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Abstract. This paper proposes an Any-time super-Resolution Method
(ARM) to tackle the over-parameterized single image super-resolution
(SISR) models. Our ARM is motivated by three observations: (1) The
performance of different image patches varies with SISR networks of dif-
ferent sizes. (2) There is a tradeoff between computation overhead and
performance of the reconstructed image. (3) Given an input image, its
edge information can be an effective option to estimate its PSNR. Subse-
quently, we train an ARM supernet containing SISR subnets of different
sizes to deal with image patches of various complexity. To that effect,
we construct an Edge-to-PSNR lookup table that maps the edge score
of an image patch to the PSNR performance for each subnet, together
with a set of computation costs for the subnets. In the inference, the im-
age patches are individually distributed to different subnets for a better
computation-performance tradeoff. Moreover, each SISR subnet shares
weights of the ARM supernet, thus no extra parameters are introduced.
The setting of multiple subnets can well adapt the computational cost
of SISR model to the dynamically available hardware resources, allow-
ing the SISR task to be in service at any time. Extensive experiments
on resolution datasets of different sizes with popular SISR networks as
backbones verify the effectiveness and the versatility of our ARM. The
source code is available at https://github.com/chenbong/ARM-Net.
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1 Introduction

Recent years have witnessed the rising popularity of convolutional neural net-
works (CNNs) in the classic single image super-resolution (SISR) task that refers
to constructing a high-resolution (HR) image from a given low-resolution (LR)
version [5,16,20,36,37,24]. SISR has a wide application in daily life such as fa-
cial recognition on low-resolution images, real-time video upscaling resolution
on mobile devices, video quality enhancement on televisions, etc. For the sake
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High PSNR
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Medium PSNR
(Medium Patch)
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Low Edge Score
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Medium Edge Score
(Medium Patch)

High Edge Score
(Hard Patch)

Bilinear Interpolation FSRCNN-16 FSRCNN-36 FSRCNN-56LR

53.10dB(+0.00dB) 52.89dB(-0.21dB) 53.01dB(-0.09dB) 53.01dB(-0.09dB)PSNR(△P)

FLOPs(△F) 0MB(+0MB) 141MB(+141MB) 305MB(+305MB) 468MB(+468MB)

A

B

27.32dB(+0.00dB) 28.96dB(+1.64dB) 29.13dB(+1.81dB) 29.14dB(+1.82dB)PSNR(△P)

C

19.84dB(+0.00dB) 21.66dB(+1.82dB) 21.78dB(+1.94dB) 21.85dB(+2.01dB)PSNR(△P)

(a) Patches’ PSNR of a Pre-trained MSRResNet Model

(c) Patches’ edge detection score

(b) Results of using interpolation or different size networks

FLOPs Device ClassSR SRResNet ARM(ours)

0MB w/o AI × × 0MB

<500MB Tiny AI × × 0MB~500MB

500MB~1GB Mobile AI × × 500MB~1GB

>1GB Cloud AI 3.6GB 5.2GB 1GB~5.2GB

(d) Comparison of deployment  under different FLOPs scenarios

Fig. 1. Our observations in this paper. (a) Image patchs are categorized to three groups
of “easy”(green), “moderate”(yellow) and “difficult”(red) according to their PSNR
via a pre-trained MSRResNet [28]. (b) Three groups prefer different super-resolution
procedures: The “easy” patch benefits from the simple interpolation, the “moderate”
patch benefits from a medium-sized SISR model, while “difficult” patch benefits from a
large-sized SISR model. (c) Visualization of edge information. (d) Using SRResNet as a
backbone, our ARM can support arbitrary size of FLOPs overhead without retraining.

of real-time experience, the SISR systems are required to be in service at any
time. However, the platforms to conduct SISR task are featured with: (1) The
memory storage and computation ability are very limited. (2) The configured
resources vary across different hardware devices. (3) The availability of hardware
resources on the same device even changes greatly over different times.

Unfortunately, newly developed SISR models tend to have more learnable
parameters as well as more floating-point operations (FLOPs). For example, the
earliest CNN-based SISR model, SRCNN [4], has only 3 convolutional layers
with 57k parameters. Later, VDSR [13] increases the number of parameters to
2.5M. After that, RCAN [38] increases its parameters to over 15M. where a total
of 66,015G FLOPs are required to process one single 1,920×1,080 image. Con-
sequently, existing SISR models can be barely deployed on the resource-hungry
platforms. Therefore, how to design an efficient SISR network has attracted in-
creasing interest in the computer vision community. Besides, how to dynamically
adapt the SISR models to the currently available hardware resources for a real-
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time deployment also arouses the community’s wide attention. To this end, we
investigate the computational redundancy in modern SISR networks and some
observations are excavated as shown in Fig. 1.

First, we observe that the performance of different image patches varies with
SISR networks of different sizes. In Fig. 1(a), we categorize the image patches
into three categories of “easy” (green),“moderate” (yellow), and “difficult” (red)
according to their PSNR scores from the pre-trained MSRResNet [28]. Generally,
we observe a higher PSNR for an “easy” patch, and vice versa. Then, we ran-
domly pick up one patch from each of the three categories and super-resolution
them up with the bilinear interpolation and FSRCNN network [6] with differ-
ent widths (i.e., the number of output channels) of 16/36/56. Visualization is
shown in Fig. 1(b). We find that for “easy” patch, the bilinear interpolation
leads to the best results while FSRCNN not only requires more computation,
but degrades the performance. In contrast, a wider FSRCNN benefits the “hard”
patch. This observation indicates that traditional SISR models suffer spatial re-
dundancy from the input and it is necessary to deal with each patch based on
its complexity for saving computation cost.

Second, for some image patches such as these from the “moderate” cate-
gory, a medium-sized FSRCNN-36 can well complete the SR task while a larger
FSRCNN-56 results in much heavier computation (+53% FLOPs) with a very
limited performance gain (+0.01 PSNR). This observation indicates a trade-
off between computation overhead and performance of the reconstructed image.
How to maintain the performance with a smaller computation burden deserves
studying. Finally, we find that “hard” patches often contain more edge informa-
tion. To verify this, we perform edge detection [23,3] on each patch in Fig. 1 (c)
and find a strong Spearman correlation coefficient between PSNR and negative
edge score (see Fig. 4 Left). This observation implies that edge information can
be an effective option to estimate PSNR of each patch with a cheaper computa-
tion cost since edge information can be obtained in an economical manner.

Inspired by the above observations, we propose an Any-time super-Resolution
Method, referred to as ARM. Different from traditional CNNs-based SISR model
with a fixed inference graph, our ARM dynamically selects different subnets for
image super-resolution according to the complexity of input patches, and also
dynamically adapts the computational overhead to the currently available hard-
ware resources in inference. Specifically, we first use a backbone network as the
supernet, and train several weight-shared subnets of different sizes within the
supernet. The weight-sharing mechanism avoids introducing extra parameters,
leading to a light-weight SISR supernet. Then, for each subnet, we construct
an Edge-to-PSNR lookup table that maps the edge score of each patch to its
estimated PSNR value. Finally, we propose to choose the subnet for reconstruct-
ing a HR image patch with a larger output of PSNR prediction but a smaller
computation cost to reach a computation-performance tradeoff. We conduct ex-
tensive experiments on three large resolution datasets and results show that our
ARM outperforms previous adaptive-based super-resolution ClassSR [15] with
a computation-performance tradeoff. Moreover, comparing to ClassSR, with a
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better performance, our ARM reduces parameters by 78%, 54% and 52% when
using FSRCNN [6], CARN [2], and SRResNet [16] as the supernet backbones.

Earlier studies [15,30] also explore the spatial redundancy of image patches
in SISR networks. They set up multiple independent branches to handle patches
with different complexity. However, these operations increase the model param-
eters and can not adapt to the available hardware resources since the inference
graph is static for a fixed image patch. On the one hand, our ARM implements
super-resolution in an economical manner since different image patches are fed
to different small-size subnets of the supernet without introducing extra param-
eters. On the other hand, our ARM enables a fast subnet switch for inference
once the available hardware resources change. The main difference between the
proposed ARM and the previous approach is shown in Fig. 1 (d), where the pro-
posed ARM can theoretically support arbitrary computational overhead without
retraining. Thus the SISR task can be in service at any time.

2 Related Work

Interpolation-based SISR. Image interpolation is built on the assumption
of image continuity. Usually, it uses nearby pixels to estimate unknown pixels
in high-resolution images by a fixed interpolation algorithm. Classical interpo-
lation algorithms include nearest neighbor interpolation, bilinear interpolation,
bicubic interpolation and their variants [7,25]. The interpolation-based super-
resolution benefits in cheap computation, but disadvantages in detail loss in the
reconstructed images with complex textures.
Region-irrelevant CNNs-based SISR. SRCNN [4] is the first work to build a
three-layer convolutional network for high-resolution image reconstruction. Since
then, the successors [13,16,26] enhance the performance of SISR task by deepen-
ing the networks as well as introducing skip connections such as residual blocks
and dense blocks. EDSR [20] reveals that the batch normalization (BN) layer
destroys the scale information of the input images, which the super-resolution
is sensitive to. Thus, it advocates removing BN layers in SISR task. The in-
creasing model complexity also arouses the community to design light-weight
SISR models [6,2,33]. TPSR [17] builds a network with the aid of network ar-
chitecture search. Zhan et al. [37] combined NAS with parameter pruning to
obtain a real-time SR model for mobile devices. Many researches [19,22,31] are
indicated to representing the full-precision SISR models with a lower-bit format.
Also, the knowledge distillation is often considered to strengthen the quality of
reconstructed images from light-weight models [9,11,18,29] Overall, these CNN
models for SISR are often region-irrelevant, that is, the computational graph is
never being adjusted to adapt to the input images. On the contrary, our ARM
picks up different subnets according to the complexity of input image patches,
leading to a better tradeoff between model performance and computation.
Region-aware CNNs-based SISR. Recently, several works have realized the
redundancy of input images on spatial regions in the SISR task. SMSR [27] in-
troduces sparse masks upon spaces and channels within each block and then per-
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forms sparse convolution to reduce the computational burden. FAD [30] discovers
that high-frequency regions contain more information and require a computa-
tionally intensive branch. It adds multiple convolutional branches of different
sizes and each feature map region is fed to one branch according to its region
frequency. ClassSR [15] classifies the image patches into three groups according
to the patch difficulty. The image patches are respectively sent to the stand-alone
trained backbone networks with different widths to realize super-resolution.

Despite the progress, the introductions of masks and additional network
branches inevitably cause more parameters in these SISR models. Moreover,
they fail to perform SISR task once the supportive hardware resources are insuf-
ficient. On the contrary, our ARM innovates in its subnet weights sharing with
the supernet. Thus, no additional parameters are introduced. With multiple sub-
nets, our SISR can well adapt to the hardware by a fast switch to perform the
subnet capable of being run on the available resources.

Resource-aware Supernet. In order to achieve dynamic adjustment of com-
putational overhead during inference, many studies [35,34,32,21] devise a super-
net training paradigm with weight-shared subnets of multiple sizes. They uni-
formly sample different-size subnets for network training. Compared with these
resource-aware supernet training methods, our proposed ARM follows a similar
supernet training paradigm but differs in the subnet selection that considers a
tradeoff between computation and performance.

3 Method

3.1 Preliminary

Our ARM network is a CNN-based SISR supernet NW [0:1.0] with its weights de-
noted as W [0 : 1.0], where 1.0 indicates a width multiplier of each convolutional
layer. For example, a subnet can be represented as NW [0:0.5] if its width of each
convolutional layer is half of that in the supernet. By setting the width multi-
plier to different values, we can obtain a SISR subnet set {NW [0:αj ]}Mj=1 where

αj ∈ (0, 1] is the width multiplier of the j-th subnet and M is the number of sub-
nets. Note that, W [0 : αj ] is a subset of W [0 : 1.0], i.e., W [0 : αj ] ∈ W [0 : 1.0].
Therefore, each SISR subnet shares parts of weights in the SISR supernet.

For the traditional SISR task, a training set {X,Y } can be available in ad-
vance, whereX = {xi}i=1...N are the low-resolution (LR) images, Y = {yi}i=1...N

are the high-resolution (HR) images, and N is the number of training samples.
Our goal in this paper is to optimize the overall performance of each subnet with
LR images X as its inputs to fit the HR images Y . The formal optimization ob-
jective can be formulated as:

min
W

M∑
j=1

1

N
∥NW [0:αj ](X)− Y ∥1, (1)
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LR Patches of
Training Set SR Patches HR Patches

L1 Loss

Supernet

sample a subnet

Fig. 2. Training of our ARM supernet. In each training iteration, one subnet is sampled
to process a batch of low-resolution image patches with ℓ1 loss.

where ∥ · ∥1 denotes the commonly-used ℓ1-norm in the SISR task1. Note that,
to update the subnets is to update the supernet in essence since weights of each
subnet are a subset of the supernet weights. Any existing SISR network can
serve as the backbone of our supernet NW [0:1.0]. Fig. 2 illustrates the training
paradigm of our ARM supernet for an any-time SISR task. More details are
given in the following context.

3.2 ARM Supernet Training

The optimization of Eq. (1) requires all subnets to involve in the network train-
ing, which causes a heavy training consumption. Instead, we propose to itera-
tively optimize each subnet based on a divide-and-conquer manner by performing
optimization for a particular subnet NW [0:αj ] in each iteration. In this case, the
suboptimization problem becomes:

min
W

1

N ′ ∥NW [0:αj ](X
′)− Y ′∥1, (2)

where X ′ = {x′
i}i=1...N ′ ∈ X and Y ′ = {yi}i=1...N ∈ Y are respectively the LR

image batch and HR image batch in the current training iteration2. The ratio-
nale behind our divide-and-conquer optimization is that the overall objective is
minimized if and only if each stand-alone subnet in Eq.(1) is well optimized.
Thus, we choose to decouple the overall objective and optimize individual sub-
nets respectively, which also leads to the minimization of Eq.(1).

So far, the core of our supernet training becomes how to choose a subnet for
optimization in each training iteration. Traditional supernet training in image
classification tasks [35,34] usually adopts the uniform sampling where the sub-
nets of different sizes are endowed with the same sampling probability. Though
applicable well in the high-level classification, we find the sampling strategy

1 To stress the superiority of our method, we only consider ℓ1-norm loss in this paper.
Other training losses [8,12] for SISR can be combined to further enhance the results.

2 In our supernet training, X ′ and Y ′ are indeed batches of local image patches from
the X and Y . Details are given in Sec. 4.1. For brevity, herein we simply regard them
as image batches.
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could impair SISR task (see the numerical values in Sec. 4.4). Empirically, in the
supernet training: i) smaller subnets tend to overfit the inputs and require less
training, ii) larger subnets tend to underfit the inputs, therefore require more
training. Consequently, we believe that the performance impairment of uniform
subnet sampling is due to the different degree of training required by different
size subnets.

Therefore, we propose a computation-aware subnet sampling method where
subnets with heavier computation burden are endowed with a higher training
priority. Concretely, the sampling probability of the j-th subnet is defined as:

pj = (
FLOPs(NW [0:αj ])

2)∑M
k=1 FLOPs(NW [0:αk])2)

, (3)

where FLOPs(·) calculates the FLOPs consumption of its input subnet.
To sum up, in the forward propagation, we sample a subnet with its proba-

bility of Eq. (3) to perform loss optimization of Eq. (2). In the backward prop-
agation, we only update weights of the sampled subnet. Consequently, after
training, we obtain a supernet N[0:1.0] containing M high-performing subnets
{NW [0:αj ]}Mj=1. It is a remarkable fact that our ARM supernet does not in-
troduce additional parameterized modules for its weight-sharing mechanism. In
addition to the ARM supernet, we have added an interpolation branch, i.e. using
interpolation directly for super-resolution, denoted as a special subnet NW [0:α0],
where α0 = 0. This interpolation branch can be run on the device with very
low computational performance, i.e., the “w/o AI” device in Fig.1 (d). Thus
the M + 1 subnets in our ARM supernet can be further expressed uniformly
as {NW [0:αj ]}Mj=0. Besides, our ARM eliminates the spatial redundancy of the
inputs by adapting the complexity of image patches to different subnets for a
computationally economical inference, as detailed below.

3.3 ARM Supernet Inference

Fig. 3 outlines the pipeline of our ARM supernet inference. In short, we first split
a complete LR image into several local patches of the same size, and performs
the edge detection on these LR patches to calculate their edge scores. Then, the
PSNR performance of each patch is estimated by our pre-built Edge-to-PSNR
lookup table. For each subnet, we further pre-calculate its computation cost,
and propose to choose the subnet for SR inference with a larger PSNR output
but a smaller computation cost in order to pursue a computation-performance
tradeoff. Finally, the SR patches are merged to recover the complete SR image.
Edge Score. Recall that in Sec. 1, we observe a strong correlation between the
image edge and the PSNR performance, which is also verified in Fig. 4 Left.
To measure the edge information, we first generate the edge patches using the
laplacian edge detection operator [23] that allows observing the features of a
patch for a significant change in the gray level. A large pixel value indicates
richer edge information. Thus, we define the mean value of all pixels in a gray
edge patch as the edge score to reflect the overall information in an edge patch.
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LR Patches

Subnet with best
Computation-
Performance

Tradeoff

SR Patches

Edge
Detection

Edge Information

Split Merge

Supernet

LR Image SR Image

Edge-to-PSNR
Lookup Table

Fig. 3. Inference of our ARM supernet. We first detect the edge information of the
local LR image patches, PSNR performance of which is then estimated by the pre-
built Edge-to-PSNR lookup tables. The subnet with a best computation-performance
tradeoff is then selected to construct HR version of the input LR image patches.

Edge-to-PSNR Lookup Table. In contrast to a heavy network inference to
derive the PSNR of each patch, the edge-psnr correlation inspires us to construct
a set of Edge-to-PSNR lookup tables T = {tj}Mj=0 where the j-th lookup table

tj maps the patch’s the edge score to the estimated PSNR performance for the
corresponding subnet NW [0:αj ].

To be more specific, we first compute the edge score set for all the LR patches
from the validation set of DIV2K [1], denoted as E = {ei}Oi=1 where ei is the
edge score of the i-th patch and O is the patch size. We split the edge score
interval [min(E),max(E)] equally into a total of K subintervals S = {sk}Kk=1,
where min(·) and max(·) return the minimum and maximum of the input edge
score set. As a result, we know that the scope of the k-th subinterval falls into:

sk = [min(E) +
max(E)−min(E)

K
· (k − 1), min(E) +

max(E)−min(E)

K
· k].

After the supernet training, these LR patches are further fed to the trained
subnet NW [0:αj ] to obtain their reconstructed HR patches. Then, the PSNR
values between SR patches and HR patches are computed, denoted as P j =
{pji}Oi=1. Based on the subinterval splittings, we calculate the average PSNR
within the k-th subinterval for the subnet NW [0:αj ] as:

p̄jk =

∑O
i=1 I(ei ∈ sk) · pji∑O

i=1 I(ei ∈ sk)
, (4)
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Fig. 4. Left: A strong Spearman correlation coefficient (0.85) between PSNR and
negative edge score. Right: Edge-PSNR pairs and the Edge-to-PSNR lookup table.

where I(·) is an indicator which returns 1 if the input is true, and 0 otherwise.
Subsequently, our j-th Edge-to-PSNR lookup table tj is defined as: S →

P̄ j = {p̄jk}Kk=1. For an illustrative example, we use FSRCNN [6] as our supernet
backbone and three subnets with α1 = 0.29, α2 = 0.64 and α3 = 1.0 are trained
on DIV2K dataset [1]. In Fig. 4 Right, we plot the statistical results of the first
subnet NW[0:α1]

including edge-psnr pairs of {(ei, p1i )}Oi=1 and Edge-to-PSNR
lookup table t1. Generally, our lookup table can well fit the distribution of edge-
psnr pairs, thus it can be used to estimate the PSNR performance.
Computation-Performance Tradeoff. Given a new LR image patch during
inference, we derive its edge score ê first, and it is easy to know that this patch

falls into the k̂-th subinterval where k̂ = ⌊ (ê−min(E))·K
max(E)−min(E) + 1⌋, in which ⌊·⌋ is

a floor function. With the pre-built lookup tables, we can easily obtain the
estimated PSNR p̄j

k̂
for the subnet NW [0:αj ]. It is natural to choose the subnet

with the best predicted PSNR to reconstruct the HR version of a given LR image
patch. In this case, the selected subnet index is: argmaxj p̄j

k̂
.

However, our observation in Sec. 1 indicates a tradeoff between the compu-
tation and performance. A larger subnet may result in a slightly better per-
formance, but a much heavier increase in computation. Given this, we further
propose to take into consideration the computation burden of each subnet. To
that effect, we further maintain a set of computation costs C = {cj}Mj=0 where

cj denotes the computation of the j-th subnet NW [0:αj ]. Then, we propose a
computation-performance tradeoff function based on the estimated PSNR per-
formance as well as the computation cost cj to pick up a subnet for SISR as:

ĵ = argmax
j

η · p̄j
k̂
− cj , (5)

where η is a hyper-parameter to balance the numerical difference between com-
putation cost and PSNR estimation during inference stage. Its influence will be
studied in supplementary materials. As result, the subnet NW[0:α

ĵ
]
is used to

deal with the input patch. And we accomplish the goal to deal with each image
patch according to its complexity, as observed in Sec. 1.
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We would like to stress that the lookup tables T = {tj}Mj=0 and the com-

putation cost set C = {cj}Mj=0 are built offline and once-for-all. In the online
inference stage, the PSNR values of new image patches can be quickly fetched
from the pre-built lookup tables according to their edge information which also
can be quickly derived by off-the-shelf efficient edge detection operator [23,3].
Thus, our ARM supernet does not increase any computation burden for the
SISR task. Moreover, the setting of multiple subnets within a supernet enables
a fast subnet switch for inference once the available hardware resources change.
Therefore, our ARM can be in service at any time.

4 Experiments

4.1 Settings

Training. Without loss of generality, we construct the ARM supernets on three
typical types of SISR backbones of different sizes, including FSRCNN-56 [6]
(small), CARN-64 [2] (medium), and SRResNet-64 [16] (large), where 56, 64,
and 64 are the width of the corresponding supernets. We set three subnets
in each supernet, and the width multipliers (αj) of them are (0.29, 0.46, 1.0)
for FSRCNN, (0.56, 0.81, 1.0) for CARN and SRResNet, which are the same
model configurations of ClassSR [15] for fair comparison. Moreover, the images
of the training set will be pre-processed into small patches in the same way as
ClassSR [15] before our ARM supernet training. Also, the training set of DIV2K
(index 0001-0800) [1] is used to train our ARM supernet. During training, the
data augmentation includes random rotation and random flipping. The training
process lasts 20 epochs with a batch size of 16. The ADAM optimizer [14] is
applied with β1 = 0.9 and β2 = 0.999. The training costs for FSRCNN, CARN
and SRResNet are 4, 22 and 24 GPU hours on a single NVIDIA V100 GPU,
respectively. For more details, please refer to our code.

Benchmark and Evaluation Metric. We apply the Peak signal-to-noise ratio
(PSNR) as the metric to evaluate SR performance of all methods on four test
sets: F2K, Test2K, Test4K, and Test8K. F2K consists of the first 100 images
(index 000001-000100) of Flickr2K [20] dataset. Test2K, Test4K, and Test8K
datasets are constructed from DIV8K [10] following the previous work [15]. Other
evaluation settings are also the same as the standard protocols in [15]. Unless
otherwise stated, the FLOPs in this paper are calculated as the average FLOPs
for all 32×32 LR patches with ×4 super-resolution across the whole test set.

4.2 Main Results

As listed in Table 1 and Table 2, our ARM network achieves better results
with less computation than the three SISR backbones. Overall, as we can ob-
serve in Fig. 5: compared to the backbones, the width of the ARM network
can be dynamically adjusted to achieve the computation-performance tradeoff.

https://github.com/chenbong/ARM-Net
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Table 1. The comparison of various methods and our ARM on F2K and Test2K.

Model Params F2K FLOPs Test2K FLOPs

FSRCNN [6] 25K (100%) 27.91 (+0.00) 468M (100%) 25.61 (+0.00) 468M (100%)
ClassSR [15] 113K (452%) 27.93 (+0.02) 297M (63%) 25.61 (+0.00) 311M (66%)

ARM-L
25K (100%)

27.98 (+0.07) 380M (82%) 25.64 (+0.03) 366M (78%)
ARM-M 27.91 (+0.00) 276M (59%) 25.61 (+0.00) 289M (62%)
ARM-S 27.65 (-0.26) 184M (39%) 25.59 (-0.02) 245M (52%)

CARN [2] 295K (100%) 28.68 (+0.00) 1.15G (100%) 25.95 (+0.00) 1.15G (100%)
ClassSR [15] 645K (219%) 28.67 (-0.01) 766M (65%) 26.01 (+0.06) 841M (71%)

ARM-L
295K (100%)

28.76 (+0.08) 1046M (89%) 26.04 (+0.09) 945M (80%)
ARM-M 28.68 (+0.00) 819M (69%) 26.02 (+0.07) 831M (71%)
ARM-S 28.57 (-0.11) 676M (57%) 25.95 (+0.00) 645M (55%)

SRResNet [16] 1.5M (100%) 29.01 (+0.00) 5.20G (100%) 26.19 (+0.00) 5.20G (100%)
ClassSR [15] 3.1M (207%) 29.02 (+0.01) 3.43G (66%) 26.20 (+0.01) 3.62G (70%)

ARM-L
1.5M (100%)

29.03 (+0.02) 4.23G (81%) 26.21 (+0.02) 4.00G (77%)
ARM-M 29.01 (+0.00) 3.59G (69%) 26.20 (+0.01) 3.48G (67%)
ARM-S 28.97 (-0.04) 2.74G (53%) 26.18 (-0.01) 2.87G (55%)
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Fig. 5. ARM networks use the same
parameters as the backbones, but of-
fer adjustable computations and thus
better FLOPs-PSNR tadeoffs.

Since our method is the most similar to
ClassSR, for fair comparisons, our exper-
imental settings are basically the same
as ClassSR. The results verify that ARM
achieves comparable or better results than
ClassSR in most cases. On the three back-
bones, ARM outperforms ClassSR in terms
of computation-performance tradeoff on
both the Test2K and Test8K datasets.
Fig. 6 also indicate that our ARM can bet-
ter reconstruct the HR images.

4.3 Computation Cost Analysis

In the training phase, ARM differs from
a normal backbone network only in the
way the subnets of each batch are selected.
Therefore, there is no additional computa-
tional and parameter storage overhead for training ARM networks. However,
ClassSR has more parameters to be updated due to the higher number of pa-
rameters, thus incurring additional computational and parameter storage over-
heads. After the training, ARM needs to use the validation set of DIV2K (index
801-900) for inference to construct the Edge-to-PSNR lookup tables T , this step
will incur additional inference overhead and CPT function storage parameters
storage overhead. Luckily, since only forward and not backward gradient up-
dates are required, this step is quick, taking only a few minutes, and it can be
done offline only once. Actually, the Edge-to-PSNR lookup tables T take only
M×K parameters, where M is the number of subnets of different widths and K
is the number of subintervals (see Sec. 3.2). In this paper, we take K = 30. Thus
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Table 2. The comparison of various methods and our ARM on Test4K and Test8K.

Model Params Test4K FLOPs Test8K FLOPs

FSRCNN [6] 25K (100%) 26.90 (+0.00) 468M (100%) 32.66 (+0.00) 468M (100%)
ClassSR [15] 113K (452%) 26.91 (+0.01) 286M (61%) 32.73 (+0.07) 238M (51%)

ARM-L
25K (100%)

26.93 (+0.03) 341M (73%) 32.75 (+0.09) 290M (62%)
ARM-M 26.90 (+0.00) 282M (60%) 32.73 (+0.07) 249M (53%)
ARM-S 26.87 (-0.03) 230M (50%) 32.66 (+0.00) 187M (40%)

CARN [2] 295K (100%) 27.34 (+0.00) 1.15G (100%) 33.18 (+0.00) 1.15G (100%)
ClassSR [15] 645K (219%) 27.42 (+0.08) 742M (64%) 33.24 (+0.06) 608M (53%)

ARM-L
295K (100%)

27.45 (+0.11) 825M (70%) 33.31 (+0.13) 784M (66%)
ARM-M 27.42 (+0.08) 743M (64%) 32.27 (+0.09) 612M (53%)
ARM-S 27.34 (+0.00) 593M (50%) 33.18 (+0.00) 489M (42%)

SRResNet [16] 1.5M (100%) 27.65 (+0.00) 5.20G (100%) 33.50 (+0.00) 5.20G (100%)
ClassSR [15] 3.1M (207%) 27.66 (+0.01) 3.30G (63%) 33.50 (+0.00) 2.70G (52%)

ARM-L
1.5M (100%)

27.66 (+0.01) 3.41G (66%) 33.52 (+0.02) 3.24G (62%)
ARM-M 27.65 (+0.00) 3.24G (62%) 33.50 (+0.00) 2.47G (48%)
ARM-S 27.63 (-0.02) 2.77G (53%) 33.46 (-0.04) 1.83G (35%)

for M = 3 subnets, only 90 additional parameters are needed, which is almost
negligible compared to the large amount of parameters in the original network.

In the inference, the input patch needs to be edge detected. The FLOPs
for edge detection are about 0.02M, which is also almost negligible compared
to 468M FLOPs for FSRCNN, 1.15G FLOPs for CARN and 5.20G FLOPs for
SRResNet. Thus, our inference is very efficient.

4.4 Ablation Study

Edge-to-PSNR Lookup Tables. To verify the effectiveness of subnet selection
via the Edge-to-PSNR lookup tables, we compared the computation-performance
tradeoff of different strategies on the same pre-trained ARM-FSRCNN supernet:
using the Edge-to-PSNR lookup tables, manually setting the edge score thresh-
old, and using each size of subnet. For an ARM network with one interpolation
branch and three different sizes networks, each patch has four choices and needs
to be classified into four categories according to the edge score during infer-
ence. There are many optional strategies to divide the patches. For simplicity,
we apply the most intuitive one by calculating the edge scores of all patches on
the validation set of DIV2K and sorting them to obtain thresholds that allow
the validation set to be averaged into four categories. The thresholds are then
used in the test set. We also test the performance of different width subnets of
the ARM supernet. As illustrated in Fig. 7 Left, the subnet selection with the
Edge-to-PSNR lookup tables outperforms both the manual setting of thresholds
(▲ in Fig. 7 Left) and the three separate subnets (♦ in Fig. 7 Left). The results
ensure that using the Edge-to-PSNR lookup tables is indeed more effective in
selecting subnets according to the specificity of the patch.
Edge Detection Operators. Recall that in Sec. 3.3, ARM use the edge detec-
tion operator to obtain the edge score of patches, and ARM uses the laplacian as
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Fig. 6. Quantitative comparison of ARM networks with backbone networks, and SOTA
dynamic SISR method [15] with ×4 super-resolution. These two examples are image
“1294”(above) from Test2K and image “1321”(below) from Test4K, respectively. ARM
produce a higher PSNR compared to backbone networks and SOTA methods.

the edge detection operator by default. Here, we conduct ablation experiments
on the types of edge detection operators. Specifically, besides the default lapla-
cian operator, we also tried the Sobel and Prewitt operators. The results are
shown as Fig. 7. Different operators achieve good FLOPs-PSNR tradeoff, and it
indicates that our ARM is robust to different edge detection operators.

The Number of Subnets. As shown in Fig. 7 Middle, a larger number of
subnets results in a better tradeoff, especially under lower computation resources.
Hence, setting the number of subnets to 3 is not optimal. However, for a fair
comparison with ClassSR, we still set the number of subnets to 3.

Subnet Sampling. As we point out in Sec. 3.2, uniform sampling can lead to
performance degradation. In the main experiment, the sampling probabilities of
different sized subnets are set to be proportional to the n-th power of subnet

FLOPs, which can be denoted as FLOPsn: pj = (
FLOPs(NW [0:αj ])

n)∑M
k=1 FLOPs(N

W [0:αk]
)n)

, where

M is the number of subnets of different widths. The sampling probabilities of dif-
ferent sized subnets of ARM are set to FLOPs2 by default. We experiment with
different sampling ratios such as FLOPs0, a.k.a. uniform sampling, FLOPs1,
FLOPs2 and so on. The results are shown in Fig. 7 Right. When using uniform
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Fig. 7. Left: Effectiveness of lookup tables and several edge detection operators.
Middle: Different numbers of subnets. Right: Various subnet sampling ratios.

sampling, the smaller networks are entitled with enough chances to be selected
for training. Then the performance under smaller FLOPs will be better, but the
performance at larger FLOPs is degraded. As the sampling probability of large
subnets gradually increases, e.g., FLOPs1, FLOPs2 and FLOPs3 in Fig. 7Right,
the performance at large FLOPs gradually improves. On the contrary, the perfor-
mance at small FLOPs gradually decreases. In our experiments, we focus more
on the performance of the ARM at larger FLOPs. As shown in Fig. 7 Right,
FLOPs3 has limited performance improvement over FLOPs2 on large FLOPs,
but much lower performance on small FLOPs. Thus, in this paper, we set the
sampling probability of the subnets to FLOPs2 by default.

5 Conclusion

In this paper, we introduce an ARM supernet method towards any-time super-
resolution. Several weight-shared subnets are trained separately to deal with
images patches of different complexities for saving computation cost. We ob-
serve that the edge information can be an effective option to estimate the PSNR
performance of an image patch. Subsequently, we build an Edge-to-PSNR lookup
table for each subnet to pursue a fast performance estimation. On the basis of
lookup tables, we further propose a computation-performance tradeoff function
to pick up a subnet for constructing a HR version of the given LR image patch.
This leads to a supreme performance of our ARM in SISR task, as well as sig-
nificant reduction on computation cost.
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Appendix

6 More Ablation Studies

6.1 Effect of η in Eq. (5)

Recall that in Eq. (5), η is a manually set hyper-parameter used to balance
the numerical difference between the calculated cost and the PSNR estimate
in the inference stage. A larger η leads to a preference to the subnet with a
larger estimated PSNR p̄j

k̂
. To better illustrate the process of subnet selection in

Eq. (5), we plot the Edge-to-PSNR lookup tables of different subnets as well as
the interpolation branch (denoted as NW [0:0]) using different η in Fig. 8.

Fig. 8. The impact of η in Eq. (5). The background color indicates the selected subnet
or interpolation branch according to the edge score.

As shown in Fig. 8 (a), when the available computation is close to zero,
we take a small value for η and then ARM automatically selects the branch
with the highest PSNR, i.e., interpolation branch (green background), for all
edge score patches to satisfy the computational constraint. When there are more
calculations available, we can set η to a larger value (such as Fig. 8 (b)(c)). In
Fig. 8 (b), for example, when the edge score of the patches is small (e.g., edge
score < 10), ARM will select the interpolation branch (green background) for
these patches; when the edge score is moderate (e.g., edge score ∈ (10, 180)),
ARM will select subnet1 (blue background) for these patches; For larger edge
scores, subnet2 (yellow background) will be selected. Finally, we set η to a large
value when there are many computation resources available. In this case, ARM
selects the largest subnet3 to super-resolution almost all patches. It is worth
noting that for very “easy” patches, ARM still chooses interpolation rather than
always selecting the subnets, since for these patches, interpolation outperforms
all sizes of subnets.

We use some images from Test2K as examples to illustrate how ARM auto-
matically adjusts the calculation based on the same pre-trained ARM supernet
with different η settings at inference time. The results are shown in Fig. 10. As
the η increases, more and more patches are selected to use a larger subnet for
super-resolution, thus gradually improving the PSNR. It can also be seen that
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in Fig 10, the ARM achieves better performance with fewer FLOPs than the
backbone network and the previous SOTA dynamic SISR method [15].

6.2 Effect of K subintervals
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Fig. 9. Effect of different values of K.

Our Edge-to-PSNR Lookup Tables
are constructed by splitting the edge
score interval into a total of K subin-
tervals and then averaging over all
PSNR values within each interval as
the estimated PSNR. Fig. 9 analyzes
the impact of K. For a small value
of K, the estimated PSNR is loosely
scattered, which causes an inaccu-
rate PSNR estimation. Increasing the
value of K leads to a more well-fitted
edge-psnr mapping. Though a larger
K may result in a better estimation,
more parameters from the lookup ta-
bles are introduced. In our experi-
ment, we set K = 30 across all the
experiments for a better tradeoff and
observe high-performing results as well.

Table 3. The results of latency (Lat.) of Test2K with FSRCNN as the backbone. The
latency is the average of five trials.

Model FSRCNN ClassSR ARM-L ARM-M ARM-S

FLOPs/M 468 (100%) 311 (66%) 366 (78%) 289 (62%) 245 (52%)
Lat./ms 542.25 549.48 540.55 531.36 518.96

7 The inference speed

We measure the average inference time per image on Test2K dataset on a single
core of Intel Xeon Platinum 8255C CPU. The results are listed in Table 3. Due to
limited rebuttal time, no further speed optimization was conducted for hardware,
so the actual speedup ratio was somewhat different from the theoretical speedup
ratio. Despite, ARM still has some speed advantage over backbone and ClassSR.
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Test2K 1226 Test2K 1257

ARM-FSRCNN: 30.33dB / 102MB (22%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.19dB / 228MB (49%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

ARM-FSRCNN: 30.33dB / 107MB (23%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.20dB / 237MB (51%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

ARM-FSRCNN: 30.35dB / 127MB (27%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.21dB / 264MB (56%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

ARM-FSRCNN: 30.35dB / 132MB (28%) 
ClassSR-FSRCNN: 30.29dB / 221MB (47%)
FSRCNN: 30.29dB / 468M (100%)

ARM-FSRCNN: 24.22dB / 264MB (62%) 
ClassSR-FSRCNN: 24.18dB / 319MB (68%)
FSRCNN: 24.18dB / 468M (100%)

Fig. 10. Examples of super-resolution visualization of ARM-FSRCNN with different
η. The green, blue, yellow and red masks on the patch indicate that ARM uses inter-
polation, subnet1, subnet2 and subnet3 for super-resolution of the patch, respectively.
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