use of the previously decoded flow f;—; does not show
much gain as compared to unconditional coding. The fact substantiates the
effectiveness of our extrapolation network.

The Number of Autoencoding Transforms: Table 3c explores the effect
of the number of autoencoding transforms on compression performance. The 1-
step models are obtained by skipping the autoencoding transform {gg"°, gﬁfc} in
Fig. 2b. To have the model size compatible with the 2-step models, the 1-step
models have more channels in every autoencoding transform. We first experiment
with the conditional inter-frame coding, with the motion coder from DVC [26].
In this case, the 2-step model improves the rate saving of the 1-step model by
1.7%. Given the 2-step inter-frame coder, it is further seen that the 2-step motion
coder also improves the rate saving of the 1-step motion coder by 4.4%. This
suggests that with a similar model size, the 2-step model is superior to the 1-step
model in both inter-frame and motion coding.

Table 3d complements Table 3¢ to present results for 1-, 2- and 3-step CANF
when applied to both the motion and inter-frame codecs. 3-step CANF extends
straightforwardly the 2-step CANF by incorporating one additional autoencod-
ing transform. Despite a larger capacity, the 3-step CANF performs worse than
the 2-step CANF and comparably to the 1-step CANF. From Fig. 2b, the quan-
tization error introduced to the latent code zy and the approximation error
between z. (used for decoding) and y» (generated during encoding) are propa-
gated and accumulated (from top to bottom in Fig. 2b) during decoding. The
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Cond. Inter-frame Coding  Residual Coding  Temporal Prior = BD-Rate
v -21.8%
v v -24.3%
v -28.9%
v v -33.1%

(a)

Input of Motion Coder Cond. BD-Rate Motion Coder Inter-frame Coder BD-Rate

fe - -33.4% DVC [26] 1-step CANF  -31.4%
fi — fe - -35.3% DVC [26] 2-step CANF  -33.1%
fe fioi -35.2% 1-step CANF  2-step CANF  -38.1%
I f.  -42.5% 2-step CANF  2-step CANF  -42.5%

(b) ()

Motion Coder Inter-frame Coder BD-Rate

1-step CANF 1-step CANF 35.3%

2-step CANF 2-step CANF -42.5%

3-step CANF 3-step CANF -31.4%

(d)

Table 3: (a) Comparison of conditional inter-frame coding and residual coding under
the settings with and without the temporal prior. (b) Comparison of the conditional
motion coding, predictive motion coding, and intra motion coding. (c)(d) Comparisons
of the conditional motion and inter-frame coders with a varied number of autoencoding
transforms. The rows with blue color are our proposed full model.

cascading effect, compounded by temporal error propagation, may outweigh the
benefits of having more autoencoding transforms.

5 Conclusion

This work introduces CANF-VC for conditional inter-frame and motion coding.
CANF-VC achieves the state-of-the-art video compression performance. Our ma-
jor findings include: (1) the CANF-based inter-frame coding outperforms resid-
ual coding; (2) likewise, our conditional motion coding outperforms predictive
motion coding at the cost of additional buffer requirements; (3) the quality
of the conditioning variable is critical to compression performance; (4) our 2-
step CANF performs better than 1-step CANF, justifying the use of multi-step
CANF. Lastly, we note that CANF-VC does not use auto-regressive models in
inter-frame and motion coding. Its operations are parallelizable.
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This supplementary document provides additional materials to assist with
the understanding of the performance and design of our CANF-VC. Specifically,
it includes:

— CANF implementations

— Complexity characterization

— Rate-distortion curves with GOP 32

— Comparison with ELF-VC [10]

— Network details: CANF and motion extrapolation
— Temporal prior for motion coding

— Training strategy

— Subjective quality comparison

— Command lines for x265 and HM

1 CANF Implementations

Fig. Al depicts two possible CANF implementations. Fig. Ala corresponds to
the one presented in the main paper. It concatenates the motion-compensated
reference frame . with the input frame x; as input to all the encoding trans-
forms. In comparison, the scheme in Fig. Alb additionally accepts x. as input
to all the decoding transforms. The former (decoding transforms w/o x.) can
be viewed as a special case of the latter (decoding transforms w/ z.), which
utilizes x. for encoding transforms only. For the implementation of Fig. Alb,
the latent code is decoded first to produce 16-channel features having the same
spatial resolution as x.. The resulting features are then concatenated with x,
before being processed further by the three convolution layers (the orange part in
Fig. Alb) to complete the decoding transform. This implementation (Fig. Alb)
has a slightly larger model size than Fig. Ala.

Table Al presents the BD-rate comparison between the two CANF imple-
mentations. For experiments, we use the motion coder from DVC [7], while the
inter-frame coder adopts the two different CANF implementations (Fig. Ala
vs. Fig. Alb). It is seen that the more generalized implementation (decoding
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Fig. Al: Illustration of CANF implementations: (a) Decoding transforms w/o .
and (b) Decoding transforms w/ ..

Table A1l: BD-rate comparison between two CANF implementations for condi-
tional inter-frame coding. The motion coder is from DVC [7]. The anchor is x265
in veryslow mode.

Implementations UVG [9] MCL-JCV [12] HEVC-B [11]
Decoding transforms w/o z.  -33.1% -15.3% -35.4%
Decoding transforms w/ x. -35.2% -15.3% -33.9%

transforms w/ z.) has comparable performance to our current implementation
(decoding transforms w/o z.) on all three datasets. This justifies our choice of
decoding transforms w/o z. because of its comparable performance and simpler
design.

2 Complexity Characterization

Table A2 presents the computational characteristics of different competing meth-
ods from the perspectives of multiply-accumulate (MAC) operations, encod-
ing/decoding times for inference, and model sizes. It is to be noted that the
prolonged encoding/decoding times of DCVC [5] are due to the use of an auto-
regressive model for entropy coding. Our CANF-VC neither uses an auto-regressive
model for motion coding nor uses it for inter-frame coding. Its larger MAC
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Table A2: Complexity characterization in terms of MACs, encoding/decoding
times, and model sizes. The MACs and runtimes of DVC [7] and DCVC [5] are
collected by running the test code released by the respective authors on the same
1080T1 platform. The MACs are evaluated based on encoding a 1080p P-frame,
while the encoding/decoding times are averaged over the first 100 P-frames of
the Beauty sequence in UVG dataset.

Method MACs Encoding/Decoding Time Model Size
DVC [7] 1725G 4.15 5/4.06 s 8.5M
DVC_Pro [§] - -/- 29M
FVC [4] _ wa 26M
DCVC [5] 2268G 7.70 /32.90 s 8M
CANF-VC Lite 4012G 1.38 s/0.98 s 15M
CANF-VC 5088G 1.60 s/1.05 s 31M

arises from stacking multiple autoencoding transforms. Nevertheless, its rela-
tively short encoding/decoding times suggest that these autoencoding trans-
forms are amenable to parallel computing. Lastly, we remark that the relatively
longer encoding/decoding times of DVC [7] are due to their software imple-
mentation, particularly the entropy coding part. Our CANF-VC follows [2] to
quantize the scale parameters from the hyperprior into 64 distinct values, en-
abling a fast table look-up to derive the probabilities for entropy coding. In
contrast, DVC [7] does not quantize the scale parameters, and needs more time
in evaluating higher-precision coding probabilities.

3 Rate-Distortion Curves with GOP Size 32

Fig. A2 presents rate-distortion curves for HM [1], DCVC [5], M-LVC [6], and
our CANF-VC under GOP size 32 (see Table 2 for their BD-rate figures and
Section 4.2 for detailed discussion). Except HM, all the competing methods use
ANFIC [3] as the intra-frame coder for a fair comparison.

In terms of PSNR-RGB, our CANF-VC models outperform DCVC and M-
LVC, except for CANF-VC Lite, which performs comparably to DCVC on MCL-
JCV dataset. In addition, CANF-VC~ shows worse performance than the other
two CANF-VC variants at low rates because it does not include conditional mo-
tion coding, which is critical to low-rate compression performance. In comparison
with HM, our CANF-VC shows better results at high rates, but worse results at
low rates.

In terms of MS-SSIM-RGB, our CANF-VC models show slightly better re-
sults on UVG [9] and HEVC class B [11] than DCVC [5], and comparable results
on MCL-JCV [12].
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Fig. A2: Comparison of rate-distortion curves on UVG, HEVC Class B, and
MCL-JCV datasets for both PSNR and MS-SSIM. All the competing methods
use ANFIC [3] as the intra-frame coder and are evaluated under the same setting,
namely, 96-frame encoding with GOP size 32. Results for DCVC [5] and M-
LVC [6] are produced by their released code.

4 Comparison with ELF-VC [10]

Table A3 presents separately the BD-rate comparison with ELF-VC [10] since
ELF-VC [10] adopts a GOP size of 16, which is rarely used by the other compet-
ing methods. Note that the results of ELF-VC [10] are from their paper because
its software is unavailable. Moreover, we note that ELF-VC [10] uses its own
intra-frame coder, the details of which are unavailable. Under the same GOP
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Table A3: BD-rate comparison under the same GOP size 16. The anchor is
x265 in veryslow mode. Except ELF-VC [10], all the competing methods adopt
ANFIC [3] as the intra-frame coder.

BD-rate (%) PSNR-RGB BD-rate (%) MS-SSIM-RGB

UVG MCL-JCV UvVG MCL-JCV
DCVC (ANFIC) -19.5 7.9 a7 165
ELF-VC -30.8 -11.7 -55.3 -53.9
CANF-VC Lite -35.5 -12.0 -46.0 -44.4
CANF-VC- -34.7 -13.5 -45.4 -43.9
CANF-VC -41.0 -19.9 -50.3 -48.9

size and in terms of PSNR-RGB, we see that the superiority of our CANF-VC
models to ELV-VC [10] and DCVC (with ANFIC as the intra-frame coder) is
obvious. However, ELF-VC [10] achieves the best MS-SSIM-RGB results among
all the competing methods. We remark that this comparison is to provide addi-
tional information; a fair comparison would require the software of ELF-VC [10]
and more information about its intra-frame coder.

5 Network Details: CANF and Motion Extrapolation

Fig. A3 shows the network details of our CANF, where we choose N = 128 and
C = 128, with M set to 192 for inter-frame coding and 128 for motion coding,
respectively. Our CANF-VC Lite adopts N = 72 and C = 128, with M = 128
for both inter-frame and motion coding.

Fig. A4 depicts the network architecture of our U-Net-based motion extrap-
olation network.

6 Temporal Prior for Motion Coding

For conditional motion coding, our current implementation adopts the extrap-
olated image warp(Z¢—_1; f.) for constructing the temporal prior (Section 3.3 of
the main paper). Table A4 presents additional results for the case where the
predicted flow map f. is used instead. We see that the former achieves 8% more
rate savings than the latter (i.e. using f. to construct the temporal prior), which
justifies our design choice. The reason may be that the flow map f. is not as
informative as warp(&;—1; f.), which contains more semantic and texture infor-
mation.

7 Training Strategy

Table A5 summarizes our training steps in three major phases. The first phase
uses uncompressed, original frames as inputs to the motion estimation and the
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Fig. A3: Network details of our CANF-based coder.
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train these networks. We then

phase, we train the P-frame coder by en-

In the second (2-frame training)
coding one P-frame with its reference frame being an uncompressed I-frame. In

Fig. A4: Network details of our U-Net-based motion extrapolation network.

motion extrapolation networks, in order to pre

freeze them until the last three steps.
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Table A4: Comparison of different temporal priors for the motion coder.

Cond. Variable of Temporal Prior =~ BD-Rate (%)
warp(Ti—1; fe) -42.5%
f. -34.4%

Table A5: Details of our training strategy.

Phase ‘ Training Parts ‘ Loss ‘ Ir Epochs
Pre-training motion estimation and motion extrapolation networks D
2-frame (IP) training motion coder D+AR le-4 10
motion coder and motion compensation network D+AR le-4 10
Inter-frame coder D+AR le-4 8
motion coder, m.otion lcompcnsation network, DR led 5
and inter-frame coder
5-frame (IPPPP) training motion coder, mf)tion compensation network, DAAR le-d 5
and inter-frame coder
motion coder, trlptloll compensation network, D+AR 56.5 5
and inter-frame coder
All networks D+AR | 2.5e-5 5
All networks D+AR 5e-5 1
All networks D+AR | 2.5e-5 1

this phase, the uncompressed frames are used as inputs to the motion estima-
tion and the motion extrapolation networks. We first train the motion coder and
the motion compensation network. Subsequently, when the inter-frame coder is
involved for training, we fix the motion coder and the motion compensation net-
work for 8 epochs, followed by training jointly the inter-frame and the motion
coders for another 5 epochs.

In the third (5-frame training) phase, we use 5 frames (IPPPP) as a basic
training unit for forward propagation. However, in updating the P-frame coder,
we stop the gradient at each reference frame so that the gradient will not back-
propagate through reference frames. In this phase, the previously compressed
frames are used as the reference frames (including I-frames) and are input to the
motion estimation and the motion extrapolation networks. We train the inter-
frame coder, the motion coder, and the motion compensation network for 10
epochs. Lastly, we fine-tune all the networks, including the motion estimation
and the motion extrapolation networks, for another 7 epochs with learning rate
decay.

8 Subjective Quality Comparison

Fig. A5 provides more subjective quality comparisons between CANF-VC and
DCVC (ANFIC). Results are provided for models trained with PSNR and MS-
SSIM. It is seen that our CANF-VC better preserves the shape of the objects
than DCVC (ANFIC) (cf. the face of the jockey in the first row, the hair in the
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Ground Truth DCVC (ANFIC) CANF-VC DCVC-ssim (ANFIC)| CANF-VC-ssim

PSNR-R,GB, 33.84 dB|PSNR-RGB: 34.50 dB|MS-SSIM-RGB: 0.967 MS-SSIM-RGB: 0.966
0.0184 bpp 0.0109 bpp 0.0336 bpp 0.0271 bpp
- - - / -

PSNR-RGB: 33.84 dB|PSNR-RGB: 34.19 dB|MS-SSIM-RGB: 0.956 | MS-SSIM-RGB: 0.955
0.0122 bpp 0.0090 bpp 0.0261 bpp 0.0211 bpp
(8 (4 (@

- - - -l
PSNR-RGB: 28.09 dB|PSNR-RGB: 29.02 dB|MS-SSIM-RGB: 0.957 | MS-SSIM-RGB: 0.959
0.0697 bpp 0.0638 bpp 0.0739 bpp 0.0704 bpp

PSNR-RGB: 32.68 dB|PSNR-RGB: 33.26 dB|MS-SSIM-RGB: 0.972|MS-SSIM-RGB: 0.970
0.0343 bpp 0.0267 bpp 0.0506 bpp 0.0390 bpp

PSNR-RGB: 33.96 dB|PSNR-RGB: 35.50 dB|MS-SSIM-RGB: 0.979|MS-SSIM-RGB: 0.981
0.0265 bpp 0.0232 bpp 0.0348 bpp 0.0369 bpp

Fig. A5: Subjective quality comparison between CANF-VC and DCVC (ANFIC).
The suffix ”-ssim” indicates that the models are trained with MS-SSIM.

second row, the letters ”DE” in the third row, the necklace in the forth row, and
the textured pattern in the last row).
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9 Command Lines for X265 and HM

Following [5], we use FFmpeg to generate the compressed videos through x265
with veryslow mode. Given an uncompressed video “input.yuv” of size W x
H, the command line for x265 encoding is as follows: ffmpeg -pix fmt yuv420p
-s W xH -r FR -i input.yuv -vframes N -c:v libz265 -preset veryslow -tune ze-
rolatency -r265-params “gp=Q:keyint=GOP:verbose=1" output.mkv, where FR,
N, Q, GOP represent the frame rate, the number of frames to be encoded, the
quantization parameter and the GOP size, respectively. Q is set to 19, 22, 27,
32, 37. For the common test protocol, we choose GOP to be 10 for HEVC Class
B and 12 for the other datasets.

For the encoding with HM, given an uncompressed video “input.yuv” of size
W x H, we use the encoder_lowdelay_P_main.cfg configuration file [1] with the
following parameters: InputFile=input.yuv, FrameRate=FR, SourceWidth=W,
SourceHeight=H, FramesToBeEncoded=N, IntraPeriod=32, GOPSize=8, De-
codingRefreshType=2, and QP=Q, where FR, N, Q represent the frame rate,
the number of frames to be encoded, and the quantization parameter, respec-
tively. Q is set to 17, 22, 24, 27, 32.
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