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Abstract. In image super-resolution, both pixel-wise accuracy and per-
ceptual fidelity are desirable. However, most deep learning methods only
achieve high performance in one aspect due to the perception-distortion
trade-off, and works that successfully balance the trade-off rely on fus-
ing results from separately trained models with ad-hoc post-processing.
In this paper, we propose a novel super-resolution model with a low-
frequency constraint (LFc-SR), which balances the objective and per-
ceptual quality through a single model and yields super-resolved images
with high PSNR and perceptual scores. We further introduce an ADMM-
based alternating optimization method for the non-trivial learning of the
constrained model. Experiments showed that our method, without cum-
bersome post-processing procedures, achieved the state-of-the-art perfor-
mance. The code is available at https://github.com/Yuehan717/PDASR.

Keywords: Image Super-Resolution· Perception-Distortion Trade-Off ·
Constrained Optimization

1 Introduction

Single image super-resolution (SISR) recovers a high-resolution (HR) image from
a low-resolution (LR) input. There are two types of quality assessments for
super-resolved images: objective quality, evaluated by PSNR and SSIM, and
perceptual quality, based on metrics such as NRQM [25] and LPIPS [47]. SISR
methods aiming at high objective quality [5,14,15,23,31,33,50,51] achieve high
PSNR values, but the results look blurry. Another line of research focuses on
improving perceptual quality [19,26,29,34,44,49], which produces HR images that
are visually shaper, but have lower PSNR scores and unrealistic patterns (see
comparisons in Fig. 1).

An ideally reconstructed image is similar to the ground truth HR image,
with limited distortion and high perceptual quality, where distortion refers to
a drop in objective quality. However, most deep learning methods can achieve
high performance in only one of the two qualities. This perception-distortion
(PD) trade-off is rooted in the supervised training process of SISR methods.
Since perception and distortion measurements are incoherent with each other,
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(a) Ground Truth (b) Objective-aimed

(c) Perceptual-aimed(d) Balanced Quality (e) SOTAs performance

Fig. 1: (a)-(d) are ground truth from Urban100[12] and×4 super-resolved images.
Note that (b) produced by NLSA [31] is blurry in detailing, while (c) from
RankSRGAN [49] has unnatural patterns; our balanced approach in (d) mitigates
both types of artifacts. (e) is performance of state-of-the-art ×4 SISR models
on Urban100. Higher PSNR and NRQM scores indicate better objective and
perceptual quality. Our method reaches state-of-the-art while being single-shot.

optimization in one direction naturally leads to sacrifice in the other [2,9]. A re-
cently emerging line of work seeks to balance or improve both the objective and
perceptual quality of SISR images [6,7,42,41,44,32,36,20,43]. Some researchers
have studied the trade-off problem through model optimization [41,32,36,20,43].
However, they have only focused on traversing the PD trade-off instead of im-
proving both the objective and perceptual quality. Others bypassed the optimiza-
tion incoherence and merged the models or model outputs trained separately for
the two objectives via post-processing [6,7,42,44]. Some methods [6,7] achieved
excellent results, but their post-processing can be computationally costly.

Previous studies have aligned image quality with different image frequency
subbands. Low-frequency (LF) information captures the overall scene struc-
ture [35,54], while high-frequency (HF) details are critical to achieving high
perceptual quality [19,54]. This observation has been leveraged to reconstruct
details in single-image SR [37,54] and suppress misalignment in real-world video
SR [45]. However, it has not been used to explicitly balance the objective and
perceptual quality in model optimization.

This paper present a new low-frequency constrained SISR model (LFc-SR)
model that improves both objective and perceptual quality. The model has two
stages: stage one focuses on super-resolution for objective quality, while stage
two subsequently refines the image for perceptual quality (see Fig. 2). At our
model’s core is a similarity constraint that keeps the low-frequency subbands of
both stages similar during optimization. The constraint allows the optimization
of perceptual quality to be oriented towards the high-frequency bands while
ensuring that the overall scene retains the effects of objective-focused learning.
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As such, our method yields images with high performance on both qualities in
a one-shot manner.

Our key novelty is in our formulation of LFc-SR training as constrained multi-
objective optimization. Enforcing constraints within deep learning is non-trivial
with challenges to find satisfying solutions. To cooperate the low-frequency con-
straint, we designed a novel ADMM-based alternating optimization method. The
alternating direction method of multipliers (ADMM) was originally introduced
as a tool for convex optimization problems, decomposing the constrained opti-
mization into solvable substeps [3]. However, it has also been widely applied to
non-convex problems, including deep neural network training [13,52,22,48,38,21].
While finding the optimum for non-convex problems is not guaranteed, ADMM
often finds satisfying approximations. We refer to our optimization method as
PD-ADMM, as it aims at mitigating the perception-distortion (PD) trade-off.

To summarize our contributions in this paper:

1. We propose LFc-SR, a novel SISR model trained with a low-frequency con-
straint, to balance the perception-distortion trade-off.

2. We propose a novel formulation of SISR as a constrained multi-objective
optimization problem and show how to incorporate an ADMM-based method
(PD-ADMM) for solutions that balance the perception-distortion trade-off.

3. Our LFc-SR model learned with the PD-ADMM optimization scheme yields
HR images with high objective and perceptual quality. The proposed one-
shot model requires significantly less computational expense than competing
trade-off methods that rely on heavy post-processing.

2 Related Work

2.1 Objective Quality versus Perceptual Quality

SISR methods designed for objective quality are deep neural networks that use
pixel-wise losses, such as L1 and MSE. Starting with the CNN-based SRCNN [8],
later variants leverage residual [14,23,19], dense [51,40], and attention mecha-
nisms [31,33,5]. These works strongly focus on architecture design and achieve
high PSNR and SSIM scores. However, their results are blurry and evaluated
poorly on perceptual metrics, especially at larger scaling factors like ×4.

Many SISR methods often incorporate GANs [19,44,34,29,49,26] and combine
the adversarial loss with a content loss to improve the perceptual quality. Com-
mon content losses include the VGG [19] and contextual loss [29]. GAN-based
models yield sharper lines and more high-frequency details. They achieve high
scores on perceptual measures such as LPIPS [47] and NRQM [25], attributed
to implicit distribution learning. At the same time, these methods suffer from
unrealistic artifacts resulting from adversarial training.

2.2 Perception-Distortion Trade-off

Most state-of-the-art methods perform well either in objective or perceptual
quality, but not in both. This trade-off phenomenon was explored by Blau et
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al . [2]; they attributed it to the incoherence between distortion and perception
measurements. Some methods have tried to control the compromise between
the two qualities. One solution was to fuse either two models [44] or model
outputs [42,7,6] trained separately for objective and perceptual quality. The
most notable of these post-processing works is WDST [7], which, like our work,
set out to take separate frequency band considerations. A significant difference
between our work and WDST is that WDST merges wavelet channels from the
outputs of two separately trained networks, whereas our method is one-shot with
a single model. Moreover, as WDST relies on a style-transfer [10] for the fusion,
their inference procedure is computationally expensive and time-consuming, as
the output channels are iteratively merged at test time. Our one-shot inference
consumes significantly less computational resources and is much more efficient.

In addition to post-processing, another line of balancing approaches focuses
on the training strategy. They balance the loss terms [41] or introduce a control-
ling factor as training inputs [32,36,43,20]. For example, Vasu et al . [41] directly
added MSE, VGG, and adversarial loss together and weighted them in differ-
ent proportions. CFSNet [43] achieved a test-time transition between perceptual
and objective quality by using an extra input factor α in their training strategy.
These approaches create a smooth transition between the two qualities; but do
not attempt to improve both of them. In contrast, our method focuses on the
training strategy and improves both qualities.

3 Method

3.1 Revisiting the Multi-Objective SR Formulation

SISR recovers a high-resolution image Y ∈ RH×W , given an input low-resolution
image X ∈ Rh×w via a neural network G, i.e. Y = G(X). Here, h×w and H×W
are input and output image heights and widths respectively. As it is challenging
to gather real-world pairs of images in low- and high-resolution, X is typically
generated from a ground truth high-resolution image Ŷ via a downsampling
function, i.e. X = f↓(Ŷ ). Bicubic downsampling is a commonly used f↓(·), with
standard downsampling factors of ×2 or ×4, e.g . H = 2× h,W = 2× w.

Considering both distortion and perception, a simple way to learn G(·) is by
weighting different loss terms LO and LP with weights λO and λP

3 for objective
and perceptual quality respectively, i.e.

LG = λO · LO(Y ) + λP · LP (Y ). (1)

However, this does not achieve a good PD trade-off because of the incoher-
ence between perception and distortion losses [2]. Specifically, minimizing LO

(i.e. with MSE, L1) leads to low expectation of pixel-wise error, whereas LP

(i.e. adversarial loss combined with contextual loss) targets distribution-based

3 Throughout the paper, we will use O and P (either subscript or superscript) to
denote objective- and perception-focused items respectively.
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Fig. 2: Proposed two-stage model with a low-frequency constraint. The first stage
learns high-fidelity LF subbands to yield high objective quality. The second stage
focuses on the distribution learning of HF subbands to improve perceptual qual-
ity for the overall image. Discrete Wavelet Transform (DWT) decreases the spa-
tial size of each channel without information loss, and Inverse Discrete Wavelet
Transform (iDWT) recovers the spatial resolution (see Sec. 4.1 for details). The
two stages are trained with the low-frequency constraint to encourage the simi-
larity of the LF subbands of the two outputs.

learning for sharp results [2]. It is therefore common for methods seeking a good
trade-off to learn two separate networks and fuse the results via post-processing,
i.e.

Y = F (Y O, Y P ), where Y O = GO(X), and Y P = GP (X), (2)

where GO and GP are two separately trained models and F is some fusion
module. F can be quite complex and computationally expensive. For example,
in Deng [6] and WDST [7], F is a style transfer module applied during inference.

Inspired by previous research in human perception [16,54] and the direct
link between low- and high-frequency information to objective and perceptual
quality [7,19], we take a frequency-banded approach. A näıve formulation is to
separate the learning objectives for the low- and high-frequency bands, i.e.

Y = G(X), where LG = λO · LO(TLF (Y )) + λP · LP (THF (Y )). (3)

In this formulation, the network G is learned by applying a weighted loss on
the low-pass and high-pass decomposed subbands of the output Y , based on
the respective transformations TLF and THF . Like previous works [7,53,24], we
used the discrete wavelet transform with a Haar wavelet basis for decomposing
the image into frequency subbands. Supervising a network based on the loss
of Eq. (3) assumes that the different frequency bands can be optimized inde-
pendently, which is not the case. A hard separation increases the difficulty of
learning, especially for high-frequency bands THF (Y ), as LP includes an adver-
sarial loss and is, from our observations, unstable and prone to training collapse.

3.2 Low-Frequency Constrained SR (LFc-SR)

Due to the lack of independence, we contend that the optimization of each ob-
jective, be it objective or perceptual, must observe the entire band of image
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frequencies. Our solution to encourage stable learning of high-frequency infor-
mation of Y while maintaining objective quality is to allow a separate (early
stage) output Y ′ for the objective quality. Specifically, we partitioned the model
G into two stages, where G = {GO,GP } (see Fig. 2), i.e.

Y ′ = GO(X), Y = GP (Y
′) s.t. TLF (Y ) = TLF (Y

′), (4)

where GO(·) represents the first objective-focused stage of G and Y ′ is a super-
resolved image with high objective quality. GP (·) is the perception-focused stage
targeting a further improvement on high-frequency detailing that takes Y ′ as
input. To encourage the final output Y to maintain high objective quality, we
placed a constraint that the low-frequency subbands of Y should be equal to
those of Y ′, which in practice encourages the two to be similar.

The two stages accordingly have different loss functions. Outputs from GO

are supervised by a L1 loss:

LO = L1(Y
′, Ŷ ) (5)

where Ŷ is the ground truth for the training input X. For GP , we used the
contextual loss [29] together with adversarial training for high perceptual quality.
The contextual loss approximates KL-divergence between the deep features of
super-resolved and ground-truth images, and we refer to Mechrez et al . [30,29]
for further details. The overall loss function for GP is as follows:

LP = λCX · LCX(Y, Ŷ ) + λD · L1(f↓(Y ), f↓(Ŷ )) + λGen · LGen(Y ), (6)

where LCX is the contextual loss and f↓(·) estimates the low-resolution coun-
terparts of HR images. The L1 loss here is, as introduced in Mechrez et al . [30],
to boost the spatial structure similarity with the contextual loss, and LGen rep-
resents the generator loss used in adversarial training.

A straightforward way to implement the equivalence constraint in Eq. (4) is
to apply a L1 regularizer on the outputs of two stages, and the total loss is as
following:

λO · LO + λP · LP + λr · ∥TLF (Y )− TLF (Y
′)∥1 . (7)

Theoretically, regularization will also encourage LF similarity. However, mini-
mizing Eq. (7) requires a difficult-to-achieve balance between LO, LP [4] and
the selection of a good λr. To bypass this difficulty, we interpret Eq. (4) as a
multi-objective optimization problem with a combinatorial constraint. ADMM
is an established algorithm for solving such constrained optimizations and in the
next section, we outline PD-ADMM, our ADMM-based optimization method.

3.3 Alternating Optimization with ADMM

We designed an alternating training method, PD-ADMM, based on the Alter-
nating Direction Method of Multipliers (ADMM) [3] for the optimization of
LFc-SR.



PD-Balanced ADMM Optimization for SISR 7

Considering Eq. (4), finding solutions for the LFc-SR model is actually a
constrained multi-objective optimization problem, i.e. there are two different
objectives with the constraint on low-frequency coherency:

min LP + LO s.t. TLF (Y ) = TLF (Y
′), (8)

where LP and LO are loss functions in Sec. 3.2, and the constraint is the same
as that in Eq. (4). Since the model parameters are variables in this optimization,
we express Eq. (8) as functions of θP and θO, the parameters of GP and GO :

min
θP ,θO

P (θP ) +O(θO) s.t. LFp(θP ) = LFO(θO), (9)

where P (θP ) measures the perceptual error of the perceptual stage output,
and O(θO) measures the objective error of the objective stage; LFP(θP ) =
TLF(GP (Y

′; θP )) and LFO(θO) = TLF(GO(X; θO)) represent the low-frequency
subbands of outputs from the perceptual- and objective-focused stage.

The augmented Lagrangian function of Eq. (9) is:

L(θP , θO, u) = P (θP ) +O(θO) + uT (LFP(θP )−LFO(θO))

+
ρ

2
∥LFP(θP )− LFO(θO)∥22 .

(10)

where u is the Lagrangian multiplier, and ρ is the penalty parameter. It is
often easier to express the above function in the scaled form by defining u =
ρs [48,13,21], resulting in

L(θP ,θO, s) = P (θP ) +O(θO) +
ρ

2
∥LFP(θP )− LFO(θO) + s∥22 −

ρ

2
∥s∥22 . (11)

ADMM solves Eq. (11) by a decomposition into three iterative sub-steps:

θk+1
P = argmin

θP

L(θP , θkO, sk) (12a)

θk+1
O = argmin

θO

L(θk+1
P , θO, s

k) (12b)

sk+1 = sk + LFP(θ
k+1
P )− LFO(θ

k+1
O ) (12c)

The first two steps are equivalent to:

argmin
θP

P (θP ) +
ρ

2
∥LFP(θP )− LFO(θO) + s∥22 (13a)

argmin
θO

O(θO) +
ρ

2
∥LFP(θP )− LFO(θO) + s∥22 , (13b)

where the first term of each minimization function is the loss function of the
perception-focused stage or objective-focused stage, i.e. LP or LO discussed
in Sec. 3.2. The second terms are special L2 regularizers applied to variable s
and the low-frequency subbands of the outputs from the two stages. Thus, we
can solve these two sub-problems through a deep model optimization algorithm,
such as Stochastic Gradient Descent. Based on above analysis through ADMM,
our training algorithm for the LFc-SR model consists of three alternating steps
and is concluded by dual variable updates in Eq. (12c) after optimizing the
perceptual- and objective-focused stage through Eq. (13a) and Eq. (13b).
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4 Experiments

4.1 Settings

Dataset & Evaluation: We used the DIV2K dataset [39] for training and vali-
dation, We evaluated on standard benchmarks: Set5 [1], Set14 [46], BSD100 [27],
Urban100 [12] and Manga109 [28]. To measure objective quality, we computed
the PNSR and SSIM on the image’s Y channel with Matlab functions. For per-
ceptual quality, we used the no-reference metric NRQM [25] and the full-reference
metric LPIPS [47] for a comprehensive treatment. We provide visual comparisons
in Fig. 4 and Fig. 5 to show the qualitative efficacy of our method.

Image Decomposition: We used the discrete wavelet transform (DWT) to
decompose our image into frequency subbands. DWT is an invertible frequency
transformation common in image processing [53,24,11]. It decomposes the im-
age into four half-resolution channels, LL, HL, LH and HH, including low- (L)
or high- (H) frequency subbands of height and width dimension. DWT can be
applied on LL iteratively. We used the LL channel from a 1-level Haar DWT
of the image as the LF information in Eq. (9). Other transformations are also
feasible, and we experimented with Gaussian blur as an ablation. For downsam-
pling function f↓(·) in Eq. (6), we also used DWT for convenience; we used the
LL channel from a 2-level DWT for ×4 super-resolution.

Model Architecture: We tested our method for ×4 super-resolution. For
GO, we directly adopted the architecture of HAN [33], which finish upscaling
the images into high resolution. GP starts with DWT and ends with inverse
DWT (iDWT), saving training time by losslessly reducing the spatial resolution
of processed feature maps. Between the two transformations are 15 Res-clique
blocks designed by Zhong et al . [53]. For the architecture and loss calculation of
discriminator for adversarial training, we adopted what was used in SRGAN [19].
More details are in the Supplementary.

Training Details: We took RGB patches of size 36×36 as inputs and trained
the model with the ADAM optimizer [18] using the settings β1=0.9, β2=0.999,
and ϵ=10−8 on a minibatch of 16. The two stages were pretrained with L1 loss
jointly for 400 epochs. The initial learning rate was 10−4 and decay rates were
0.1 every 100 epochs. We subsequently trained the model using the proposed
PD-ADMM algorithm with a penalty factor ρ= 10−4 and initialized s with 0.
We trained the whole model for another 200 epochs with an initial learning rate
of 5× 10−5 and decreasing to one-eighth after 20, 50, 70, 100, and 140 epochs.

4.2 Comparison with State-of-the-Art Methods

Quantitative Comparison with Trade-off Methods: We first compare our
method with existing methods aiming to balance objective and perceptual qual-
ity. These include CFSNet [43], G-MGBP [32], PESR [42], ESRGAN with net-
work interpolation [44], Deng [6], and WDST [7]. We note, however, that both
Deng and WDST rely on image style transfer [10] for post-processing, which re-
quires much more computational power and impractical inference runtimes (see
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detailed discussion on inference complexity in Sec. 4.2). Hence, a fair compari-
son with them is impossible. Nevertheless, as shown in Table 1, our method still
reaches comparable performance to WDST and surpasses all other methods.

Table 1: Comparison with other PD trade-off state-of-the-art models aiming at
both objective and perceptual quality on ×4 super-resolution. We color the best
performance in red and second best in blue. We separate Deng [6] and WDST [7]
as they rely on three orders of magnitude higher computational power and a fair
comparison with other listed methods is impossible. For reference, we set the best
performance of Deng and WDST that surpass all other methods to bold. Higher
PSNR, SSIM, NRQM score and lower LPIPS score mean better performance.

Dateset Metric Deng [6] WDST [7] G-MGBP [32] PESR [42] ESRGAN [44] CFSNet [43] Ours

Set5 [1]

PSNR 31.14 31.46 30.87 30.76 31.11 31.00 31.79
SSIM 0.8917 0.8929 0.8807 0.8915 0.8839 0.8894 0.8910
NRQM 7.0022 7.5180 7.3155 7.1344 7.0724 7.4820 7.3462
LPIPS - 0.0868 0.1003 0.0884 0.0841 0.1020 0.0776

Set14 [17]

PSNR 27.77 28.07 27.56 27.57 27.53 27.61 27.87
SSIM 0.8325 0.8356 0.8206 0.8322 0.8228 0.8280 0.8282
NRQM 7.5575 7.6827 7.5042 7.5301 7.5936 7.6074 7.7957
LPIPS - 0.1658 0.1757 0.1612 0.1539 0.1754 0.1423

BSD100 [27]

PSNR 26.46 26.82 26.59 26.33 26.44 26.46 26.84
SSIM 0.7048 0.7085 0.6926 0.6980 0.7002 0.6991 0.7010
NRQM 8.4452 8.5948 8.1790 8.3298 8.3034 8.3770 8.4406
LPIPS - 0.2140 0.2238 0.2045 0.1903 0.2129 0.187

Urban100 [12]

PSNR 25.96 26.26 25.15 25.88 26.08 25.38 26.28
SSIM 0.9620 0.9649 0.9495 0.9610 0.9624 0.9546 0.9636
NRQM 6.4317 6.4556 6.2190 6.3190 6.1762 6.5140 6.6220
LPIPS - 0.1604 0.1775 0.1402 0.1519 0.1506 0.1235

Manga109 [28]

PSNR - - 29.07 28.77 29.72 29.49 30.20
SSIM - - 0.8815 0.9795 0.9772 0.9789 0.9804
NRQM - - 6.4073 6.6071 6.3909 6.5344 6.6532
LPIPS - - 0.0779 0.0634 0.0610 0.0719 0.0627

Quantitative Comparison with Single-focused Methods: We further
compare our method with single-focused state-of-the-art methods. Quantita-
tively comparing our balanced method with methods that only consider one
type of quality is non-trivial. Due to the PD trade-off, our method will be infe-
rior to the single-focused method in its optimized direction while surpassing it
in the other. We thus make the comparison on a PD trade-off plane [2]. We gen-
erate a curve on the plane by interpolating the outputs from the state-of-the-art
objective-focused and perceptual-focused methods. The interpolated image Y is
produced through the following function:

Y = α · Y O + (1− α) · Y P , (14)

where Y O is an HR image super-resolved by objective-focused model, Y P is the
perceptual-focused counterpart and the value of α is in [0, 1]. Freirich et al . [9]
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found this interpolation curve to be an optimal PD trade-off boundary achievable
using single-focused estimators. Methods that sit in the region below the curve
are better than those on or above the curve in terms of PD trade-off. In Fig. 3,
we plot the curve between the best estimators, NLSA [31] and RankSRGAN [49],
and show that our method is the only one below the estimated trade-off boundary
considering all single-focused state-of-the-art methods on the plane.

(a) Performance on Urban100 [12] (b) Performance on Manga109 [28]

Fig. 3: Comparison with single-focused start-of-the-art SR methods on Ur-
ban100 [12] and Manga109 [28] datasets for ×4 super-resolution. We plot the
curve by interpolating results from the best objective estimator [31] and the
best perceptual estimator [49] on the plane. Our model can reach a better bal-
ance than the trade-off boundary approximated by single-focused state-of-the-art
methods, as it sits well below the boundary.

Qualitative Results:We compare image samples generated from our method
with those from NLSA [31], RankSRGAN [49] and WDST [7] on BSD100 [27]
and Urban100 [12] in Fig. 4. Our method generates clear structures with fewer
artifacts compared to single-focused methods and more realistic high-frequency
details than WDST does. We provide frequency subbands comparison in Fig. 5.
While single-focused methods only achieve good results at one of the subbands,
our method learns both low- and high-frequency information effectively.

Inference Complexity: A significant advantage of our method is that it
is one-shot. We directly optimize a single model and bypass the complex fusing
of two outputs, unlike competing work WDST [7] and its predecessor, Deng [6].
Central to their inference is an image style transfer procedure [10], which requires
thousands of iterations to update the initial input signal towards a fused wavelet
channel or image. In contrast, our method super-resolves the LR image through
a single model in a one-shot manner. We used a 24GB NVIDIA RTX A5000
GPU for running the models. Table 2 provides a quantitative comparison of
the computational complexity, including the FLOPs and runtime for ×4 super-
resolution of a 128× 128 LR input. Our model’s FLOPs and runtime are three
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(a) HR (b) NLSA (c) Ranksrgan (d) WDST (e) Our Result

Fig. 4: Image sample comparison for ×4 super-resolution on BSD100 [27] (first
two rows) and Urban100 [12] (thrid and forth rows) dataset. NLSA [31] is
objective-focused, RankSRGAN [49] is perceptual-focused, while WDST [7] and
our method are balanced approaches. Our method retains relatively sharp de-
tailing without introducing unnatural artifacts.

orders of magnitude lower than WDST, assuming only 1000 iterations of updates
for WDST (the actual number of updates is usually much more).

4.3 Ablation Studies

Verification of low-frequency constraint and ADMM optimization: In
this experiment, we kept a constant architecture as described in Sec. 4.1. Then we
implemented the equivalence constraint through the second-stage regularizer in
Eq. (7) and trained the models with different weights λr for the regularizer. Fig. 6
shows the performance of regularizer-based methods on the PD trade-off plane,
together with our PD-ADMM method; for each hyperparameter setting, we also
illustrate the LF difference between the two stages’ outputs, i.e. Y ′ and Y ,
with a circle. The more different the two stages, the larger the circle. Compared
to the no-constraint version (λr = 0), both using PD-ADMM and adding the
low-frequency constraint yield higher LF similarity. Fig. 7 also provides visual
evidence of the efficacy of adding the low-frequency constraint. The increase of
λr results in higher LF similarity, transitioning from better perceptual quality to
better objective quality. However, the model optimized by PD-ADMM achieves
a superior balance of perceptual- and objective-quality to this transition.

Stage Order and Constrained Subband: This experiment validates the
reconstruction ordering of frequency subbands in our proposed model. Without
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(a) Ground Truth (b) NLSA (c) RankSRGAN (d) Our Result

Fig. 5: Visual comparison of low- and high-frequency subbands for ×4 super-
resolution by NLSA [31], RankSRGAN [49] and our method. We visualize the
LL (first row) and HH (second row) wavelet channels for low- and high-frequency
comparison. Within each image, we show the HR image (top left), wavelet chan-
nel (top right) and the zoom-in region of the wavelet channel under them. NLSA
generates high-fidelity low-frequency information but lacks high-frequency de-
tailing in the HH channel; RankSRGAN produces twisted structures in the LL
channel but can reconstruct more high-frequency information. Our method pre-
dicts both high-fidelity LL channel and abundant high-frequency detailing.

(a) Performance on BSD100 [27] (b) Performance on Urban100 [12]

Fig. 6: Comparison with regularizer-based method on BSD100 [27] and Ur-
ban100 [12]. λr is the weight of regularizer; numbers below λr are mean absolute
error (MAE) of low-frequency subbands between outputs of two stages. A lower
value means a higher similarity. Our method achieves appropriate LF similarity
and better balance than the curve plot by regularizer-based models.

changing model architecture, we exchanged the optimization objectives of the
two stages and converted the equivalence constraint to HF subbands extracted
by DWT. Representing our original method as the O-P model, this swapped P-
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Table 2: Comparison of the inference complexity of our method and WDST [7]
for ×4 super-resolution of a 128× 128 LR image. The SR model super-resolves
LR inputs and gives HR images, while post-processing further process super-
resolved images. Our model’s FLOPs and runtime are three orders of magnitude
less than WDST. We refer to the supplementary material for detailed analysis.

Method Values SR model Post-processing All

WDST
FLOPs 50.6M ≈ 37448.1M ≈ 37500.3M

Run-time 0.918s ≈ 1152s ≈ 1153s

Ours
FLOPs 26.8M - 26.8M

Run-time 0.566s - 0.566s

(a) w/o constraint (b) PD-ADMM (c) w/o constraint (d) PD-ADMM

Fig. 7: Visualization of difference in low-frequency subband compared to the
ground-truth for ×4 super-resolution. Each image shows the HR result (top left),
grayscale map of difference of the LL channel between the variant and the ground
truth (top right), and the zoom-in region of the grayscale map. The darker the
map, the better. Limiting the change of the LF subband keeps higher accuracy
of the LF information while learning the HF information at the perceptual stage.

O model completes perceptual-focused reconstruction first, and then optimizes
LF subbands while keeping HF equivalence to the first stage. We also optimized
the P-O model through PD-ADMM. Borrowing the comparison with single-
focused models in Sec. 4.2, we plotted the results of our original model and P-O
model on a PD trade-off plane with the trade-off boundary. As shown in Fig. 8,
the performance of the order-exchanged model is dominated by the objective
optimization and fails to achieve a good PD trade-off.

Low-frequency Subbands Extraction: To verify that our results are not
dependent on specific frequency decomposition method, i.e. the DWT, we ap-
plied Gaussian blur on the outputs from the two stages to extract the LF sub-
bands that should satisfy the equivalence constraint in PD-ADMM. Experimen-
tally, we applied convolution with a 21×21 Gaussian kernel with σ = 3 to extract
the LF information. As shown in Fig. 8, models with DWT and with Gaussian
Blur (GB) have extremely close positions on the PD trade-off plane, and both
of them are under the PD trade-off boundary introduced in Sec. 4.2. It shows
that using different extraction methods can reach similar PD balances. We chose
DWT for our model because of its popularity in image frequency analysis.
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(a) Urban100[12] (b) Manga109[28]

Fig. 8: Comparison between our model and its two variants. The order-exchanged
version (P-O) optimizes HF subband for perceptual quality first. Its performance
is close to the top-left corner and above the estimated trade-off boundary, i.e.
it fails to balance the perceptual and objective quality. The other variant (GB)
implements the low-frequency constraint of LFc-SR by Gaussian Blur rather
than DWT used in our original model. The close performance of two models
shows that our constraint design does not rely on a specific extraction method.

5 Conclusion & Limitations

In this paper, we learned a SISR model for both objective and perceptual quality.
We proposed LFc-SR, a two-stage model trained with a low-frequency constraint
to implicitly optimize low- and high-frequency bands for objective and perceptual
quality in a successive way. The training of LFc-SR is formulated as a constrained
multi-objective optimization problem. We designed PD-ADMM, an alternating
algorithm, to solve for a solution that balances the perception-distortion trade-
off. Our method is effective compared with other PD trade-off related methods
and single-focused models without the expense of heavy fusion procedure.

Despite being more efficient than trade-off related fusion methods, our method
is still far from optimal compared with some efficiency-oriented SISR models.
Due to the successive processing in stages, some parts of the two-stage model
may extract similar information and cause redundancy. However, such a design
also offers the potential to reuse information efficiently, which we will leave for
future work.
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