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Abstract. Large text-guided diffusion models, such as DALL-E 2, are
able to generate stunning photorealistic images given natural language
descriptions. While such models are highly flexible, they struggle to un-
derstand the composition of certain concepts, such as confusing the at-
tributes of different objects or relations between objects. In this paper,
we propose an alternative structured approach for compositional gener-
ation using diffusion models. An image is generated by composing a set
of diffusion models, with each of them modeling a certain component
of the image. To do this, we interpret diffusion models as energy-based
models in which the data distributions defined by the energy functions
may be explicitly combined. The proposed method can generate scenes
at test time that are substantially more complex than those seen in
training, composing sentence descriptions, object relations, human facial
attributes, and even generalizing to new combinations that are rarely
seen in the real world. We further illustrate how our approach may be
used to compose pre-trained text-guided diffusion models and generate
photorealistic images containing all the details described in the input
descriptions, including the binding of certain object attributes that have
been shown difficult for DALL-E 2. These results point to the effective-
ness of the proposed method in promoting structured generalization for
visual generation.

Keywords: Compositionality, Diffusion Models, Energy-based Models,
Visual Generation

1 Introduction

Our understanding of the world is highly compositional in nature. We are able to
rapidly understand new objects from their components, or compose words into
complex sentences to describe the world states we encounter [26]. We are able
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(b) Composing Language Descriptions (Composed GLIDE)

“A red car parked 
in a desert” AND
“hills behind the 
car” AND “Aurora 
in the sky”

“The sun setting in 
a horizon” AND “A 
house next to a 
pond” AND “Hills 
in the background”

“A house with snow 
on the roof” AND
“The house behind a 
tree” AND “A car in 
front of a tree”

Obj1
Obj2

Obj3

Obj4

(NOT Female) AND
Smiling AND 
(NOT Glasses)

(e) Composing Facial Attributes

Male AND
Blonde hair AND
(NOT glasses)

“A Ferris wheel” AND
“A lake right next to 
the Ferris wheel” 
AND “Buildings next 
to the lake”

“A cloudy blue sky” 
AND “A mountain in 
the horizon” AND
“Cherry Blossoms in 
front of the mountain”

“Palm trees on both 
sides of the street” 
AND “Pink Sunset in 
the horizon” AND “A 
car moving away”

(c) Composing Objects

Obj1 (0.1, 0.5) AND
Obj2 (0.5, 0.3) AND
Obj3 (0.5, 0.65) AND
Obj4 (0.7, 0.5)

Obj4

Obj3

Obj1

Obj2

Obj1 (0.1, 0.65) AND
Obj2 (0.3, 0.55) AND
Obj3 (0.5, 0.45) AND
Obj4 (0.7, 0.3)

Obj1
Obj2

Obj3

Obj4

(d) Composing Object Relations

“A large purple metal 
cube to the left of a 
large gray rubber 
cube” AND “A large 
purple metal cube to 
the right of a large 
yellow rubber sphere”

“A large yellow rubber 
cylinder to the right 
of a small gray metal 
cube” AND “A large 
yellow rubber cylinder 
below a large red 
rubber cube”

(a) Composing Language Descriptions (Composed Stable Diffusion)

“A photo of cherry 
blossom trees” AND
“Sun dog” AND
“Green grass”

“A church” AND
“Lightning in the 
background” AND
“A beautiful pink sky”

“A stone castle 
surrounded by lakes 
and trees,” AND
“Black and white”

“A mystical tree ” 
AND “A dark 
magical pond” 
AND “Dark”

“A stone castle 
surrounded by lakes 
and trees,” AND (NOT 
“Black and white”)

“A mystical tree ” 
AND “A dark 
magical pond” 
AND (NOT “Dark”)

Fig. 1: Our method allows compositional visual generation across a variety of domains,
such as language descriptions, objects, object relations, and human attributes.

to make “infinite use of finite means” [4], i.e., repeatedly reuse and recombine
concepts we have acquired in a potentially infinite manner. We are interested in
constructing machine learning systems to have such compositional capabilities,
particularly in the context of generative modeling.

Existing text-conditioned diffusion models such as DALL-E 2 [39] have re-
cently made remarkable strides towards compositional generation, and are capa-
ble of generating photorealistic images given textual descriptions. However, such
systems are not fully compositional and generate incorrect images when given
more complex descriptions [31,49]. An underlying difficulty may be that such
models encode text descriptions as fixed-size latent vectors. However, as textual
descriptions become more complex, more information needs to be squeezed into
the fixed-size vector. Thus it is impossible to encode arbitrarily complex textual
descriptions.

In this work, we propose to factorize the compositional generation problem,
using different diffusion models to capture different subsets of a compositional
specification. These diffusion models are then explicitly composed together to
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generate an image. By explicitly factorizing the compositional generative mod-
eling problem, our method can generalize to significantly more complex combi-
nations that are unseen during training.

Such an explicit form of compositionality has been explored before under
the context of Energy-Based Models (EBMs) [7,8,28]. However, directly training
EBMs has been proved to be unstable and hard to scale. We show that diffu-
sion models can be interpreted as implicitly parameterized EBMs, which can be
further composed for image generation, significantly improving training stability
and image quality.

Our proposed method enables zero-shot compositional generation across dif-
ferent domains as shown in Figure 1. First, we illustrate how our approach may
be applied to large pre-trained diffusion models, such as Stable Diffusion [42]
and GLIDE [33], to compose multiple text descriptions. Next, we illustrate how
our approach can be applied to compose objects and object relations, enabling
zero-shot generalization to a larger number of objects. Finally, we illustrate how
our framework can compose different facial attributes to generate human faces.

Contributions: In this paper, we introduce an approach towards composi-
tional visual generation using diffusion models. First, we show that diffusion
models can be composed by interpreting them as energy-based models, and
drawing on this connection, we demonstrate how to compose diffusion mod-
els together. Second, we propose two compositional operators, Conjunction and
Negation, on top of diffusion models that allow us to compose concepts in dif-
ferent domains during inference without any additional training. We show that
the proposed method enables effective zero-shot combinatorial generalization,
i.e. generating images with more complicated compositions of concepts. Finally,
we evaluate our method on composing language descriptions, objects, object
relations, and human facial attributes. Our method can generate high-quality
images containing all the concepts and outperforms baselines by a large margin.
For example, the accuracy of our method is 24.02% higher than the best baseline
for composing three objects in specified positions on the CLEVR dataset.

2 Related Work

Controllable Image Generation. Our work is related to existing work on
controllable image generation. One type of approach towards controllable image
generation specifies the underlying content of an image utilizing text through
GANs [53,54,2], VQ-VAEs [40], or diffusion models [33]. An alternative type of
approach towards controllable image generation manipulates the underlying at-
tributes in an image [45,52,56]. In contrast, we are interested in compositionally
controlling the underlying content of an image at test time, generating images
that exhibit compositions of multiple types of image content. Thus, most rele-
vant to our work, existing work has utilized EBMs to compose different factors
describing a scene [7,36,8,28]. We illustrate how we may implement such proba-
bilistic composition on diffusion models, achieving better performance.
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Diffusion Models. Diffusion models have emerged as a promising class of gen-
erative models that formulates the data-generating process as an iterative denois-
ing procedure [46,15]. The denoising procedure can be seen as parameterizing the
gradients of the data distribution [48], which is similar to EBMs [27,10,37,12,11].
Diffusion models have recently shown great promise in image generation tasks
[6], enabling effective image editing [32,24], text conditioning [33,41,13], and im-
age inpainting [43]. The iterative, gradient-based sampling of diffusion models
enable us to compose multiple factors during inference. While diffusion models
have been developed for image generation [47], they have further proven suc-
cessful in the generation of waveforms [3], 3D shapes [55], decision making [18],
and text [1], suggesting that our proposed composition operators may further
be applied in such domains.

3 Background

3.1 Denoising Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) are a class of generative
models where generation is modeled as a denoising process. Starting from a
sampled noise, the diffusion model performs T denoising steps until a sharp image
is formed. In particular, the denoising process produces a series of intermediate
images with decreasing levels of noise, denoted as xT ,xT−1, ...,x0, where xT is
sampled from a Gaussian prior and x0 is the final output image.

DDPMs construct a forward diffusion process by gradually adding Gaussian
noise to the ground truth image. A diffusion model then learns to revert this
noise corruption process. Both the forward processes q(xt|xt−1) and the reverse
process pθ(xt−1|xt) are modeled as the products of Markov transition probabil-
ities:

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1), pθ(xT :0) = p(xT )

1∏
t=T

pθ(xt−1|xt), (1)

where q(x0) is the real data distribution and p(xT ) is a standard Gaussian prior.
A generative process pθ(xt−1|xt) is trained to generate realistic images by

approximating the reverse process through variational inference. Each step of the
generative process is a Gaussian distribution N with a learned mean µθ(xt, t)
and covariance matrix σ2

t I, where I is the identity matrix.

pθ(xt−1|xt) := N
(
µθ(xt, t), σ

2
t I
)
= N

(
xt − ϵθ(xt, t

)
, σ2

t I). (2)

The mean µθ(xt, t) is represented by a perturbation ϵθ(xt, t) to a noisy image
xt. The goal is to remove the noise gradually by predicting a less noisy image at
timestep xt−1 given a noisy image xt. To generate real images, we sample xt−1

from t = T to t = 1 using the parameterized marginal distribution pθ(xt−1|xt),
with an individual step corresponding to:

xt−1 = xt − ϵθ(xt, t) +N (0, σ2
t I). (3)

The generated images become more realistic over multiple iterations.
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Sentence 1 (!!):
“Road leading into 
the mountains”

Sentence n (!"):
“Yellow trees on the 
side of the road”

Score "#($$ , &| !!)

Generated Image ('')

Concept 
Conjunction

Diffusion 
Model

Score "#($$ , &| !")

Image at iteration t ('&)

Diffusion 
Model

…… …

Fig. 2: Compositional generation. Our method can compose multiple concepts dur-
ing inference and generate images containing all the concepts without further training.
We first send an image from iteration t and each of the concepts to the diffusion model
to generate a set of scores {ϵθ(xt, t|c1), . . . , ϵθ(xt, t|cn)}. We then compose different
concepts using the proposed compositional operators, such as conjunction, to denoise
the generated image. The final image is obtained after T iterations.

3.2 Energy Based Models

Energy-Based Models (EBMs) [10,9,12,37] are a class of generative models where
the data distribution is modeled using an unnormalized probability density.
Given an image x ∈ RD, the probability density of image x is defined as:

pθ(x) ∝ e−Eθ(x), (4)

where the energy function Eθ(x) : RD → R is a learnable neural network.
A gradient based MCMC procedure, Langevin dynamics [10], is then used to
sample from the unnormalized probability distribution to iteratively refine the
generated image x:

xt = xt−1 −
λ

2
∇xEθ(xt−1) +N (0, σ2

t I). (5)

The sampling procedure used by diffusion models in Equation (3) is functionally
similar to the sampling procedure used by EBMs in Equation (5). In both set-
tings, images are iteratively refined starting from a Gaussian noise, with a small
amount of additional noise added at each iterative step.

4 Our approach

In this section, we first introduce how we interpret diffusion models as energy-
based models in section 4.1 and then introduce how we compose diffusion models
for visual generation in section 4.2.

4.1 Diffusion Models as Energy Based Models

The sampling procedure of diffusion models in Equation (3) and EBMs in Equa-
tion (5) are functionally similar. At a timestep t, in diffusion models, images are
updated using a learned denoising network ϵθ(xt, t) while in EBMs, images are
updated using the gradient of the energy function ∇xEθ(xt) ∝ ∇x log pθ(xt).
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The denoising network ϵθ(xt, t) is trained to predict the underlying score of the
data distribution [51,47] when the number of diffusion steps increases to infin-
ity. Similarly, an EBM is trained so that ∇xEθ(xt) corresponds to the score
of the data distribution as well. In this sense, ϵθ(xt, t) and ∇xEθ(xt) are func-
tionally the same, and the underlying sampling procedure in Equation (3) and
Equation (5) are equivalent. We may view a trained diffusion model ϵθ(xt, t) as
an implicitly parameterized EBM. Such parameterization enables us to apply
previous techniques for composing EBMs to diffusion models.

Composing EBMs. Previous EBMs [14,7,28] have shown good performance on
compositional visual generation. Given n independent EBMs, E1

θ (x), · · · , En
θ (x),

the functional form of EBMs in Equation (4) enables us to compose multiple
separate EBMs together to obtain a new EBM. The composed distribution can
be represented as:

pcompose(x) ∝ p1θ(x) · · · pnθ (x) ∝ e−
∑n

i=1 Ei
θ(x), (6)

where piθ ∝ e−Ei
θ(x) is the probability density of image x (Equation (4)). Langevin

dynamics is then used to iteratively refine the generated image x [7,28].

xt = xt−1 −
λ

2
∇x

(
n∑

i=1

Ei
θ(xt−1)

)
+N (0, σ2

t I). (7)

Composing Diffusion Models. By leveraging the interpretation that diffusion
models are functionally similar to EBMs, we may compose diffusion models in a
similar way. The generative process and the score function of a diffusion model
can be represented as piθ(xt−1|xt) and ϵiθ(xt, t), respectively. If we treat the
score functions in diffusion models as the learned gradient of energy functions
in EBMs, the score function of the composed diffusion model can be written
as
∑n

i=1 ϵ
i
θ(xt, t). Thus the generative process of composing multiple diffusion

models becomes:

pcompose(xt−1|xt) = N

(
xt −

n∑
i=1

ϵiθ(xt, t), σ
2
t I

)
. (8)

A complication of parameterizing a gradient field of EBM ∇xEθ(xt) with a
learned score function ϵθ(xt, t) is that the gradient field may not be conserva-
tive, and thus does not correspond to a valid probability density. However, as
discussed in [44], explicitly parameterizing the learned function ϵθ(xt, t) as the
gradient of EBM achieves similar performance as the non-conservative parame-
terization of diffusion models, suggesting this is not problematic.

4.2 Compositional Generation through Diffusion Models

Next, we discuss how we compose diffusion models for image generation. We
aim to generate images conditioned on a set of concepts {c1, c2, . . . , cn}. To do
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this, we represent each concept ci using a diffusion model, which can be com-
posed to generate images. Inspired by EBMs [7,28], we define two compositional
operators, conjunction (AND) and negation (NOT), to compose diffusion
models. We learn a set of diffusion models representing the conditional prob-
ability distribution p(x|ci) given concept ci and an unconditional probability
distribution p(x).

Concept Conjunction (AND). We aim to generate images containing certain
attributes. Following [7], the conditional probability can be factorized as:

p(x|c1, . . . , cn) ∝ p(x, c1, . . . , cn) = p(x)

n∏
i=1

p(ci|x). (9)

Here we assume the concepts are conditionally independent given x. We can
represent p(ci|x) using the combination of a conditional distribution p(x|ci)
and an unconditional distribution p(x), with both of them are parameterized

as diffusion models p(ci|x) ∝ p(x|ci)
p(x) . The expression of p(ci|x) corresponds to

the implicit classifier that represents the likelihood of x exhibiting concept ci.
Substituting p(ci|x) in Equation 9, we can rewrite Equation 9 as:

p(x|c1, . . . , cn) ∝ p(x)

n∏
i=1

p(x|ci)
p(x)

. (10)

We sample from this resultant distribution using Equation (8) with the composed
score function ϵ̂(xt, t):

ϵ̂(xt, t) = ϵθ(xt, t) +

n∑
i=1

wi

(
ϵθ(xt, t|ci)− ϵθ(xt, t)

)
, (11)

where wi is a hyperparameter corresponding to the temperature scaling on con-
cept ci. We can generate images with the composed concepts using the following
generative process:

pcompose(xt−1|xt) := N
(
xt − ϵ̂(xt, t), σ

2
t I
)
. (12)

In the setting in which image generation is conditioned on a single concept, the
above sampling procedure reduces to the classifier-free guidance [16].

Concept Negation (NOT). In concept negation, we aim to generate realistic
images with the absence of a certain factor c̃j . However, the negation of a concept
can be ill-defined. For example, the negation of “dark” can be “bright” or random
noises. Thus we generate images conditioned other concepts as well to make the
generated images look real. Following [7], concept negation can be represented as
the composed probability distribution p(x|not c̃j , ci). Similarly, we refactorize
the joint probability distribution as:

p(x|not c̃j , ci) ∝ p(x,not c̃j , ci) ∝ p(x)
p(ci|x)
p(c̃j |x)

. (13)
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Algorithm 1 Code for Composing Diffusion Models

1: Require Diffusion model ϵθ(xt, t|c), scales wi and w, covariance matrix σ2
t I

2: // Code for conjunction
3: Initialize sample xT ∼ N (0, I)
4: for t = T, . . . , 1 do
5: ϵi ← ϵθ(xt, t|ci) // compute conditional scores for each concept ci
6: ϵ← ϵθ(xt, t) // compute unconditional score

7: xt−1 ∼ N
(
xt−

(
ϵ+

∑n
i=1 wi(ϵi−ϵ)

)
, σ2

t I
)

// sampling

8: end for
9:

10: // Code for negation
11: Initialize sample xT ∼ N (0, I)
12: for t = T, . . . , 1 do
13: ϵ̃j ← ϵθ(xt, t|c̃j) // compute conditional score for the negated concept c̃j
14: ϵi ← ϵθ(xt, t|ci) // compute conditional score for concept ci
15: ϵ← ϵθ(xt, t) // compute unconditional score

16: xt−1 ∼ N
(
xt−

(
ϵ+w(ϵi− ϵ̃j)

)
, σ2

t I
)

// sampling

17: end for

Using the factorization p(ci|x) ∝ p(x|ci)
p(x) , we can rewrite Equation (13) as:

p(x|not c̃j , ci) ∝ p(x)
p(x|ci)
p(x|c̃j)

(14)

We may construct the composed score funcion ϵ̂(x, t) as:

ϵ̂(xt, t) = ϵθ(xt, t) + w
(
ϵθ(xt, t|ci)− ϵθ(xt, t|c̃j)

)
. (15)

where w is the hyperparameter that controls the strength of the negation. We
can generate samples using this composed score function and Equation 12.

Algorithm 1 provides the pseudo-code for composing diffusion models using
concept conjunction and negation. Our method can compose pre-trained diffu-
sion models during inference without any additional training. Please see the full
derivation details for both operators in appendix F.

5 Experiment Setup

5.1 Datasets

CLEVR. CLEVR [19] is a synthetic dataset containing objects with different
shapes, colors, and sizes. The training set consists of 30,000 images at 128× 128
resolution. Each image contains 1 ∼ 5 objects and a 2D coordinate (x, y) label
indicating that the image contains an object at (x, y). In our experiments, the
2D coordinate label is the coordinate of one object in the image.
Relational CLEVR. Relational CLEVR [28] contains relational descriptions
between objects in the image, such as “a red cube to the left of a blue cylinder”.
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The training dataset contains 50, 000 images at 128×128 resolution. Each train-
ing image contains 1 ∼ 5 objects and one label describing a relation between
two objects. If there is only one object in the image, the second object and their
relation in the relational description are both nulls.
FFHQ. FFHQ [22] is a real-world human face dataset. The original FFHQ
dataset consists of 70,000 human face images without labels. [5] annotates three
binary attributes, including smile, gender, and glasses, for the images using pre-
trained classifiers. In total, there are 51,067 images labeled by the classifiers.

5.2 Evaluation Metrics

Binary classification accuracy. During testing, we evaluate the performance
of the proposed method and baselines on three different settings. The first
test setting, 1 Component, generates images conditioned on a single con-
cept (matching the training distribution). The second and third test settings,
2 Components and 3 Components, generate images by composing two and
three concepts, respectively, using the conjunction and negation operators. They
are used to evaluate the models’ generalization ability to new combinations.

For each task, we use the training data (real images) to train a binary clas-
sifier that takes an image and a concept, e.g . ‘smiling’, as input, and predicts
whether the image contains or represents the concept. We then apply this clas-
sifier to a generated image, checking whether it faithfully captures each of the
concepts. In each test setting, each method generates 5, 000 images for evalua-
tion. The accuracy of the method is the percentage of generated images capturing
all the concepts (See appendix B).
Fréchet Inception Distance (FID) is a commonly used metric for evaluating
the quality of generated images. It uses a pre-trained inception model [50] to
extract features for the generated images and real images, and measures their
feature similarity. Specifically, we use Clean-FID [38] to evaluate the generated
images. FID is usually computed on 50, 000 generated images, but we use 5, 000
images in our experiments.

6 Experiments

We compare the proposed method and baselines (section 6.1) on compositional
generation in different domains. We show results of composing natural language
descriptions (section 6.2), objects (section 6.3), object relational descriptions
(section 6.4), and human facial attributes (appendix A). Results analysis are
shown in section 6.5.

6.1 Baselines

We compare our method with baselines for compositional visual generation.
StyleGAN2-ADA [21] is the state-of-the-art GAN method for both uncondi-
tional and conditional image generation.
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“A blue bird on a 
tree” AND “A red 
car behind the 
tree” AND “A 
green forest in the 
background”

“A green tree swaying 
in the wind” AND “A 
red brick house 
located behind a tree” 
AND “A healthy lawn 
in front of the house”

“A pink sky in 
the horizon” 
AND “A sailboat 
at the sea” AND 
“Overwater 
bungalows”

“A starry night 
sky” AND “A 
polar bear in a 
forest”

“A white church 
sitting on a hill” 
AND “Aurora in 
the sky”

GLIDE

Composed GLIDE (Ours)

“A pink sky” AND 
“A blue mountain 
in the horizon” 
AND “Cherry 
Blossoms in front 
of the mountain”

Fig. 3: Composing Language Descriptions. We develop Composed GLIDE (Ours),
a version of GLIDE [33] that utilizes our compositional operators to combine textual
descriptions, without further training. We compare it to the original GLIDE, which di-
rectly encodes the descriptions as a single long sentence. Our approach more accurately
captures text details, such as the “overwater bungalows” in the third example.

StyleGAN2 [23] is one of the state-of-the-art GAN methods for unconditional
image generation. To enable compositional image generation, we optimize the
latent code z by decreasing the binary classification loss of the generated image
and the given label. We use the resultant latent code to generate images.
LACE [36] uses pre-trained classifiers to generate energy scores in the latent
space of the pre-trained StyleGAN2 model. To enable compositional image syn-
thesis, LACE uses compositional operators [7].
GLIDE [33] is a recently released text-conditioned diffusion model for image
generation. For composing language descriptions, we use the pre-trained GLIDE
released by OpenAI. For the rest tasks, we use the GLIDE code and train a
model on each task.
Energy-based models (EBM) [7] is the first paper using EBMs for compo-
sitional visual generation. They propose three compositional operators for com-
posing different concepts. Our work is inspired by [7], but we compose diffusion
models and achieve better results.

6.2 Composing Language Descriptions

Our approach can effectively compose natural language descriptions. We first
show the image generation results of the pre-trained diffusion model, GLIDE
[33], in Figure 3. We develop Composed GLIDE, a version of GLIDE that utilizes
our compositional operators to combine textual descriptions, without further
training. We compare this model to the original GLIDE model.

In Figure 3, GLIDE takes a single long sentence as input, for example, “A
pink sky in the horizon, a sailboat at the sea, and overwater bungalows”. In
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Obj1 (0.1, 0.5) AND Obj2 (0.3, 0.5) AND Obj3 (0.5, 0.5) 
AND Obj4 (0.7, 0.5) AND Obj5 (0.9, 0.5)

OursEBM

Obj1

Obj2

Obj3

Obj4

Obj5

Obj1 (0.2, 0.65) AND Obj2 (0.2, 0.4) AND Obj3 (0.5, 0.5) 
AND Obj4 (0.7, 0.4) AND Obj5 (0.7, 0.65)

Obj1

Obj2

Obj3

Obj5

Obj4

Obj1 (0.2, 0.65) AND Obj2 (0.3, 0.5) AND Obj3 (0.4, 0.4) AND Obj4 (0.5, 
0.3) AND Obj5 (0.6, 0.4) AND Obj6 (0.7, 0.5) AND Obj7 (0.8, 0.65)

Obj1

Obj2
Obj3

Obj4

Obj5
Obj6

Obj1

Obj2 Obj3

Obj4

Obj5

Obj1

Obj2

Obj5
Obj3

Obj4

Obj1

Obj2
Obj3

Obj4
Obj5

StyleGAN2

Obj2

LACE OursEBMStyleGAN2LACE

Obj1 (0.1, 0.5) AND Obj2 (0.3, 0.5) AND Obj3 (0.5, 0.5) AND Obj4 (0.7, 
0.5) AND Obj5 (0.9, 0.5) AND Obj6 (0.5, 0.65) AND Obj7 (0.5, 0.3)

Obj1Obj2Obj3
Obj4

Obj5

Obj6

Obj7

Obj6
Obj4Obj2

Obj7

Obj2
Obj6

Obj7

Obj7

Fig. 4: Composing Objects. Our method can compose multiple objects while base-
line methods either miss objects or generate objects at wrong positions.

Table 1: Quantitative evaluation of 128 × 128 image generation results on CLEVR.
The binary classification accuracy (Acc) and FID scores are reported. Our method
outperforms baselines on all three test settings.

Models
1 Component 2 Components 3 Components

Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

StyleGAN2-ADA [21] 37.28 57.41 - - - -
StyleGAN2 [23] 1.04 51.37 0.04 23.29 0.00 19.01
LACE [36] 0.70 50.92 0.00 22.83 0.00 19.62
GLIDE [33] 0.86 61.68 0.06 38.26 0.00 37.18
EBM [7] 70.54 78.63 28.22 65.45 7.34 58.33
Ours 86.42 29.29 59.20 15.94 31.36 10.51

contrast, Composed GLIDE composes several short sentences using the concept
conjunction operator, e.g . “A pink sky in the horizon” AND “A sailboat at the
sea” AND “Overwater bungalows”. While both GLIDE and Composed GLIDE
can generate reasonable images containing objects described in the text prompt,
our approach with the compositional operators can more accurately capture
text details, such as the presence of “a polar bear” in the first example and the
“overwater bungalows” in the third example.

6.3 Composing Objects

Given a set of 2D object positions, we aim to generate images containing objects
at those positions.
Qualitative results. We compare the proposed method and baselines on com-
posing objects in Figure 4. We only show the concept conjunction here because
the object positions are not binary values, and thus negation of object positions
is not interpretable. Given a set of object position labels, we compose them to
generate images. Our model can generate images of objects at certain locations,
while the baseline methods either miss objects or generate incorrect objects.
Quantitative results. As shown in Table 1, our method outperforms baselines
by a large margin. The binary classification accuracy of our method is 15.88%
higher than the best baseline, EBM, in the 1 component test setting and is
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“A large blue metal cube to the left of a small yellow metal sphere” AND
“A large blue metal cube in front of a large cyan metal cylinder”

Obj1

Obj2

Obj3

Obj4

Obj5

Obj1

Obj2
Obj3 Obj5

Obj6

Obj1

Obj2 Obj3

Obj4

Obj5

Obj1

Obj2
Obj3

Obj4
Obj5

Obj2

LACE

Obj7

“A small brown metal sphere below a small green metal sphere” AND
“A small brown metal sphere behind a large gray rubber cube”

StyleGAN2 EBM GLIDE DALL-E 2 Ours

Fig. 5: Composing Visual Relations. Image generation results on the Relational
CLEVR dataset. Our model is trained to generate images conditioned on a single
object relation, but during inference, our model can compose multiple object relations,
generating better results than baselines.

Table 2: Quantitative evaluation of 128×128 image generation results on the Relational

CLEVR dataset. The binary classification accuracy (Acc) and FID score on three test

settings are reported. Although EBM performs well on binary classification accuracy,

its FID score is much lower than other methods. Our method achieves comparable or

better results than baselines.

Models
1 Component 2 Components 3 Components

Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

StyleGAN2-ADA [21] 67.71 20.55 - - - -
StyleGAN2 [23] 20.18 22.29 1.66 30.58 0.16 31.30
LACE [36] 1.10 40.54 0.10 40.61 0.04 40.60
GLIDE [33] 46.20 17.61 8.86 28.56 1.36 40.02
EBM [28] 78.14 44.41 24.16 55.89 4.26 58.66
Ours 60.40 29.06 21.84 29.82 2.80 26.11

24.02% higher than EBM in the more challenging 3 Components setting. Our
method is more effective in zero-shot compositional generalization. In addition,
our method can generate images with lower FID scores, indicating the generated
images are more similar to real images.

6.4 Composing Object Relations

Qualitative results. We further compare the proposed approach and baselines
on composing object relational descriptions in Figure 5. Our model is trained to
generate images conditioned on a single object relation, but it can compose mul-
tiple object relations during inference without additional training. Both LACE
and StyleGAN2 fail to capture object relations in the input sentences, but EBM
and our method can correctly compose multiple object relations. Our method
generates higher-quality images compared with EBM, e.g . the object boundaries
are sharper in our results than EBM. Surprisingly, DALL-E 2 and GLIDE can
generate high-quality images, but they fail to understand object relations.
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Quantitative results. Similarly to experiments in section 6.3, we evaluate
the proposed method and baselines on three test settings in Table 2. We train
a binary classifier to evaluate whether an image contains objects that satisfy
the input relational descriptions. For binary classification accuracy, our method
outperforms StyleGAN2, LACE, and GLIDE on all three test settings. EBMs
perform well on composing relational descriptions, but their FID scores are
much worse than other methods, i.e. their generated images are not realistic.
StyleGAN2-ADA can obtain better accuracy and FID than our approach, but
it cannot compose multiple concepts.

6.5 Results analysis

We show our composed results on image generation and the results generated
conditioned on each individual sentence description in Figure 6. We provide
four successfully composed examples, where the generated images contain all
the concepts mentioned in the input sentences.
Failure cases. We observed three main failure cases of the proposed method.
The first one is that the pre-trained diffusion models do not understand certain
concepts, such as “person” in (b). This is because the pre-trained diffusion model,
GLIDE [33], is trained to avoid generating human images. The second type of
failure is because the diffusion models confuse the objects’ attributes. In (c),
the generated image contains “a red bear” while the input is “a bear in a red
forest”. The third type of failure is because the composition does not work, e.g .
the “bird-shape and flower-color object” and the “dog-fur and sofa-shape object”
in (d). Such failures usually happen when the objects are in the center of the
images.

7 Conclusion

In this paper, we compose diffusion models for image generation. By interpreting
diffusion models as energy-based models, we may explicitly compose them and
generate images with significantly more complex combinations that are never
seen during training. We propose two compositional operators, concept conjunc-
tion and negation, allowing us to compose diffusion models during the inference
time without any additional training. The proposed composable diffusion models
can generate images conditioned on sentence descriptions, objects, object rela-
tions, and human facial attributes, and can generalize to new combinations that
are rarely seen in the real world. These results demonstrate the effectiveness of
the proposed method for compositional visual generation.

A limitation of our current approach is that while we can compose multiple
diffusion models together, they are instances of the same model. We found lim-
ited success when composing diffusion models trained on different datasets. In
contrast, compositional generation with EBMs [7] can successfully compose mul-
tiple separately trained models. Incorporating additional structures into diffusion
models from EBMs [10], such as a conservative score field, can be a promising
direction towards compositions of separately trained diffusion models.
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“A bird” “A flower” “A bird” AND
“A flower”

(b) Diffusion model fails

“A bus” “A person” “A bus” AND
“A person”

“A bear in a red 
forest”

“A car stuck in 
the forest”

“A bear in a red 
forest” AND “A car 
stuck in the forest”

(c) Diffusion model confuses object attributes

(d) Composition fails

“A camel” “A forest” “A camel” AND 
“A forest”

(a) Successful Examples

“An abandoned 
vehicle”

“A forest covered 
with snow”

“An abandoned vehicle” 
AND “A forest covered 
with snow”

“A dog sitting in 
the living room”

“A couch” “A couch” AND “A dog 
sitting in the living room”

“A horse” “A yellow flower field” “A horse” AND “A 
yellow flower field”

“A boat” “A desert” “A boat” AND
“A desert”

Fig. 6: Qualitative results. Successful examples (a) and failure examples (b-d) gen-
erated by the proposed method. There are three main types of failures: (b) The pre-
trained diffusion model does not understand certain concepts, such as “person”. (c) The
pre-trained diffusion model confuses objects’ attributes. (d) The composition fails. This
usually happens when the objects are in the center of images.
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Appendix

In this appendix, we first demonstrate additional results in appendix A. We
then show the details of training classifiers in appendix B. In appendix C and
appendix D, we show more details of our approach and baselines, respectively.
Next, we provide the implementation details in appendix E. Finally, we provide
derivations of both the conjunction and negation operators in appendix F.

A Additional Results

In this section, we first show the results of composing language descriptions to
generate 3D meshes in appendix A.1. We then show the results of composing hu-
man facial attributes in appendix A.2. Finally, we show more qualitative results
in appendix A.3.

A.1 Composing Language Descriptions for 3D Asset Generation

Qualitative results. We demonstrate the proposed method of composing lan-
guage descriptions for point cloud generation, which can be further used to
generate 3D meshes. We first use Point-E [34], the pre-trained 3D point cloud
generation model, to generate the point clouds of an object based on the text
description. We then convert the 3D point clouds into 3D meshes using marching
cubes [29]. The results are shown in Figure 7.

A.2 Composing Human Facial Attributes

Qualitative results. We compare the proposed method and baselines on com-
posing facial attributes in Figure 8. We find that LACE and StyleGAN2 can
generate high-fidelity images, but the generated images do not match the given
labels. For example, StyleGAN2 generates humans without wearing glasses when
the input label contains Glasses, while LACE generates males sometimes when
the input is Not Male. The image quality of EBM is much worse than other
methods. In contrast, our method can generate high-fidelity images, containing
all the attributes in the input label.
Quantitative results. The results of our method and baselines on three test
settings are shown in Table 3. Our method is comparable with the best baseline
on each evaluation metric.

A.3 More Qualitative Results

We provide more qualitative results of the proposed method on composing con-
cepts using the conjunction operator. Figure 10, Figure 11, Figure 12, and Figure
13 show more results of composing language descriptions. Figure 14 shows addi-
tional results on composing objects on the CLEVR dataset. Our approach can
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“A green avocado” AND “A chair” “A boat” AND “A couch” “A chair” AND “A cake”

“A toilet” AND “A chair”“A brown couch” AND “A monitor”“A chair” AND NOT “Chair legs”

Fig. 7: Composing Language Descriptions for 3D Asset Generation. We pro-
vide qualitative results of composing the pre-trained text-to-3D diffusion model, Point-
E [34], to generate interesting 3D hybrid objects.

reliably generate images conditioned on multiple concepts, even for combinations
that are outside the training distribution.

We further show the results of composing facial attributes on the FFHQ
dataset in Figure 15. Our model is trained to generate images conditioned on
a single human facial attribute, but it can compose multiple attributes during
inference without further training by using the conjunction and negation compo-
sitional operators. As shown in the fifth row of Figure 15, our model can compose
Not Male and Glasses and generate images with females wearing glasses. The
proposed compositional operators allow our model to compose facial attributes
recursively.

Interesting cases. As shown in Figure 9, we find that our method, which
combines multiple textual descriptions, can generate different styles of images
compared to GLIDE, which directly encodes the descriptions as a single long
sentence. Taking “a dog” and “the sky” as inputs, our method generates a dog-
shaped cloud, whereas GLIDE generates a dog under the sky using the prompt
“a dog and the sky”.

B Details of Binary Classifiers

We provide more details of the binary classifiers in this section.
CLEVR. The CLEVR dataset consists of 30,000 image-label pairs. We split the
dataset into training and validation subsets. There are 24, 000 data pairs used
for training and 6, 000 data pairs used for validation. We train a binary classifier
to evaluate whether there is an object appearing at a particular position of an
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EBM

（NOT Smiling) AND Glasses AND (NOT Male)

StyleGAN2 Ours

LACE

Fig. 8: Composing Facial Attributes. Image generation results on the FFHQ
dataset. Our model is trained to generate images conditioned on a single human fa-
cial attribute, but during inference, our model can recursively compose multiple facial
attributes using the proposed compositional operators. The baselines either fail to
compose attributes (StyleGAN2 and LACE) or generate low-quality images (EBM).

Table 3: Image generation results on FFHQ. The binary classification accuracy (Acc)
and FID are reported. Our method achieves comparable results with the best baseline
on three test settings.

Models
1 Component 2 Components 3 Components

Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

StyleGAN2-ADA [21] 91.06 10.75 - - - -
StyleGAN2 [23] 58.90 18.04 30.68 18.06 16.96 18.06
LACE [36] 97.60 28.21 95.66 36.23 80.88 34.64
GLIDE [33] 98.66 20.30 48.68 22.69 27.24 21.98
EBM [7] 98.74 89.95 93.10 99.64 30.01 335.70
Ours 99.26 18.72 92.68 17.22 68.86 16.95

image. The classifier achieves an accuracy of 99.05% on the validation set, which
is used to evaluate the quality of generated images.

Relational CLEVR. The Relational CLEVR [28] dataset contains 50, 000 im-
ages at 128× 128 resolution. We split the dataset into 40, 000 training data and
10, 000 validation data. Then we train a binary classifier to evaluate whether an
image contains an object relational description. The trained classifier achieves
an accuracy of 99.80% on the validation set.

FFHQ. We use 30, 000 image-label pairs from CelebA-HQ [20] to train a clas-
sifier to evaluate the generated images. We split the dataset into the training
(24, 000 data pairs) and validation (6, 000 data pairs) subsets. We select three at-
tributes (i.e. smiling, glasses, and gender) to evaluate the compositional ability
of our approach and baselines. We thus train three binary classifiers to evaluate
the smiling, glasses, and gender concepts, respectively. Our classifiers achieve
95.01%, 99.20% and 97.49% accuracy on the validation sets of smiling, glasses,
and gender, respectively.
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“A dog” AND “the sky”

“A bear” AND “A red tree”

GLIDE Ours

Fig. 9: Our method (composing multiple sentences) generates different styles of images
compared to GLIDE (directly encodes the descriptions as a single long sentence).

C Details of Our Approach

Training. Our approach is implemented based on the code from [35,33]. Ho et
al . [16] introduce a technique to train the conditional and unconditional diffusion
models at the same time by masking some labels as nulls. We use the same ap-
proach to train diffusion models. For each data point, its label has a 10% chance
of being replaced by a null label which is used to estimate the unconditional
score.
Inference. To generate FFHQ images, we first generate images at 64× 64 res-
olution and then upsample the images to 256 × 256 using a sampler provided
by [33]. For CLEVR images, we generate images at 128×128 resolution directly.
Label Encoding. On the FFHQ dataset, we use three human facial attributes,
i.e. smile, glasses and gender. For the smile and glasses attributes, label 1 indi-
cates an image containing the attribute; otherwise, the label is 0. For the gender
attribute, label 0 indicates “male”, while label 1 represents “female”. We use the
embedding layer nn.Embedding(7, d) to encode the attribute labels. The first six
dimensions represent the attribute labels and the last dimension indicates the
null class. The labels are encoded as a d-dimension feature vector, which is then
fused with the time embedding to estimate the score ϵθ.

On the CLEVR dataset, we encode the (x, y) coordinates using a linear layer
nn.Linear(2, d), where d is the dimension of the output feature. The coordinate
embedding is then fused with the time embedding to estimate the score ϵθ.

D Details of Baselines

StyleGAN2-ADA. On each dataset, we train a conditional StyleGAN2-ADA
model using the “stylegan” configuration provided by [21] without using aug-
mentations.
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StyleGAN2. We use the pre-trained StyleGAN2 model [23] to evaluate its
performance on facial image generation. As there is no pre-trained model for
object generation, we use the same code to train a model on the CLEVR dataset
for image generation conditioned on object positions. We use the “config-f”
setting provided by [23]. To enable image generation conditioned on multiple
concepts, we train a binary classifier on each task. During inference, we optimize
the latent code z by decreasing the binary classification loss of the generated
image and the given label. We use the resultant latent code to generate images.

LACE. LACE [36] trains classifiers for image generation using the generated
images from StyleGAN2 and labels provided by the neural network. For the
CLEVR dataset, we first generate 10, 000 images using the same StyleGAN2
model that was trained on CLEVR in Section D. Then we modify the code
to train a position annotator using a DenseNet [17] model provided by LACE
to label the object positions of generated images. Lastly, we train a classifier
conditioned on object coordinates using the code provided by [36]. For FFHQ,
we use the off-the-shelf pre-trained model from [36] for comparison.

GLIDE. We use the small GLIDE model released by [33] in our experiments.
We develop Composed GLIDE (Ours), a version of GLIDE that utilizes our com-
positional operators to combine textual descriptions, without further training.
We compare it to the original GLIDE, which directly encodes the descriptions
as a single long sentence. [33] also releases an upsampler model to upsample the
generated images from a resolution of 64 × 64 to a resolution of 256 × 256. We
use the upsampler model for both the GLIDE and Composed GLIDE (Ours).

Energy-based models (EBMs). We train energy-based models using the
codebase from [9], where we encode discrete labels and continuous labels us-
ing an embedding layer and a linear layer, respectively. We use the inference
code from [7] to compose multiple concepts.

E Implementation Details

Each model is trained on a single Tesla V100 32GB GPU.

StyleGAN2-ADA. Each conditional StyleGAN2-ADA model is trained for
two days. We use the Adam optimizer [25] with β1 = 0 and β2 = 0.99 to train
the models.

StyleGAN2. We train a StyleGAN2 model for two days on both CLEVR and
Relational CLEVR datasets. We use the Adam optimizer [25] with β1 = 0 and
β2 = 0.99 to train the StyleGAN2 models. It takes 2 hours to train a binary
classifier. The classifiers are trained using the Adam optimizer with β1 = 0 and
β2 = 0.99. For the FFHQ dataset, We use the pre-trained model provided by
[23].

LACE. LACE uses the pre-trained model provided by [23] on the FFHQ dataset.
For both CLEVR and Relational CLEVR datasets, we directly reuse the trained
StyleGAN2 model as described in Section E. It takes less than 10 minutes to
train the classifier on each dataset.
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EBMs. In our experiments, we use the same setting to train models on different
datasets. We use the Adam optimizer [25] with a learning rate of 10−4. For
MCMC sampling, we use a step size of 300 and 80 iterations. Similarly, the
model is trained for two days on each dataset.
Ours. To train diffusion models on CLEVR and FFHQ, we use 1, 000 diffusion
steps, and the cosine noise schedule. We use the AdamW optimizer [30] with
β1 = 0.9 and β2 = 0.999. We train the diffusion models on CLEVR for seven
days (750, 000 iterations) and FFHQ for two days (250, 000 iterations).

F Derivation

F.1 Conjunction Operator (AND)

Given a set of independent concepts {c1, c2, . . . , cn}, the joint probability dis-
tribution can be factorized as follows:

p(x|c1, . . . , cn) ∝ p(x, c1, . . . , cn) = p(x)

n∏
i=1

p(ci|x) (16)

We can rewrite above expression using p(ci|x) ∝ p(x|ci)
p(x) :

p(x)

n∏
i=1

p(ci|x) ∝ p(x)

n∏
i=1

p(x|ci)
p(x)

(17)

Then we take a gradient of logarithm on both sides w.r.t x:

∇x log p(x|c1, . . . , cn) = ∇x log p(x) +

n∑
i=1

(
∇x log p(x|ci)−∇x log p(x)

)
= ϵθ(xt, t) +

n∑
i=1

(
ϵθ(xt, t|ci)− ϵθ(xt, t)

) (18)

Finally, we may obtain a modified score prediction from the above expression
ϵ̂θ(xt, t|c1, . . . , cn), where wi controls the temperature of each implicit classifier:

ϵ̂θ(xt, t|c1, . . . , cn) = ϵθ(xt, t) +

n∑
i=1

wi

(
ϵθ(xt, t|ci)− ϵθ(xt, t)

)
(19)

In the setting where only one concept c1 is conditioned for sampling, the above
equation will reduce to classifier-free guidance [16]:

ϵ̂θ(xt, t|c1) = ϵθ(xt, t) + w
(
ϵθ(xt, t|c1)− ϵθ(xt, t)

)
, (20)

where the temperature scaling w > 1.
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F.2 Negation Operator (NOT)

Given two independent concepts {c1, c2}, the joint probability distribution where
we negate the concept c1 can be similarly written as:

p(x|not c1, c2) ∝ p(x,not c1, c2) ∝ p(x)
p(c2|x)
p(c1|x)

∝ p(x)
p(x|c2)
p(x|c1)

(21)

Then we take a gradient of logarithm on both sides w.r.t x as follows:

∇x log p(x|not c1, c2) = ∇x log p(x) +∇x log p(x|c2)−∇x log p(x|c1)
= ϵθ(xt, t) + ϵθ(xt, t|c2)− ϵθ(xt, t|c1)

(22)

Finally, we may obtain a modified score prediction from the above, where w is
a tunable coefficient that determines the weight of the negation:

ϵ̂θ(xt, t|not c1, c2) = ϵθ(xt, t) + w
(
ϵθ(xt, t|c2)− ϵθ(xt, t|c1)

)
(23)
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“A church” AND “A 
forest behind the 
church” AND “A 
parking lot next to the 
church”

“A beach with black 
sand” AND “Palm trees 
on the black sand” AND 
“Orange sunset”

“Palm trees on both sides 
of the street” AND “Pink 
sunset in a horizon” AND 
“A car moving away”

“A city” AND “A river 
flowing through the city” 
AND “A gloomy sky”

“A red bridge above a 
river” AND “A yacht 
sitting on the river” 
AND “The river
surrounded by trees”

“Trees in the fall” AND 
“A long road down a 
hill” AND “A blue car at 
middle of the road”

“A village in a valley” 
AND “Red flowers in 
front of the village” AND 
“Mountains covered with 
snow”

“A car on a highway” 
AND “The highway 
surrounded by hills” 
AND “Hills are covered 
with snow”

“A Ferris wheel” AND 
“A lake next to the 
Ferris wheel” AND 
“Buildings next to the 
lake”

“A train on a bridge” 
AND “A river under the 
bridge” AND 
“Mountains behind the 
train”

“A cloudy blue sky” AND 
“A mountain in the 
horizon” AND “Cherry 
Blossoms in front of the 
mountain”

“A blue house” AND “A 
red tractor on a farm” 
AND “A cloudy sky”

Fig. 10: Composing Language Descriptions. We provide more qualitative results
of Composed GLIDE (Ours), a version of GLIDE [33] that utilizes our compositional
operators to combine textual descriptions, without further training.
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“A river leading into mountains” AND “Red trees on the side”

Fig. 11: Composing Language Descriptions. Images generated by our method,
Composed GLIDE (Ours).
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“A horse” AND “A yellow flower field”

Fig. 12: Composing Language Descriptions. Images generated by our method,
Composed GLIDE (Ours).
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“A train on a bridge” AND “A river under the bridge”

Fig. 13: Composing Language Descriptions. Images generated by our method,
Composed GLIDE (Ours).
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Obj1 (0.29, 0.47) AND
Obj2 (0.55, 0.31) AND
Obj3 (0.57, 0.68) AND
Obj4 (0.82, 0.45)

Obj1 (0.24, 0.61) AND
Obj2 (0.3, 0.38) AND
Obj3 (0.45, 0.62) AND
Obj4 (0.65, 0.68) AND
Obj5 (0.74, 0.43)

Obj1 (0.3, 0.3) AND
Obj2 (0.4, 0.4) AND
Obj3 (0.55, 0.55) AND
Obj4 (0.7, 0.65)

Obj1 (0.31, 0.64) AND
Obj2 (0.22, 0.31) AND
Obj3 (0.61, 0.68) AND
Obj4 (0.74, 0.37)

Obj1 (0.16, 0.46) AND
Obj2 (0.38, 0.68) AND
Obj3 (0.47, 0.32) AND
Obj4 (0.73, 0.59)

Obj1 (0.2, 0.65) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.5, 0.5) AND
Obj4 (0.6, 0.65)

Obj1 (0.1, 0.6) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.5, 0.35) AND
Obj4 (0.7, 0.5) AND
Obj5 (0.9, 0.6)

Obj1 (0.2, 0.66) AND
Obj2 (0.29, 0.39) AND
Obj3 (0.41, 0.58) AND
Obj4 (0.57, 0.29) AND
Obj5 (0.69, 0.5)

Obj1 (0.3, 0.65) AND
Obj2 (0.3, 0.35) AND
Obj3 (0.5, 0.3) AND
Obj4 (0.7, 0.65) AND
Obj5 (0.7, 0.35)

Obj1 (0.15, 0.42) AND
Obj2 (0.3, 0.58) AND
Obj3 (0.41, 0.3) AND
Obj4 (0.59, 0.4) AND
Obj5 (0.64, 0.61)

In-distribution (1-5 objects) Compositional Generation on CLEVR

Out-of-distribution (> 5 objects) Compositional Generation on CLEVR

Obj1 (0.18, 0.59) AND
Obj2 (0.21, 0.35) AND
Obj3 (0.43, 0.31) AND
Obj4 (0.42, 0.63) AND
Obj5 (0.63, 0.33) AND
Obj6 (0.61, 0.55)

Obj1 (0.2, 0.65) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.4, 0.4) AND
Obj4 (0.6, 0.4) AND
Obj5 (0.7, 0.5) AND
Obj6 (0.8, 0.65)

Obj1 (0.24, 0.41) AND
Obj2 (0.28, 0.62) AND
Obj3 (0.48, 0.4) AND
Obj4 (0.51, 0.6) AND
Obj5 (0.64, 0.29) AND
Obj6 (0.77, 0.58)

Obj1 (0.13, 0.63) AND
Obj2 (0.24, 0.33) AND
Obj3 (0.33, 0.54) AND
Obj4 (0.52, 0.36) AND
Obj5 (0.51, 0.67) AND
Obj6 (0.77, 0.41)

Obj1 (0.3, 0.35) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.3, 0.65) AND
Obj4 (0.7, 0.35) AND
Obj5 (0.7, 0.5) AND
Obj6 (0.7, 0.65)
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Obj1
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Obj1 Obj1 Obj1 Obj1
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Obj2

Obj2

Obj2

Obj2

Obj2

Obj2
Obj2

Obj2

Obj3
Obj3

Obj3

Obj3
Obj3

Obj3

Obj3

Obj3

Obj3 Obj3
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Obj3 Obj3

Obj3 Obj3
Obj4

Obj4

Obj4

Obj4

Obj4Obj5
Obj5

Obj5

Obj5

Obj5

Obj6
Obj6 Obj6

Obj6 Obj6

Obj1 (0.12, 0.57) AND
Obj2 (0.27, 0.35) AND
Obj3 (0.27, 0.51) AND
Obj4 (0.32, 0.61) AND
Obj5 (0.5, 0.63) AND
Obj6 (0.62, 0.47) AND
Obj7 (0.67, 0.62) AND
Obj8 (0.77, 0.38)

Obj1 (0.22, 0.62) AND
Obj2 (0.35, 0.4) AND
Obj3 (0.44, 0.26) AND
Obj4 (0.47, 0.59) AND
Obj5 (0.57, 0.45) AND
Obj6 (0.7, 0.63) AND
Obj7 (0.7, 0.3) AND
Obj8 (0.8, 0.5)

Obj1 (0.21, 0.37) AND
Obj2 (0.26, 0.65) AND
Obj3 (0.35, 0.27) AND
Obj4 (0.47, 0.59) AND
Obj5 (0.55, 0.27) AND
Obj6 (0.5, 0.5) AND
Obj7 (0.64, 0.4) AND
Obj8 (0.8, 0.47)

Obj1 (0.13, 0.43) AND
Obj2 (0.24, 0.67) AND
Obj3 (0.4, 0.4) AND
Obj4 (0.49, 0.5) AND
Obj5 (0.5, 0.6) AND
Obj6 (0.57, 0.68) AND
Obj7 (0.73, 0.65) AND
Obj8 (0.81, 0.47)

Obj1 (0.22, 0.57) AND
Obj2 (0.25, 0.45) AND
Obj3 (0.33, 0.33) AND
Obj4 (0.4, 0.65) AND
Obj5 (0.48, 0.51) AND
Obj6 (0.56, 0.34) AND
Obj7 (0.61, 0.6) AND
Obj8 (0.71, 0.48)

Obj1
Obj1

Obj1
Obj1

Obj1

Obj2

Obj2

Obj2 Obj2

Obj2Obj3

Obj3 Obj3 Obj3 Obj3

Obj4 Obj4 Obj4

Obj5

Obj4Obj5

Obj5

Obj5

Obj4
Obj5

Obj6

Obj6

Obj6

Obj6

Obj6

Obj7

Obj7

Obj7

Obj7 Obj7

Obj8
Obj8 Obj8 Obj8 Obj8

Fig. 14: Composing Objects. During inference, our model can generate images that
contain multiple objects by composing their probability distributions using the con-
junction operator. Note that the training set only contains images with fewer than five
objects, but our model can compose more than five objects during inference.
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Smiling AND NOT (No Glasses) AND NOT Female

NOT (No Smiling) AND No Glasses AND NOT Male

NOT (No Smiling) AND NOT (No Glasses) AND Male

No Smiling AND NOT Glasses AND NOT Female

Smiling AND NOT (No Glasses) AND NOT Male

Fig. 15: Composing Human Facial Attributes. During inference, our model can
generate images that contain multiple attributes by composing their probability dis-
tributions using the conjunction and negation operators.
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