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Abstract. Self-supervised learning (SSL) opens up huge opportunities
for medical image analysis that is well known for its lack of annotations.
However, aggregating massive (unlabeled) 3D medical images like com-
puterized tomography (CT) remains challenging due to its high imag-
ing cost and privacy restrictions. In this paper, we advocate bringing
a wealth of 2D images like chest X-rays as compensation for the lack
of 3D data, aiming to build a universal medical self-supervised repre-
sentation learning framework, called UniMiSS. The following problem
is how to break the dimensionality barrier, i.e., making it possible to
perform SSL with both 2D and 3D images? To achieve this, we de-
sign a pyramid U-like medical Transformer (MiT). It is composed of
the switchable patch embedding (SPE) module and Transformers. The
SPE module adaptively switches to either 2D or 3D patch embedding,
depending on the input dimension. The embedded patches are converted
into a sequence regardless of their original dimensions. The Transform-
ers model the long-term dependencies in a sequence-to-sequence man-
ner, thus enabling UniMiSS to learn representations from both 2D and
3D images. With the MiT as the backbone, we perform the UniMiSS
in a self-distillation manner. We conduct expensive experiments on six
3D/2D medical image analysis tasks, including segmentation and classi-
fication. The results show that the proposed UniMiSS achieves promising
performance on various downstream tasks, outperforming the ImageNet
pre-training and other advanced SSL counterparts substantially. Code is
available at https://github.com/YtongXie/UniMiSS-code.

Keywords: Self-supervised Learning; Cross-dimension; Medical Image
Analysis; Transformer

1 Introduction

Medical image analysis, a key process in computer-aided diagnosis, is well known
by its lack of labels for training, especially for the 3D task. Recent research
work suggests that the self-supervised learning (SSL) is promising to ease the
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Fig. 1. (a) Pure 3D medical SSL learns representations with only 3D CT scans; (b)
our proposed UniMiSS brings a wealth of 2D X-rays to offset the lack of 3D data, thus
enables the large-scale SSL for better pre-training performance. Besides, the pre-trained
model is generic to various downstream (DS) applications, without the restriction on
the dimensionality barrier.

annotation cost by making the best of unlabeled data [8,9,40,41,47,55,57,58].
Although setting label free, SSL still heavily relies on the large-scale unlabeled
data to explore the feature representations. Unfortunately, publicly available 3D
medical data is relatively limited due to the high imaging cost and data privacy.
Most of 3D medical datasets just contain a few thousands of cases. For example,
Zhou et al . [55] utilized the LUNA dataset [38], containing about 1000 CT cases,
for self-supervised pre-training. Such a small data scale may limit the potential
of SSL in 3D medical image analysis.

In comparison to 3D data, it is easy to collect hundreds of thousands of
2D medical images such as X-rays due to its fast imaging speed, low radiation
and low cost. Accordingly, we advocate to bring a wealth of 2D medical images
to the 3D SSL process, aiming at learning strong representations with large-
scale images, as shown in Fig. 1. Comparing to the pure 3D medical SSL, this
practice benefits the medical SSL in terms of three significant merits. First, 2D
data serves as a compensation for the lack of 3D data, enabling the large-scale
SSL pre-training. Second, there is the anatomy correlation between 2D and 3D
images, like chest X-ray and CT. Such an intrinsic relevance may contribute for
strong associated representations. Third, the pre-trained model is generic enough
to be applied to both 3D and 2D downstream tasks. To achieve the universal SSL
purpose, on the technical side, we need to build a versatile model that is able to
process both 2D and 3D images. The common practice in medical image analysis
is to design 2D convolutional neural networks (CNNs) for 2D images [49,51,55]
and 3D CNNs for 3D images [47,48,52,55,57], respectively. Restricted to the
dimensionality barrier, it is almost impossible to design a dimension-free CNN
network for this purpose.

Recent months have witnessed the success of Transformer in computer vi-
sion [15]. A vision Transformer usually takes a sequence of image patches, rep-
resented by the learned linear embedding, as the input to model the long-term
dependencies among the sequence elements. Owing to the sequence modeling,
Transformer can accept the data of any dimensions, including but not limited to
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2D images and 3D volumetric data. Therefore, Transformer offers the possibility
of breaking the dimensionality barrier and constructing a universal SSL model.

In this paper, we propose a Universal Medical Self-Supervised represen-
tation learning framework (UniMiSS) that learns general representations from
2D and 3D unlabeled medical images. To achieve this, we design a dimension-
free pyramid U-like Medical Transformer (MiT), which is mainly composed of
switchable patch embedding (SPE) module and Transformers. The SPE module
converts the input images to a sequence by using 2D or 3D patch embedding, de-
pending on the input dimension. The Transformer layer processes the embedded
tokens in a sequence-to-sequence manner, regardless of their original dimension.
We perform the self-supervised learning by the self-distillation of student and
teacher networks, both of which take the MiT as the backbone. The student
network learns to predict the output distribution obtained with the momentum
teacher network, following the view consistency. Moreover, the 3D volumetric
image should be identical with their slices due to the same imaging content. The
volume-slice consistency is adopted as a cross-dimension regularization to boost
the representations. We conduct the SSL experiments based on 5,022 3D CT vol-
umes, which are augmented by 108,948 2D X-ray images. Benefit from the huge
augmented 2D data, the proposed UniMiSS achieves the obvious performance
improvement on the downstream 3D classification/segmentation tasks. Besides,
the UniMiSS pre-trained model can be freely applied to 2D downstream tasks,
which beats strong competitors like ImageNet pre-training on the downstream
2D medical tasks.

To summarise, our contributions are three-fold: (1) we are the first to aug-
ment 3D medical images with the easily accessible unpaired 2D ones for the SSL
purpose, aiming at addressing the limitation of 3D data amounts during the SSL
process; (2) the proposed MiT breaks the dimensionality barrier and enables the
joint SSL training with both 2D and 3D images; and (3) our UniMiSS pre-
training achieves the advanced performance on six downstream tasks, covering
the 3D/2D medical image classification/segmentation.

2 Related Work

2.1 Self-supervised Learning

SSL has been extensively studied in the literature. According to the pretext
tasks, these studies can be broadly categorized into the discriminative meth-
ods [6,11,17,19,21,28,33,34,35,42] and generative methods [26,27,36,37,53]. The
contrastive learning [11,17,19,21,33,35,42] has drawn significant research atten-
tion and achieved advanced performance on many vision tasks. Most of the pre-
vious work were built on the CNN-based network. More recently, Transformer
has become an increasingly popular alternative architecture in computer vi-
sion. There has been a trend towards combining the merits of Transformer and
SSL, advancing the self-supervised vision Transformers. The seminal work is
iGPT [10], which follows the masked auto-regressive language modelling to pre-
train the self-supervised vision Transformer. Besides, some attempts have also
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been made to pre-train vision Transformers using the contrastive learning [7]
or Siamese distillation [13], which outperform the CNN-based SSL approaches,
setting a new record on ImageNet.

The success of SSL in computer vision also benefits to the medical com-
munity [8,9,40,41,47,55,57,58]. Typical attempts include pre-training a CNN by
restoring the content of raw images [9,41,55,57,58] and tailoring contrastive SSL
to medical images [8,40,41,47]. These efforts constitute an important and timely
step forward towards better SSL approaches to medical image analysis. How-
ever, they suffer two limitations. First, the CNN architecture enables the pre-
training on either 2D or 3D medical images, failing to process both of them
simultaneously. The resulting representations would be trapped especially for
the limited 3D data. Consequently, the pre-trained CNN can only be transferred
to the dimension-specific downstream task. Second, the above SSL approaches
capture the spatial context of 3D medical images from either slices [8] or vol-
ume [41,57,58]. Few of them consider the inherent consistency relation between
volume and its slices.

2.2 Cross-Domain Training for Medical Imaging

In the medical context, the cross-domain training usually jointly utilizes two
or more datasets acquired at different sites [24,30] or using different imaging
modalities [16,29,54] to train a single model that could perform well on diverse
datasets. Karani et al. [24] and Liu et al. [30] trained a single CNN with shared
convolutional layers and specific batch normalization layers using the MRI data
acquired at each site individually, aiming to tackle the statistical divergence ex-
plicitly. Zhang et al. [54] simultaneously learned a volume-to-volume translation
using the unpaired CT and MRI data and strong segmentors using synthetic
data, which were translated from another modality. Dou et al. [16] derived a
variant of knowledge distillation (KD) to leverage the shared across-modality
information between CT and MRI for accurate segmentation of anatomical struc-
tures. Li et al. [29] also introduced KD to the cross-modality analysis of CT and
MRI data, but they simultaneously exploited abundant unlabeled data. These
studies are dedicated to analyzing multi-modal/site but fixed dimension (3D)
medical images, failing to address the dimensionality barrier in our scenario.

3 Methods

3.1 Overview

UniMiSS is a universal medical SSL framework that is superior to learn gen-
eral image representations with large scale mixed 2D and 3D unlabeled medical
images. Figure 2 illustrates the pipeline of UniMiSS. Let us denote the mixed
2D and 3D data pool by {D2D,D3D}. To enable UniMiSS to process both 2D
and 3D medical images, we build the MiT as its backbone, which is mainly
constituted by the dimension-adaptive SPE module and Transformer layers. We
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Fig. 2. Illustration of the proposed UniMiSS framework. It has a dual path architec-
ture, i.e., a student and a teacher. Taking both 2D X-rays and 3D CTs as input,
UniMiSS is trained by the self-distillation strategy, i.e., maximizing the agreement of
both paths. To break the dimensionality barrier between X-rays and CTs, the MiT net-
work, composed of the switchable patch embedding (SPE) module and Transformers,
processes the 3D/2D data in a sequence-to-sequence manner.

perform the SSL process in the self-distillation manner, and utilize a standard
cross-entropy loss to maximize the consistency between the student and teacher
outputs. Besides, to get the utmost out of 3D volumetric information, we in-
troduce the volume-slice consistency constraint, which encourages UniMiSS to
model the consistency cross dimensions. It is intuitively conducive to learning
strong feature representations from the volumetric images. We now delve into
the details of this framework.

3.2 MiT: A Dimension-free Architecture

Although achieving great success in computer vision, vision Transformer [15]
still remains challenging to process high resolution 3D images, due to the high
computation cost and memory requirement. Inspired by [45], we design the MiT
with a pyramid architecture to process both 2D and 3D images efficiently. To
break the dimensionality barrier, we propose a simple yet efficient SPE module
to adaptively choose the 2D or 3D patch embedding according to the input type.
MiT has an encoder-decoder architecture that facilitates the various applications,
including segmentation and classification. We now describe each part of MiT,
and more details can be found in Appendix.
SPE. As shown in Figure 2, the SPE module plays an important role to obtain
the dimension-specific embedding, i.e., using 2D patch embedding operation for
2D inputs and using 3D patch embedding operation for 3D inputs . Notice that
the implementations of SPE in the encoder and decoder are different. The SPE
in the encoder refers to a switchable 2D and 3D convolution block with the stride
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of 2, which reduces the feature resolution. In contrast, the SPE in the decoder is
a switchable 2D and 3D transpose convolution block, which increases the feature
resolution.
Encoder-Decoder. The MiT encoder follows a progressive shrinking pyramid
Transformer, as done in [45]. It consists explicitly of four stages, each of which
is composed of a SPE module and several stacked Transformers. In each stage,
the SPE module down-samples the input features and generates the dimension-
specific embedded sequence. Notably, we append an extra learnable SSL to-
ken [7,13] to the patch embedded sequence. The SSL token is similar to the
[CLS] token in ViT, which is able to aggregate information from the whole patch
embedding tokens via the self-attention. The resultant sequences, combined with
the learnable positional embedding, are inputted into the following Transform-
ers for the long-term dependency modeling. Each Transformer layer includes a
self-attention module and a feed-forward network (FFN) with two hidden layers.
To enable MiT to process high-resolution images, we follow the spatial-reduction
attention (SRA) layer [45]. Given a query q, a key k, and a value v as the input,
SRA first reduces the spatial resolution of k and v, and then feeds q, reduced
k, and reduced v to a multi-head self-attention (MSA) layer to produce refined
features. This process can be formally expressed as follows

SRA(q,k,v) = MSA(q, F (σ(R(k))), F (σ(R(v)))), (1)

where σ(·) represents a linear projection, i.e., strided 2D or 3D convolution oper-
ation, that reduces the feature map resolution, R(·) reshapes the input sequence
to a feature map of the original spatial size, and F (·) flattens the input into
a 1D sequence. MiT has a symmetric decoder structure that consists of three
stages. In each stage, the input feature map is first up-sampled by the SPE mod-
ule, and then refined by the stacked Transformer layers. Besides, we also add
skip connections between the encoder and decoder to keep more low-level but
high-resolution information.

3.3 Objective of UniMiSS

The proposed UniMiSS framework is based on the student-teacher paradigm.
Each path comprises a MiT network Fθ(·) and a projector Pθ(·). Pθ(·) is a
n-layer multi-layer perceptron (MLP) head, θ represents the parameter set of
this path. The SPE layers switch to perform the 2D patch embedding or 3D
patch embedding during the feed-forward computing that is denoted as Fθ(·; 2D)
and Fθ(·; 3D), respectively. During the SSL process, we only extract the SSL
token from the output of Fθ(·; 2D/3D) as the input of the projector. Since
the Transformer sets the dimension free, our UniMiSS is able to learn image
representations from both 2D and 3D unlabeled medical images.

Both of paths share an identical architecture. However, they differ in the
following two items. First, the teacher network is formulated as a momentum
version of the student network, which updated by an exponential moving average
strategy, defined as

µ← λµ+ (1− λ)θ, (2)
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where λ increases from 0.996 to 1 using a cosine schedule during training [7].
Second, a stop-gradient operator is performed to the teacher network to avoid
model collapse.
Objective for 2D domain data. Taking a mini-batch of 2D data x for exam-
ple, we first create two augmented views x1 and x2 by using the data augmen-
tation module T , and then feed them into the student and teacher networks.
The obtained SSL token is inputted into the projector to produce the output
vector, denoted as f1 = Pθ(Fθ(x1; 2D)), f2 = Pµ(Fµ(x2; 2D)). The objective
of UniMiSS is to maximize the consistency between the output vectors obtained
with student and teacher networks, formulated by

H(f1,f2) = −softmax(
f2 − C

τt
) ∗ log(softmax(

f1

τs
)), (3)

where C is the centering of teacher outputs, τt and τs are sharpening temperature
parameters for student and teacher network. The centering operation heartens
the model to the uniform distribution while the sharpening has the opposite
effect, i.e., encouraging one dimension to dominate. Both of them are jointly
used together to avoid model collapse [7]. Specifically, the temperature τt is set
to a small value in the teacher path for the sharpening purpose. The center
C is first computed via averaging the teacher’s outputs of the min-batch data
and then updated with an exponential moving average strategy to aggregate the
center across the whole batches, shown as follows

C ← ω ∗ C + (1− ω) ∗ f̂2 (4)

where ω is a rate parameter, and f̂2 refers to the mean of teacher output in a
mini-batch. We define a symmetrized loss for 2D images as:

L2D = Ex∼D2D [H(f1,f2) +H(f2,f1)] (5)

Objective for 3D domain data. In medical domain, 3D volumes can be
viewed as the stacking of 2D images along with the inter-slice dimension. The
volume data has the inherent consistency to their slices, which inspires us to
model the volume-slice consistency for SSL. Given a 3D data x sampled from
the 3D medical dataset, we denote its two augmented views as x1 and x2, each
containing m 2D slices. We compute the global volumetric representations by
the student and teacher networks in a 3D mode, i.e., f1 = Pθ(Fθ(x1; 3D)),
and f2 = Pµ(Fµ(x2; 3D)). Meanwhile, we stack m slices of each augmented
view in a batch, and use them as 2D inputs to calculate the slice-wise rep-
resentations in a 2D mode, and then treat the average outputs of all slices
as the holistic slice representations, i.e., f ′

1 = 1
m

∑m
i=1 Pθ(Fθ([x1]

i; 2D)), and
f ′
2 = 1

m

∑m
i=1 Pµ(Fµ([x2]

i; 2D)), where [x]i represents the i-th slice extracted
from the 3D data x. After that, we build the following objective function

L3D = Ex∼D3D [H(f1,f2) +H(f1,f
′
2) +H(f ′

1,f2) +H(f ′
1,f

′
2)

+H(f2,f1) +H(f2,f
′
1) +H(f ′

2,f1) +H(f ′
2,f

′
1)]

(6)
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Fig. 3. Illustration of 2D-and-3D alternation training.

The above objective function encourages to learn the refined consistency with
3D medical data in terms of three aspects, i.e., volume to volume, slice to slice,
and volume to slice.

We introduce an alternative training scheme to solve this multi-objective
optimization problem. As shown in Figure 3, we first sample 2D images to train
the UniMiSS from step 0 to step υ, and then take turn to sample 3D volumes
in the next υ steps. The following training process will continue in a circular
manner until the model converges. The proposed iterative training scheme has
two merits: (1) it bypasses the difficulty of using both 2D and 3D images in
the same batch; and (2) it can reduce the instability caused by the distribution
discrepancy between 2D and 3D data.

4 Experiments

4.1 Datasets

Pre-training datasets. We collected 5,022 3D CT scans from five datasets
(i.e. MOTS dataset [52], LIDC-IDRI dataset [5], Tianchi dataset [2], RibFrac
dataset [23], TCIACT dataset [4]), and collected 108,948 2D images from NIH
ChestX-ray8 dataset [46] to train UniMiSS in a self-supervised manner.
Downstream datasets. Table 1 gives the details of six downstream tasks,
which can be grouped into (1) 3D downstream: CT-based segmentation (BCV)
and classification (RICORD), MRI-based segmentation (CHAOS); (2) 2D down-
stream: multi-organ segmentation (JSRT) and pneumonia classification (ChestXR),
and skin lesion segmentation (ISIC). Note that the CHAOS and ISIC datasets
are different from the pre-training data in terms of modalities (i.e., 3D CT vs.
MRI, 2D X-ray vs. dermoscopy). They are used to evaluate the unseen-modality
transferability.

4.2 Experimental Details

Pre-training setup. We set the size of input 2D patches to 224× 224 and 3D
patches to 16× 96× 96, aiming to weigh the balance between reserving enough
information for SSL and reducing computational and spatial complexity to an
affordable level. We applied a rich set of data augmentations to create positive
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Table 1. Six datasets for the downstream evaluation. Noticed that we used two test
sets, i.e. offline test set (off) and online test set (on), for the BCV dataset.

Downstream evaluation datasets

Name Tasks Modalities #Train #Test

BCV [1] Multi-organ segmentation
3D CT

24 6 (off)+20 (on)
RICORD [43] COVID-19 screening 182 45

CHAOS [25] Abdominal organ segmentation 3D MRI 48 12

JSRT [39,44] Multi-organ segmentation
2D X-ray

124 123
ChestXR [3] Pneumonia classification 17,955 3,430

ISIC [14] Skin lesion segmentation 2D dermoscopy 2000 600

views, including colour jittering, Gaussian blur/noise, random crop, zooming,
and flip to the inputs for producing two views. Following [7], we adopted the
AdamW optimizer [32] with a cosine decaying learning rate [31], a warm-up
period of 10 epochs, to train our UniMiSS. We empirically set the initial learning
rate to 0.0008, batch size to 192, maximum epochs to 200, rate parameter ω to
0.9, and temperature parameter τt and τs to 0.04 and 0.1, respectively. It took
about 2.5 days to pre-train the UniMiSS using 8 NVIDIA V100 GPUs. We
understand this is a big GPU consumption but it saves large amount of time
and money to collect 3D medical image data, as we use easily-collected 2D data
as the fuel.
Downstream training setup. For the classification, we extracted the pre-
trained MiT encoder and appended a FC layer with the output channel as the
number of classes for prediction. For the segmentation, we took the pre-trained
MiT encoder and decoder while removing the SSL token, and appended a seg-
mentation head for prediction. This head includes a transposed convolutional
layer, a Conv-IN-LeakyReLU, and a convolutional layer with the kernel size of
1 and the output channel as the number of classes. The segmentation perfor-
mance is measured by the Dice coefficient scores. The classification performance
is measured by the area under the receiver operator curve (AUC). Note that
we randomly split 25% training samples as a validation set to select the hyper-
parameters of UniMiSS in the ablation study. The detailed training setups for
each downstream task are shown in Appendix.

4.3 Results on 3D downstream tasks

Dimension-specific SSL vs. Cross-dimension SSL. In this section, we eval-
uate the SSL performance on two downstream 3D taks, i.e., multi-organ segmen-
tation (BCV) and COVID-19 screening (RICORD). The UniMiSS pre-training
is compared with the random initialization (Rand. init.) and five advanced SSL
methods, including MoCo v2/v3 [12,13], PGL [47], PCRL [55], and DINO [7].
Note that MoCo v2, PGL, and PCRL take the CNN as their encoder backbone,
i.e., a 3D ResNet with 50 learnable layers. During the SSL process, MoCo v2
and PGL only pre-train the encoder part, while PCRL additionally pre-trains
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Table 2. Segmentation and classification performance of using different pre-training
strategies on the BCV offline test set and RICORD test set.

Methods Backbone
BCV (CT, seg) RICORD (CT, cls)

20% 40% 100% 20% 40% 100%

Rand. init.

CNN

68.44 73.14 79.93 69.72 74.66 83.36
MoCo v2 [12] 71.22 75.09 82.05 73.46 77.81 85.46
PGL [47] 72.05 75.86 82.57 73.76 77.96 85.61
PCRL [55] 72.80 76.05 82.73 75.11 79.01 86.21

Rand. init.

Transformer

70.09 74.60 79.97 71.36 76.06 83.21
MoCo v3 [13] 74.54 78.16 82.02 75.56 79.66 85.16
DINO [7] 75.33 78.88 82.61 76.31 80.11 85.91

UniMiSS (Ours) 77.96 80.97 84.99 78.71 82.96 89.06

a decoder by using the reconstruction task. Besides, MoCo v3, DINO, and our
UniMiSS use the Transformer model as the backbone, which contains both en-
coder and decoder. We employ the U-like PVT as the backbone for MoCo v3 and
DINO, which has a similar architecture of MiT but the different patch embed-
ding module. The lack of SPE make them fail to process both 2D and 3D images
simultaneously, resulting in the dimension-specific SSL with only 3D data. For
a fair comparison, all of these SSL methods are pre-trained on the 5,022 unla-
beled 3D CT scans. Somewhat differently, the proposed UniMiSS introduces the
additional 2D X-rays to the 3D SSL training, benefiting from the universality.
We make more detailed comparisons between the proposed UniMiSS and other
dimension-specific CNN/Transformer SSL methods. Table 2 shows the results
of three label settings (20%,40%, and 100% label available). We summarize this
table in the following points: (1) The Transformer-based models outperform ob-
viously the CNN-based methods, mainly owing to the SSL pre-training. It reflects
that the Transformer is a competitive architecture and the SSL pre-training is
essential for the Transformer to achieve good performance. (2) The proposed
UniMiSS is superior to MoCo v3 and DINO. The performance gains over DINO
are +2.38% for segmentation and +3.15% for classification when 100% labels
are available. It proves the effectiveness of using a wealth of 2D medical images
to assist the 3D SSL process. (3) Besides, it is really encouraging to see that the
proposed UniMiSS is able to achieve the comparable or even superior perfor-
mance while less annotations, even a half. Taking BCV for example, UniMiSS
with 40% label achieves 80.97% segmentation Dice, which is better than the
79.97% of the random initialized method with 100% labels.

Comparisons on the BCV online test set. To be more persuasive, we also
compared the proposed UniMiSS with other state-of-the-art segmentation meth-
ods on the BCV online test set. As listed in Table 3, these compared methods
include PaNN [56], UNETR [18], nnUnet [22] and DoDnet [52]. Note that the
performance records of these competitors come from their original paper. It re-
veals that our UniMiSS, without using any ensemble strategy, still achieves the
competitive performance, the best Hausdorff distance (HD) and average mean
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Table 3. Comparisons on the BCV online test set.

Metrics PaNN [56] UNETR [18] nnUnet [22] DoDnet [52] UniMiSS UniMiSS

Ensemble 5 5 10 5 1 10

Dice 85.00 85.55 87.62 86.44 87.05 88.11

HD 18.47 \ \ 15.62 13.92 13.17

SD 1.45 \ \ 1.17 1.02 0.90

Table 4. Segmentation and classification performance of using different pre-training
strategies on two 2D test sets.

Methods Backbone
JSRT (X-ray, seg) ChestXR (X-ray, cls)

20% 40% 100% 20% 40% 100%

Rand. init.

CNN

84.05 87.63 90.96 92.05 94.83 97.54
INpre [20] 87.90 90.01 91.73 94.78 96.26 98.13

MoCo v2 [12] 88.65 91.03 92.32 95.22 96.61 98.67
PGL [47] 89.01 91.39 92.76 95.56 96.96 98.87
PCRL [55] 89.55 91.53 93.07 95.88 97.43 98.99

Rand. init.

Transformer

85.55 88.83 91.22 92.80 95.20 97.04
MoCo v3 [13] 90.07 91.75 92.68 95.99 97.33 98.59
DINO [7] 90.40 92.16 93.03 96.44 97.69 98.70
UniMiSS 91.88 93.15 94.08 97.09 98.14 99.07

surface distance (SD), and second highest Dice on the online test set, outper-
forming the DoDNet with supervised pre-training. When using the coarse-to-fine
ensemble strategy like [22], our UniMiSS can obtain the best performance in
terms of all metrics.

Results on 2D downstream tasks. Since pre-training on both 2D and 3D
medical images, our UniMiSS can be freely applied to 2D downstream tasks.
Table 4 makes the comparisons on the 2D medical image segmentation and
classification tasks. The compared methods include the Rand. init., ImageNet
pre-training (INpre), CNN-based SSL methods (i.e. MoCo v2, PGL and PCRL),
and Transformer-based SSL methods (i.e. MoCo v3 and DINO). Different from
the 3D scenarios, a 2D ResNet-50 is used as the backbone in MoCo v2, PGL,
and PCRL. MoCo v3, and DINO still take the U-like PVT as the backbone,
but modify the patch embedding to adapt for the 2D inputs. Here, all compared
SSL methods are pre-trained on the same 2D unlabeled medical images. As for
UniMiSS, we directly apply the previous pre-trained model to the 2D tasks,
without any modification or further re-training. From the results, we can find
that (1) the SSL methods have surpassed INpre in both tasks, revealing that
pre-training on a large-scale medical image dataset is more friendly to medical
domain downstream tasks than pre-training on natural images; (2) although
the number of 3D data is much smaller than 2D, i.e., about one in twenty,
the UniMiSS pre-training still achieves the performance gain over the pure 2D
SSL method, like DINO. This may account in part for the inherent correlation
between X-rays and CTs. Such a correlation information can be captured by the
UniMiSS, thus contributed for the performance gain.
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Fig. 4. Results of MiT with fewer Transformer layers. Here, MiT-7 and MiT-22 denote
MiT with 7 and 22 Transformer layers, respectively. Rand. init., Dimension-
specific pre-training, UniMiSS. Note that the performance gain with yellow and
orange color is computed by comparing to the Rand. init., and dimension-specific pre-
training baseline, respectively.

Table 5. Segmentation and classification performance on two 3D validation sets with
or without using volume-slice consistency.

Objective for 3D BCV (seg) RICORD (cls)

Volume Slices 20% 40% 100% 20% 40% 100%

✓ 72.08 76.04 80.94 69.87 74.61 80.96

✓ ✓ 74.56 77.97 82.36 72.46 76.89 82.43

4.4 Discussions

Effectiveness of volume-slice consistency. We design the volume-slice con-
sistency mechanism for learning rich representations with 3D medical images.
To evaluate the effectiveness of this mechanism, we pre-trained UniMiSS on
3D medical images with or without using the volume-slice consistency. Table 5
gives the downstream performance on the validation of two 3D datasets. The
proposed volume-slice consistency can substantially improve the 3D segmenta-
tion/classification accuracy under different label ratios. The performance gain is
at least by 1.42% on segmentation and by 1.47% on classification.

Number of iteration interval. The UniMiSS is optimized in a 2D-3D alterna-
tion training way, where the iteration interval υ is a critical parameter. A smaller
υ may lead to insufficient training for each domain. A larger υ may make the
network forget the information learned from another domain. To set a suitable
υ, we pre-trained UniMiSS with various of υ, varying from 1 to 3, and fine-tuned
them on four downstream tasks. Table 6 shows that the pre-trained UniMiSS can
achieve the best performance on four downstream tasks when υ equals 2, and
below or above 2 gives rise to the performance loss. Hence, we suggest setting
the iteration interval to 2 during the cross-domain pre-training.

MiT with different Transformer scales. Transformer is the dominant com-
ponent in the MiT backbone. We investigate the effect of Transformer scales in
MiT. Specifically, we compare a MiT with 22 Transformer layers (MiT-22) and
another with seven layers (MiT-7). The segmentation and classification perfor-
mance is given in Figure 4, from which three conclusions can be drawn: (1) in-
creasing the Transformer layers boosts the performance of MiT in all downstream
tasks; (2) as MiT goes deeper, the performance gain of the dimension-specific pre-
training over the random initialization becomes smaller, while the performance
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Table 6. Segmentation and classification performance of our UniMiSS with different
iteration intervals on the validation sets.

Iteration interval BCV (3D seg) RICORD (3D cls) JSRT (2D seg) ChestXR (2D cls)

1 82.70 82.95 92.33 96.65

2 83.56 84.26 93.48 97.57

3 83.28 83.65 93.12 97.16

Table 7. Segmentation performance of using the random initialization and three pre-
training strategies on CHAOS dataset (unseen MRI scans) and ISIC dataset (unseen
dermoscopic images).

Methods
Downstream data

2D dermoscopic 3D MRI
20% 40% 100% 20% 40% 100%

Rand. init. 76.31 79.92 85.07 73.28 83.64 88.38

MoCo v3 78.66 81.46 86.04 78.42 87.22 89.83

DINO 79.11 81.89 86.21 79.16 87.79 90.52

UniMiSS 79.78 82.33 86.67 80.50 88.58 91.36

gain of our UniMiSS with cross-dimension pre-training is basically impregnable;
and (3) the superiority of our UniMiSS pre-training over the dimension-specific
pre-training is more evident with the increase of Transformer layers.

Transferability on unseen modality data. In the above experiments, the
pre-training and downstream tasks are all based on CT and X-ray images. To
evaluate the transferability of UniMiSS on unseen modalities, we further tested
the MoCo v3, DINO and our UniMiSS on the CHAOS dataset (MRI scans) and
ISIC dataset (dermoscopic images). The results in Table 7 show that UniMiSS
can consistently improve at least 2.98% on the CHAOS dataset, and 1.60% on
the ISIC dataset, compared to the random initialization. It demonstrates that
UniMiSS has a great potential in transferring learned knowledge to the unseen
modality. Besides, our UniMiSS also outperforms two popular Transformer-based
SSL methods on both CHAOS and ISIC datasets.

Necessity of SPE. Without the SPE module, a straightforward solution is to
flatten the pixels or patches and then use a linear layer for the embedding. Such a
crude flattening operation suffers the high computation complexity and memory
requirements, especially for 3D images. Accordingly, SPE is an indispensable
part of UniMiSS, which enables to (1) adaptively choose the patch embedding
according to the input type; and (2) lessen the length of the sequence to reduce
computation cost when the network goes deep.

Visualization of Segmentation Results. In Figure 5, we visualize the seg-
mentation results obtained by the segmentation network, which is initialized (1)
randomly, (2) by using the pre-trained MoCo v3 [13], (3) by using the pre-trained
DINO [7], or (4) by using our pre-trained UniMiSS. It shows that our UniMiSS
pre-training produces the higher-quality segmentation results, which are more
similar to the ground truth, than MoCo v3 and DINO pre-training. Compared
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Original images Rand. init. MOCO v3 DINO UniMiSS Ground Truth

BCV

CHAOS
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SKIN

BCV

CHAOS

JSTR

SKIN

Fig. 5. Visualization of segmentation results of 8 cases selected from four datasets. The
regions in red rectangles indicate our superiority. Our UniMiSS pre-training results in
more accurate results than random initialization and other two pre-training strategies.
Each type of organs and tumors in single dataset is denoted by a unique color.

to other competitors, UniMiSS pre-training is superior to process challenging
cases, like small objects or blurry boundaries.

5 Conclusion

We propose a simple yet effective UniMiSS framework, which introduces a wealth
of 2D medical images (i.e. X-rays) to the 3D SSL, aiming at making up for the
lack of 3D data (i.e. CT scans). To break the difficulty of dimensionality barrier,
we design the MiT as a bridge to connect different dimensions. In the future,
we will extend our UniMiSS to deal with more dimensions (e.g . clinic text or
genetic data).
Acknowledgement Jianpeng Zhang and Yong Xia were supported by National
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Appendix

A Overview

In this document, we provide more discussions and experimental details to sup-
plement the main submission. We first continue to discuss the necessity of switch-
able patch embedding (SPE) module (Section B). We then give more details
for the downstream tasks, including the implementation details and architec-
tures (Section C). Finally, we provide an intuitive explanation of the proposed
volume-slice consistency mechanism (Section D).

B Necessity of SPE (Cont.)

To further explain the necessity of the SPE module, we compared the pyramid
U-like medical Transformer (MiT) to two variants without a SPE module. For
the variant 1, we directly flatten the 2D/3D images to a sequence based on the
pixels/voxels level and then use a linear layer for the embedding. Such a crude
flattening operation suffers the very high computation complexity and memory
requirements, especially for 3D images. Thus, it is hard to perform the variant 1
for quantitative comparisons. For the variant 2, we perform a naive embedding
strategy to reduce the complexity. We first down-sample (for encoder)/up-sample
(for decoder) the 2D/3D images by using a parameter free interpolation, then
flatten them into a sequence based on the pixels/voxels level, and finally use a
linear layer for both 2D and 3D embedding. The results in Table 8 show that MiT
with the SPE module is significantly superior to the naive embedding strategy
(i.e. variant 2) whenever with or without using the pre-training. It suggests
that our SPE is better than the parameter-free interpolation and linear layer.
The reason may be that the strided convolution with a large kernel is able to
model the local continuity of 2D/3D images, which cannot be implemented by
the linear layer.

Table 8. Segmentation performance of MiT and its two variants without a SPE module
on BCV offline test set (3D CT).

Methods SPE Dice

Random initialization
Variant 1 No unaffordable

Variant 2 No 73.31

Ours Yes 79.93

UniMiSS pre-training
Variant 1 No unaffordable

Variant 2 No 76.65

Ours Yes 84.99
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Table 9. Implementation details of downstream tasks. Seg: Segmentation; Cls: Clas-
sification; CE: Cross-entropy loss; off: offline test set; on: online test set.

Dataset BCV RICORD JSRT ChestXR CHAOS ISIC

Task Seg Cls Seg Cls Seg Seg

Modality 3D CT 3D CT 2D X-ray 2D X-ray 3D MRI 2D Dermoscopic

Training data 24 182 124 17,955 16 2000

Test data 6 (off)+20 (on) 45 123 3,430 4 600

Loss Dice+CE [22] CE Dice+CE CE Dice+CE [22] Hybrid loss [50]

Patch size 48 × 1922 64 × 1282 2242 2242 48 × 192 × 256 2242

Augmentation ✓ ✓ ✓ ✓ ✓ ✓

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW

Learning rate 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001

Batch size 2 8 32 32 2 16

Iterations 25,000 14,000 10,000 17,000 50,000 37,500

C Downstream Tasks

C.1 Implementation Details

In Table 9, we provide the implementation details of six downstream datasets,
including the task type, modality, number of training and test cases, loss func-
tion, patch size, batch size, optimizer, learning rate, and maximum iterations.
Note that we randomly split 25% training scans as a validation set to select the
hyper-parameters of UniMiSS in the ablation study. We use the online data aug-
mentation to alleviate the over-fitting of UniMiSS on training data. We augment
2D images via random cropping and zooming, random rotation, shear, shift, and
horizontal/vertical flip. As for 3D images, we perform random rotation, scaling,
flipping, adding white Gaussian noise, Gaussian blurring, adjusting rightness
and contrast, simulation of low resolution, and Gamma transformation [22]. All
the downstream experiments were performed on a NVIDIA GTX 2080Ti GPU.

C.2 Architectures of MiT and ResUnet

Figure 6 shows the detailed settings of the MiT network. The MiT encoder fol-
lows a progressive shrinking pyramid Transformer, as done in [45]. It consists
explicitly of four stages, each of which is composed of a SPE module and several
stacked Transformers. In each stage, the SPE module down-samples the input
features and generates the dimension-specific embedded sequence. Notably, we
append an extra learnable SSL token [7,13] to the patch embedded sequence.
The SSL token is similar to the [CLS] token in ViT, which is able to aggre-
gate information from the whole patch embedding tokens via the self-attention.
The resultant sequences, combined with the learnable positional embedding, are
inputted into the following Transformers for the long-term dependency model-
ing. Each Transformer layer includes a self-attention module and a feed-forward
network (FFN) with two hidden layers. To reduce the computational cost and
enable MiT to process high-resolution images, we follow the spatial-reduction
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attention (SRA) layer to reduce the spatial complexity [45]. MiT has a sym-
metric decoder structure that consists of three stages. In each stage, the input
feature map is first up-sampled by the SPE module, and then refined by the
stacked Transformer layers. Besides, we also add skip connections between the
encoder and decoder to keep more low-level but high-resolution information. We
devise two MiT by changing the number of Transformer layers, namely MiT-7
and MiT-22. Noticed that default MiT-22 is used in the main submission unless
otherwise specified.

Figure 7 shows the architecture of CNN-based ResUnet, used by the com-
pared PCRL [55]. It consists of a 2D/3D ResNet-50 [20] encoder, a decoder, and
four skip connections between encoder and decoder. The decoder contains five
up-sampling modules. Each of the first four modules has a transposed convo-
lutional (TransConv) layer followed by a convolution block (ConvBlock) and a
pixel-wise summation with the corresponding feature maps from the encoder and
the TransConv layer. The last module comprises an Up-sampling layer followed
by a 1 × 1 Conv layer that maps each 32-channel feature map to the desired
number of classes.

D Volume-slice consistency mechanism

Figure 8 gives an intuitive explanation of the proposed volume-slice consistency
mechanism. Given a 3D volumetric image, we first create two augmented views
via data augmentation, each of which has m 2D slices. We then compute the
volumetric or slice representations of dual paths, i.e. fVolume

1 , fVolume
2 , fSlices

1 ,
and fSlices

2 . Here the slice representations fSlices
1 and fSlices

2 are generated by
averaging the outputs of m slices. The loss function is composed of four items,
including LVolume, LSlices, LVolume→Slices, and LSlices→Volume. The first two items
aim to achieve the consistency at the level of global volume and local slices,
respectively. Besides, the consistency across both levels should also be satisfied,
which is achieved by the latter two items. By jointly using these four loss items,
our model is able to capture richer representations from 3D medical images.
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Fig. 6. Detailed settings of MiT network. Here, ‘R’: reduction ratio of SRA; ‘H’: head
number of SRA; and ‘E’: expansion ratio of FFN
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Fig. 7. Detailed architecture of ResUnet: A 2D/3D ResNet-50 [20] encoder, a decoder,
and four skip connections between encoder and decoder. Green ‘ConvBlock’: 2D Conv-
Batch Normalization(BN)-ReLU or 3D Conv-IN-LeakyReLU; Yellow ‘TransConv’:
2D/3D transposed convolutional layer. Note that the numbers in each block / layer
indicate the number of filters, kernel size, and stride, respectively.
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Fig. 8. Intuitive explanation of volume-slice consistency mechanism.
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