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Abstract. The continual appearance of new objects in the visual world
poses considerable challenges for current deep learning methods in real-
world deployments. The challenge of new task learning is often exac-
erbated by the scarcity of data for the new categories due to rarity or
cost. Here we explore the important task of Few-Shot Class-Incremental
Learning (FSCIL) and its extreme data scarcity condition of one-shot.
An ideal FSCIL model needs to perform well on all classes, regardless
of their presentation order or paucity of data. It also needs to be robust
to open-set real-world conditions and be easily adapted to the new tasks
that always arise in the field. In this paper, we first reevaluate the current
task setting and propose a more comprehensive and practical setting for
the FSCIL task. Then, inspired by the similarity of the goals for FSCIL
and modern face recognition systems, we propose our method — Aug-
mented Angular Loss Incremental Classification or ALICE. In ALICE,
instead of the commonly used cross-entropy loss, we propose to use the
angular penalty loss to obtain well-clustered features. As the obtained
features not only need to be compactly clustered but also diverse enough
to maintain generalization for future incremental classes, we further dis-
cuss how class augmentation, data augmentation, and data balancing
affect classification performance. Experiments on benchmark datasets,
including CIFAR100, miniImageNet, and CUB200, demonstrate the im-
proved performance of ALICE over the state-of-the-art FSCIL methods.
Code is available at https://github.com/CanPeng123/FSCIL ALICE.

Keywords: Few Shot, One Shot, Incremental Learning, Classification

1 Introduction

In recent years, the computer vision community has witnessed astonishing per-
formance breakthroughs in many traditional vision tasks. These breakthroughs
are mainly due to the emergence of deep learning models and algorithms, pub-
licly available large data sets for training, and powerful GPU computing devices.
Despite their popularity, current deep learning techniques mostly rely on large-
scale supervised data to train accurate models. A deep neural network (DNN)
with tens of thousands of parameters cannot be easily adapted to a new task by
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training on just a few examples. In addition, conventional deep learning mod-
els lack the capability of preserving previous knowledge while adapting to new
tasks. When a neural network is fine-tuned to learn a new task, its performance
on previously trained tasks will significantly deteriorate, a problem known as
catastrophic forgetting [8,16]. Exploring the fast learning and memorizing ca-
pability of deep learning models is an important step toward improving their
practical application ability.

In this paper, we tackle this significant research direction — Few-Shot Class-
Incremental Learning (FSCIL). FSCIL requires the trained model to not only
quickly adapt to continually arriving new tasks, but also to retain the old knowl-
edge about previously learned tasks. Considering real-life application, an ideal
FSCIL model needs to have the following characteristics: 1) The model needs
to perform well on all classes equally, no matter what the training presentation
sequence is; and 2) the model needs to be robust to extreme data scarcity, such
as the one-shot scenario. However, current SOTA methods mainly use sole class-
wise average accuracy to evaluate the model performance which cannot assess
whether there is a prediction bias due to class imbalance and data imbalance. As
there are normally more base classes than incremental classes and only limited
data is provided for each incremental class, prediction bias towards base classes
can easily happen. In addition, current SOTA methods rarely consider the ex-
treme one-shot setting which can happen in the real world due to incremental
data collection and rare data types. A well-established task setup is a corner-
stone for the development of this task since an improper task setup will misguide
the method design and lead to methods with limited application. Thus, before
designing our method, we reformulate the setup for the FSCIL task.

Considering the paucity of incremental session data and the absence of old
session data, we think the feature extractor trained on the base session should
not be limited to extracting discriminative features for the base categories. The
ability of representing new unseen samples from future novel classes is also crit-
ical. On the one hand, we are motivated by the similarity between FSCIL and
face recognition tasks. The face recognition system learns to distinguish and rec-
ognize new faces quickly via its deep metric learning framework. The capability
of handling new identities without the need for retraining is a major achievement
of modern face recognition methods and is also what the FSCIL task desires. On
the other hand, we are motivated by the intuitive connection between FSCIL
and data augmentation. Data augmentation focuses on improving the generaliza-
tion of a DNN. The capability of extracting diverse features that is transferable
across base and incremental classes is important for the FSCIL task. Hence in
this work, we adopt some ideas from both modern face recognition and data
augmentation to design our method.

The contributions of this paper are: (1) We reevaluate the current bench-
mark task settings of FSCIL and propose additional experimental settings and
evaluation metrics to more comprehensively assess the capability of FSCIL meth-
ods. (2) We solve the FSCIL task from a new perspective of the open-set prob-
lem. We analyze the angular penalty loss from face recognition and adapt it to
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FSCIL to improve the discrimination of the model. (3) We further analyze how
data processing, such as class augmentation, data augmentation, and balanced
data embedding affect FSCIL performance and aim to improve the generaliza-
tion of the model. (4) Significant improvements on three benchmark datasets,
CIFAR100, miniImageNet, and CUB200, demonstrate the effectiveness of our
method against SOTA methods.

2 Related Work

Few-shot Class-incremental Learning. The FSCIL task is a newly emerged
challenge evolved from class-incremental learning [17,1,11]. Once established,
the research community has spent much effort developing algorithms for this
important FSCIL task. For SOTA FSCIL methods, after base session training,
some update the backbone [19,4,25,7] and some freeze the backbone [23,27,5].
Backbone updating methods commonly use the knowledge distillation [10] tech-
nique to preserve the old knowledge. Knowledge distillation relies on having
sufficient data to simulate the input-output function of the old model. To adapt
knowledge distillation to FSCIL, these methods store old exemplars, require a
complex updating scheme for each incremental task, or are incapable of extreme
data scarcity conditions such as 1-shot. However, high performance and flexi-
ble operation are both important for real-world applications. Also, storing old
exemplars is undesirable due to memory restrictions. In addition, the backbone
network has a large number of parameters despite there being extremely lim-
ited new task data. The large imbalance between parameters and data causes the
backbone updating methods to normally show lower performance than backbone
freezing methods under the same experimental setup.

On the contrary, freezing the backbone network is a good choice to well
balance not only the real-life application requirements but also the stability and
plasticity trade-off. This backbone freezing strategy decouples the learning of
representations and classifiers to avoid overfitting and catastrophic forgetting
in the representations. Also, the fundamental feature characteristics are similar
for many objects, so features learned from the base session can be readopted
for recognizing new classes. Our method belongs to the backbone freezing type
of methods. Although this decoupling strategy has been explored by Zhang et
al. [23], their method focuses on designing a discriminative classifier. On the
contrary, we focus on feature distribution, since this is a cornerstone of robust
classification performance. Last but not the least, a good FSCIL method needs
to perform equally well on all the classes no matter whether they are base or
incremental classes. This is a problem for the current backbone freezing type of
methods that their good overall accuracy is mainly derived from the base session.
In this paper, we target on proposing an FSCIL method that takes advantage
of decoupling representation and classification via backbone freezing, and at the
same time, solves the side effect of prediction bias.
Deep Metric Learning. Deep metric learning is commonly used for face recog-
nition tasks. Inspired by the relation between normalized weights on the last fully
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connected layer and class centers, Liu et al. proposed SphereFace [14] which uses
an angular margin penalty to enforce extra intra-class compactness and inter-
class discrepancy. Following SphereFace, CosFace [21] and ArcFace [6] were pro-
posed to reduce the complex loss calculation and make the training procedure
more stable. There are many similarities between face recognition and FSCIL
tasks: 1) both tasks are open-set object recognition tasks that need to classify
a large amount of continually arriving new objects (classes/face identities); 2)
both tasks are provided with unbalanced data; and 3) both tasks require fast
adaptation on new objects as well as maintaining performance on old objects.
Inspired by these similarities, in this paper, we try to solve the FSCIL task from
a new perspective of the open-set problem. We adopt the idea of angular penalty
loss from face recognition to the more general problem of object recognition.

As real-world classification problems typically exhibit class imbalance or long-
tailed data distribution, some methods have explored deep metric learning for
incremental and long-tail tasks [22,15,12]. However, these methods normally as-
sume sufficient data is available which is a different setting from FSCIL. Most
FSCIL methods solve this problem from the perspective of either incremental
learning (advanced knowledge distillation) [4,25,7] or few-shot learning (freezing
backbone and evolving prototypes) [23,5,27]. We follow the proposal of freezing
the backbone network to decouple the learning of representations and classifiers.
However, different from current backbone freezing type of methods that main-
tain the incremental learning ability by evolving classification prototypes, we
focus on improving the transfer capability of the feature extractor.

3 Problem Formulation

FSCIL task comprises a base task with sufficient training data and multiple
incremental tasks with limited training data. During the learning of each new
task, only the data for the current task is available and the model is required to
learn this new task information whilst retaining old task knowledge.

To be specific, assume an M -step FSCIL task. Let {D0
train, D

1
train, ..., D

m
train}

and {D0
test, D

1
test, ..., D

m
test} denotes the training and testing data for sessions

{0, 1, ...,m}, respectively. For session i, it has training data Di
train with the

corresponding label space of Ci. Training data from different sessions have no
overlapped classes, so when i ̸= j, Ci ∩ Cj = ∅. During testing, the model will
be evaluated on all seen classes so far, so for session i, its testing data Di

test has
the corresponding label space of C0∪C1...∪Ci. In addition, for the base session
(i = 0), a sufficient amount of training data is provided and for the following
incremental sessions (i > 0), only a limited amount of data is provided.

Most papers about FSCIL [4,25,7,23,27,5] follow the task setting proposed
by Tao et al. [19]. As FSCIL focuses on mimicking real-life situations, we think
some aspects of the current benchmark experimental protocol are not sufficient to
evaluate the efficiency of an FSCIL method. Thus, before proposing our method,
we propose a more comprehensive and practical setup for the FSCIL task.
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Fig. 1: The framework of our proposed method. On the one hand, with sufficient
base task data available, angular penalty loss, class augmentation, and data
augmentation are utilized to obtain a general open-set feature extractor. On the
other hand, as only limited incremental task data is available, the few-shot new
class data and the carefully chosen same number of base class data are utilized
to generate the balanced class-wise prototypes. Nearest class mean and cosine
similarity are adopted to do the final classification.

Number of Few-Shot Data. Current benchmark experiments are performed
with 5-shot, 10-shot, or more data being available for each incremental step. The
extreme data scarcity condition of 1-shot which can easily happen in the real
world due to extremely scarce data type is rarely considered.

Evaluation Metric. Current benchmark evaluation metrics mainly use class-
wise average accuracy to evaluate the performance of an FSCIL model. As there
are normally more base classes than incremental new classes, using average ac-
curacy cannot indicate if there is a prediction bias between base and incremental
classes. A method cannot be regarded as a good FSCIL method if its good per-
formance is mainly determined by the base class performance.

Dataset. The similarity between base classes and new classes will strongly af-
fect model performance since the high re-usability of base features such as fine-
grained datasets will naturally reduce the challenge of catastrophic forgetting.
An optimal FSCIL model needs to not only perform well on high-distributional-
match fine-grained datasets but also on low-distributional-match datasets.

To sum up, to comprehensively simulate the real-world FSCIL condition and
evaluate the robustness of an FSCIL method, we consider both benchmark 5-
shot and 1-shot settings. Also, for the evaluation metric, we propose to use
both average accuracy and harmonic accuracy to evaluate not only the overall
performance but also the performance balance between base and incremental
classes. In addition, we perform experiments on both general (CIFAR100 and
mini-ImageNet) and fine-grained (CUB200) datasets to remove the possible per-
formance benefit due to high similarity between base and incremental classes.



6 C. Peng et al.

Fig. 2: An illustration of feature distributions of a cross-entropy loss trained
model and an angular penalty loss trained model. The light color arrows repre-
sent examples of different class features on the latent feature space. The dark
color arrows represent the average feature prototype of corresponding classes.
Angular penalty loss provides more compact intra-class clustering and wider
inter-class separation than cross-entropy loss. Compact clustering leaves more
room on the latent feature space to accommodate the new classes.

4 Methodology

In this section, we propose the FSCIL method ALICE using angular penalty,
class and data augmentation, and data balancing. First, for the base session, we
apply the angular penalty loss to train the feature extractor to obtain compact
intra-class clustering and wide inter-class separation. Class augmentation and
data augmentation are also adopted to improve the generalization of the feature
extractor. Then, for the incremental sessions, specifically chosen balanced data
are utilized to generate prototypes for each class. Nearest class mean and cosine
similarity are combined to perform the classification. Figure 1 demonstrates the
framework of our method.

4.1 Angular Penalty

Under the FSCIL setting, we want to obtain a feature extractor which can rapidly
adapt to continually coming new tasks, as well as be stable to overcome catas-
trophic forgetting for the previously learned tasks. Thus, we want to use a loss
function that: 1) minimizes the distance between intra-class feature vectors, and
2) maximizes the distance between inter-class feature vectors. The compact intra-
class clustering and wide inter-class separation will leave more room in the latent
feature space for the incrementally arriving new classes and hence lead to better
open-set classification. Figure 2 illustrates an example. As many innovative an-
gular penalty losses have been explored and proposed for face recognition studies
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[21,6] and considering the similarity between FSCIL and face recognition tasks,
we adapt the cosFace penalty strategy [21] to FSCIL training.

First, we use cosine similarity as the distance metric to measure data simi-
larity and compute scores. It has two effects: 1) it makes training focus on the
angles between normalized features instead of absolute distance in the latent fea-
ture space, and 2) the normalized weight parameters of the fully connected layer
can be regarded as the center of each category. To calculate cosine similarity in
the final fully connected layer, we fix the bias to 0 for simplicity. Then the data
prediction procedure can be written as:

f = F(x) (1)

yi = WT
i f = ∥Wi∥∥f∥ cos(θi) = cos(θi),

∥Wi∥ = ∥f∥ = 1 (2)

where f is the feature obtained from the input image x through the feature
extractor F . The feature f and the weight parameter Wi are normalized by ℓ2
normalization, so the magnitude is 1. The quantity yi is the calculated cosine
similarity between the feature f and the weight parameter Wi for class i. It
measures the angular similarity of image x towards class i which indicates the
likelihood that image x belongs to class i.

Normally, the cosine similarity prediction is used with cross-entropy loss to
separate features from different classes by maximizing the probability of the
ground-truth class. The loss function is:

L = − 1

N

N∑
j=1

log(pj) = − 1

N

N∑
j=1

log(
eyj∑C
i=1 e

yi
),

= − 1

N

N∑
j=1

log(
e∥Wj∥∥f∥ cos(θj)∑C
i=1 e

∥Wi∥∥f∥ cos(θi)
),

= − 1

N

N∑
j=1

log(
ecos(θj)∑C
i=1 e

cos(θi)
)

(3)

where N is the number of training images and C is the number of classes.
The quantity pj describes the softmax probability for image j. The quantity yj
describes the cosine similarity towards its ground truth class for image j.

To make features better clustered, inspired by cosFace [21], a cosine marginm
is introduced to the classification boundary. With the help of the extra margin,
the intra-class features become more compactly clustered and the inter-class
features become more widely separated. Following cosFace, we also re-scale the
normalized feature by a preset scale factor s. The loss function is:

LAP = − 1

N

N∑
j=1

log(
es(cos(θj)−m)

es(cos(θj)−m) +
∑

i ̸=j e
s cos(θi)

) (4)

The scale factor s is set to 30 and the cosine margin m is set to 0.4 for all
experiments.
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4.2 Augmented Training

Diverse and transferable representation is the key for open-set problems. Expo-
sure to a large number of classes is one way to obtain such kind of feature extrac-
tors. To this end, a simple and effective method is to introduce auxiliary classes.

Fig. 3: An example of class augmenta-
tion. Auxiliary new class data is gener-
ated by interpolating two different class
samples from base session data.

Inspired by Mixup [24] and IL2A [26],
we randomly combine pairs of differ-
ent class examples from the base ses-
sion data to synthesize auxiliary new
class data. The new class data gener-
ating function is:

xk = λxi + (1− λ)xj (5)

where xi and xj are two training sam-
ples from two different classes i and j
randomly picked from the C base ses-
sion classes. λ is the interpolation co-
efficient. xk is the generated new class
data. Figure 3 shows an example. In
our experiments, following IL2A [26],
we restrict λ to be a randomly chosen
value between [0.4, 0.6] to reduce the
overlap between the augmented and original classes. For a C-class classification
task, by pair combination, we will generate (C × (C − 1)/2) new classes, so the
original C-class classification task now becomes a (C + C × (C − 1)/2)-class
classification task.

Exposure to various image conditions during training is also a good method to
obtain a general feature extractor. Inspired by self-supervised learning [2,3], we
use two augmentations of each image to enhance training data diversity. Figure
1 shows the augmentation procedure. During training, for each input image,
we randomly generate two augmentations from a set of preset transformation
strategies. For the utilized transformation methods, we randomly apply resized
crop, horizontal flip, color jitter, and grayscale. Then both transformed data
are sent to the backbone network. The losses from two sets of augmentation are
averaged and back-propagated to update model parameters. In addition, to avoid
the feature extractor over-specialize to base session data, following SimCLR
[2], we utilize extra projection layers before the final fully connected layer. By
leveraging the nonlinear projection head, more information can be formed and
maintained in the feature extractor.

4.3 Balanced Testing

After base session training, the projection head and the augmented classification
head are discarded. Only the feature extractor is left and it is frozen to avoid
both overfitting and catastrophic forgetting. During testing, nearest class mean
and cosine similarity are utilized to do the classification. As there is only limited
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data provided for each incremental session, to alleviate the possible prediction
bias due to data imbalance, we use the same amount of few-shot data as the
following incremental steps to generate the base class prototypes. To select suit-
able examples, we first use all base session data to calculate the class-wise mean
for each base class. Then the required few-shot amount of data which has the
smallest cosine distance with the calculated mean is used to generate the final
prototype for each base session class.

4.4 Harmonic Accuracy

For the evaluation metric, current SOTA methods generally report the class-wise
average accuracy. However, we argue that the class-wise average accuracy is not
enough to evaluate the performance of an FSCIL method, since the number
of classes from the base session is often a large fraction of the total number of
classes. Following the experimental settings on benchmark papers, for CIFAR100
[13] and miniImageNet [18], 60 out of 100 (60%) categories are used as base
classes. For CUB200 [20], 100 out of 200 (50%) categories are used as base classes.
A model with good performance on the base session and poor performance on
the following incremental sessions can still have a good average accuracy due to
the high ratio of base classes to the overall classes. For example, with 60 base
classes, on one step of incremental learning 5 classes, an algorithm that shows
100% accuracy on base classes with 0% on incremental classes would be rated
92.3% using average accuracy, yet it would have demonstrated no learning on
the new task. To compensate for this deficiency of average accuracy, we adapt
the harmonic accuracy metric that requires well-balanced performance across
both base and incremental classes. The formula for harmonic accuracy (Ah) is:

Ah =
2×Ab ×Ai

Ab +Ai
(6)

where Ab is the average accuracy for base session classes and Ai is the average
accuracy for the following incremental session classes. In the simple example
above, the harmonic accuracy would be 0% which is much more appropriate as
the network has indeed learned nothing at all. An ideal balanced FSCIL classifier
will have equally high performance on both average accuracy and harmonic
accuracy. If a model has good average accuracy but poor harmonic accuracy,
this means that its good performance is mainly due to performance on the base
session classes and the model has poor incremental learning capability overall.

5 Experiments

5.1 Dataset and Evaluation Metric

We use three benchmark datasets CIFAR100 [13], miniImageNet [18] and Caltech-
UCSD Birds-200-2011 (CUB200) [20] for our experiments. CIFAR100 contains
100 classes with 600 images per class, 500 for training and 100 for testing. Each
image has a size of 32 × 32 pixels. MiniImageNet also contains 100 classes with
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600 images per class, 500 for training and 100 for testing. Each image has a
size of 84 × 84 pixels. CUB200 is a fine-grained image classification dataset. It
contains 200 classes of different species of birds with 5994 training images and
5794 testing images. Each image has a size of 224 × 224 pixels.

As mentioned in section 3, to comprehensively evaluate an FSCIL method,
we follow the benchmark 5-shot setting and also perform an additional 1-shot
setting. For experiments on CIFAR100 and miniImageNet, the 8-step 5-way 5-
short and 8-step 5-way 1-short incremental settings are used. In this protocol, 60
classes are used as base classes with all training data provided; then 40 classes
are used as incremental classes with 5-shot or 1-shot training data provided in a
5-way manner in 8 steps. For experiments on CUB200, 10-step 10-way 5-shot and
10-step 10-way 1-shot settings are used. 100 classes are used as base classes and
the remaining 100 classes are used as incremental classes with 5-shot or 1-shot
training data provided in a 10-way manner in 10 steps. To make the evaluation
comprehensive and fair, we report both average accuracy and harmonic accuracy.

5.2 Implementation Details

For our experiments, we use ResNet18 [9] as the backbone network. We im-
plement the projection head as a two-layer MLP with a hidden feature size of
2048 and ReLU as the activation function. Our method is built with PyTorch
library and SGD with momentum is used for optimization. The initial learning
rate is set to 0.01 for CIFAR100 and miniImageNet dataset training, and 0.001
for CUB200 dataset training. Following the settings on [19,23], models for CI-
FAR100 and miniImageNet are trained from scratch, and models for CUB200
are initialized by an ImageNet pretrained model. When class augmentation is
not applied, a batch size of 512 is used for training. When class augmentation
is used, we use a batch size of 128 for CIFAR100 and a batch size of 64 for
miniImageNet. The experimental results for CEC [23] are reproduced by their
publicly available source code.

5.3 Comparison with the State-of-the-art Methods

We compare our method with the SOTA methods [17,1,11,19,4,5,23] on three
datasets. According to Figure 4, for experiments on CIFAR100 and miniIma-
geNet dataset, under both 8-step 5-way 5-shot and 1-shot settings, our method
achieves the highest class-wise accuracy over all the sessions. Also, on both
datasets, our ALICE method shows much higher harmonic accuracy on all ses-
sions compared to the SOTA CEC [23] method. The high harmonic accuracy
proves that our method can largely alleviate the prediction bias problem. To be
more specific, in CIFAR100, for the 5-shot (1-shot) setting, in the last session,
we get 54.1% (47.5%) average accuracy and 50.6% (26.5%) harmonic accuracy
which is 6.0% (2.7%) and 19.3% (13.5%) higher than the CEC method, respec-
tively. In miniImageNet, for the 5-shot (1-shot) setting, in the last session, we get
55.7% (48.6%) average accuracy and 50.9% (27.1%) harmonic accuracy which is
8.5% (4.9%) and 22.8% (19.3%) higher than the CEC method, respectively.
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Fig. 4: Comparison with SOTA methods under both 5-shot and 1-shot incremen-
tal settings on CIFAR100, miniImageNet, and CUB200 dataset. The line chart
represents average accuracy and the histogram represents harmonic accuracy.
Our method outperforms SOTA works with significant performance advantages.

For experiments on the CUB200 dataset, we find that applying class aug-
mentation will deteriorate the model performance. As CUB200 is a fine-grained
dataset, the feature extractor needs to focus on learning tiny differences between
categories. However, class augmentation targets obscuring the class difference
and forcing the feature extractor to focus on general features. It is a good aug-
mentation strategy to extract transferable features for general FSCIL tasks but
will adversely obscure the class boundaries for fine-grained FSCIL tasks. Thus,
for experiments on CUB200, we do not use class augmentation and train the
feature extractor only by angular penalty and data augmentation. According
to Figure 4, our method outperforms all SOTA methods by a large margin on
the 5-shot setting. This proves that for fine-grained classification where the re-
usability of features is high, angular penalty and data augmentation is enough
to obtain a robust open-set feature extractor. Under the 1-shot setting, we get
similar average accuracy as CEC, since both of us freeze the backbone network
after base session training to avoid catastrophic forgetting. When considering
incremental class performance, our method can better adapt to new classes and
obtain much higher harmonic accuracy than the CEC method.

Besides, we also compare the confusion matrices produced by CEC and our
method after the last incremental session. The results are shown in Figure 5.
Compared with CEC, our method produces a more balanced base and incre-
mental class performance, especially under 5-shot settings. When under 1-shot
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Fig. 5: Comparison of the confusion matrices produced by CEC and our method
on the last incremental session for 5-shot and 1-shot incremental experiments on
miniImageNet and CUB200 dataset.

settings, although our method can outperform the CEC method, the prediction
bias towards base classes still exists. This is because the 1-shot setting is the
most extreme FSCIL setting due to maximal data scarcity and data imbalance.
We will focus on solving this problem in future work.

5.4 Ablation Study

To validate the effectiveness of each part of our method, we perform an ab-
lation study on the CIFAR100 dataset under the 8-step 5-way 5-shot setting.
Table 1 shows the experimental results for the ablation study. When balanced
data are used for prototype generation, compared with the cross-entropy loss
trained model, in the last incremental step, the angular penalty loss trained
model provides 3.3% average accuracy improvement. But the harmonic accu-
racy is 6.2% lower. This means that solely using angular penalty loss will make
the feature extractor over-specialize to the base session data and lose its general-
ization performance. The high average accuracy produced by the angular penalty
loss trained model with all data used for prototype generation also shows the
over-specialization. Their good average performance is mainly due to the base
classes since at the first several sessions, the ratio of base classes among all
classes is high. To compensate for the loss of generalization, projection layers
are utilized to help the feature extractor maintain more information. With the
help of the projection layers, in the last incremental session, the average accu-
racy remains unchanged but the harmonic accuracy is increased from 25.2% to
43.8% which is 12.4% higher than the cross-entropy loss trained model. Then,
when two transformations of each input image are utilized for loss calculation,
the average accuracy (harmonic accuracy) is 1.8% (3.6%) increased in the last
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Table 1: Ablation study on CIFAR100 under the 8-step 5-way 5-shot setting.

loss type
class
aug

data
aug

project
layer

balanced
data

0 1 2 3 4 5 6 7 8

class-wise average accuracy

cross
entropy

# # # # 74.2 67.4 63.4 59.4 55.9 53.2 51.2 49.0 46.9

# # # ! 74.2 65.4 61.6 57.7 54.5 52.1 49.9 47.9 46.2

angular
penalty

# # # # 76.9 72.9 68.2 64.1 60.3 57.0 54.3 51.9 49.7

# # # ! 76.9 72.8 68.0 63.8 60.2 56.8 54.1 51.8 49.5

# # ! ! 74.2 67.1 63.7 59.9 56.8 54.1 52.8 51.1 49.5

# ! ! ! 75.6 68.2 64.2 60.3 57.9 55.6 54.7 53.1 51.3

! ! ! ! 79.0 70.5 67.1 63.4 61.2 59.2 58.1 56.3 54.1
harmonic accuracy

cross
entropy

# # # # - 36.5 32.1 29.4 27.1 27.2 28.3 27.2 27.4

# # # ! - 45.5 37.8 34.7 32.4 32.8 32.1 30.8 31.4

angular
penalty

# # # # - 34.0 28.2 26.4 23.6 23.3 22.6 22.1 22.3

# # # ! - 40.4 32.8 29.7 27.5 26.2 25.4 24.6 25.2

# # ! ! - 58.9 57.2 50.5 47.9 46.4 46.4 45.0 43.8

# ! ! ! - 65.0 60.0 52.2 50.9 49.6 50.1 48.6 47.4

! ! ! ! - 65.3 62.3 55.7 54.5 54.0 53.9 52.1 50.6

(a) Feature distribution
trained by cross-entropy
loss.

(b) Feature distribu-
tion trained by angular
penalty loss.

(c) Trained by angular
penalty loss with projec-
tion layers. Class and data
augmentation are applied.

Fig. 6: t-SNE visualization of the feature embeddings for the 60 base classes on
CIFAR100. Each small colored number represents one feature instance for that
class. The bold black number represents the average prototype for the class.

step. After that, when class augmentation is applied, the average accuracy (har-
monic accuracy) is increased by 2.8% (3.2%) in the last step. In addition, when
balanced data is used for prototype generation, the harmonic accuracy for both
cross-entropy and angular penalty loss trained model is increased. This shows
that simply utilizing the same amount of data from the base and incremental
sessions to generate class prototypes can effectively alleviate the prediction bias
due to data imbalance.

Figure 6 shows the t-SNE visualization of the training data feature generated
by different training strategies. The model trained via angular penalty loss makes
the training data cluster better in the latent feature space than the model trained
via cross-entropy loss. Then with the further help of projection layers, class and
data augmentation, diverse and transferable features are obtained while different
class features are still well separated.
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Fig. 7: Hyper-parameter studies for cosine margin (m) and scale factor (s) on
CIFAR100 under the 8-step 5-way 5-shot setting.

5.5 Hyper-parameter Analysis

For the angular penalty loss calculation, there are two hyper-parameters — the
cosine margin (m) and the scale factor (s). To find the most suitable hyper-
parameter value, we perform the hyper-parameter grid analysis on the CIFAR100
dataset under the 8-step 5-way 5-shot protocol. All the experiments for hyper-
parameter analysis are trained using angular penalty loss with data augmen-
tation. Figure 7 shows the experimental results. First, we set the scale factor
to 30 and vary the value for the cosine margin. According to Figure 7, we find
that when the cosine margin is set to 0.4, in most sessions, the best average and
harmonic accuracy are acquired. Then, we set the cosine margin to 0.4 and vary
the value for the scale factor. We find that when the scale factor is set to 20 or
30, a good performance is usually acquired in most sessions. Thus, for all our
experiments, we set the cosine margin to 0.4 and the scale factor to 30.

6 Conclusion

In this paper, we first reformulate the FSCIL task and propose a more practi-
cal and comprehensive setup. After that, inspired by techniques from modern
face recognition and data augmentation, we proposed our ALICE method. We
link the relationship between FSCIL and open-set tasks and emphasize the im-
portance of using base session training to obtain generalizable features for the
FSCIL task. We show that with only balanced nearest class mean and no further
action in prototype evolution, our method outperforms the SOTA methods by
substantial improvements in all benchmark datasets.
Acknowledgments. We thank Dr. Yadan Luo and Kaiyu Guo for their help,
discussion, and support. This research was funded by the Australian Government
through the Australian Research Council and Sullivan Nicolaides Pathology un-
der Linkage Project LP160101797.
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Supplementary Material

1 Introduction

In the supplementary material, we present more details about the experiments
in our paper. The detailed average accuracy and harmonic accuracy values are
reported in the tables. Following the CEC paper [23], we also report on the per-
formance dropping rate (PD). The PD measures the absolute accuracy decrease
between the base learning and the last incremental session.

2 Detailed Results
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Table 2: Experimental results for the 8-step 5-way 5-shot FSCIL protocol on the
CIFAR100 dataset. The performance dropping rate (PD) measures the absolute
accuracy decrease between the base learning and the last incremental session.
The ∗ indicates results reported in [23,19] and the ‡ indicates results from our
implementation using the official published code.

0 1 2 3 4 5 6 7 8 PD ↓
class-wise average accuracy

Ft-CNN∗ 64.1 36.9 15.4 9.8 6.7 3.8 3.7 3.1 2.7 61.4
iCaRL∗ [17] 64.1 53.3 41.7 34.1 27.9 25.1 20.4 15.5 13.7 50.4
EEIL∗ [1] 64.1 53.1 43.7 35.2 29.0 25.0 21.0 17.3 15.9 48.2
NCM∗ [11] 64.1 53.1 44.0 37.0 31.6 26.7 21.2 16.8 13.5 50.6
TOPIC∗ [19] 64.1 55.9 47.1 45.2 40.1 36.4 34.0 31.6 29.4 34.7
CEC∗ [23] 73.1 68.9 65.3 61.2 58.1 55.6 53.2 51.3 49.1 24.0

CEC‡ [23] 74.0 68.1 64.2 60.6 57.3 54.8 52.5 50.3 48.1 25.9
ALICE (Ours) 79.0 70.5 67.1 63.4 61.2 59.2 58.1 56.3 54.1 24.9

harmonic accuracy

CEC‡ [23] - 40.2 37.6 34.9 32.9 33.6 33.1 31.9 31.3 -
ALICE (Ours) - 65.3 62.3 55.7 54.5 54.0 53.9 52.1 50.6 -

Table 3: Experimental results for the 8-step 5-way 5-shot FSCIL protocol on the
miniImageNet dataset.

0 1 2 3 4 5 6 7 8 PD ↓
class-wise average accuracy

Ft-CNN∗ 61.3 27.2 16.4 6.1 2.5 1.6 1.9 2.6 1.4 59.9
iCaRL∗ [17] 61.3 46.3 42.9 37.6 30.5 24.0 20.9 18.8 17.2 44.1
EEIL∗ [1] 61.3 46.6 44.0 37.3 33.1 27.1 24.1 21.6 19.6 41.7
NCM∗ [11] 61.3 47.8 39.3 31.9 25.7 21.4 18.7 17.2 14.2 47.1
TOPIC∗ [19] 61.3 50.1 45.2 41.2 37.5 35.5 32.2 29.5 24.4 36.9
CEC∗ [23] 72.0 66.8 63.0 59.4 56.7 53.7 51.2 49.2 47.6 24.4

CEC‡ [23] 71.2 66.0 61.9 58.6 56.4 53.4 50.7 48.8 47.2 24.0
ALICE (Ours) 80.6 70.6 67.4 64.5 62.5 60.0 57.8 56.8 55.7 24.9

harmonic accuracy

CEC‡ [23] - 34.6 31.0 29.0 31.8 28.9 26.9 27.5 28.1 -
ALICE (Ours) - 64.9 58.9 56.4 55.4 52.7 50.8 51.0 50.9 -

Table 4: Experimental results for the 10-step 10-way 5-shot FSCIL protocol on
the CUB200 dataset.

0 1 2 3 4 5 6 7 8 9 10 PD ↓
class-wise average accuracy

Ft-CNN∗ 68.7 43.7 25.1 17.7 18.1 17.0 15.1 10.6 8.9 8.9 8.5 60.2
iCaRL∗ [17] 68.7 52.7 48.6 44.2 36.6 29.5 27.8 26.3 24.0 23.9 21.2 47.5
EEIL∗ [1] 68.7 53.6 47.9 44.2 36.3 27.5 25.9 24.7 24.0 24.1 22.1 46.6
NCM∗ [11] 68.7 57.1 44.2 28.8 26.7 25.7 24.6 21.5 20.1 20.1 19.9 48.8
TOPIC∗ [19] 68.7 62.5 54.8 50.0 45.3 41.4 38.4 35.4 32.2 28.3 26.3 42.4
Cheraghian et al. [4] 68.2 60.5 55.7 50.5 45.7 42.9 40.9 38.8 36.5 34.9 33.0 35.2
Cheraghian et al. [5] 68.8 59.4 59.3 55.0 52.6 49.8 48.1 46.3 44.3 43.4 43.2 25.6
CEC [23] 75.9 71.9 68.5 63.5 62.4 58.3 57.7 55.8 54.8 53.5 52.3 23.6

CEC‡ [23] 75.0 71.3 67.3 63.5 61.5 58.3 56.3 54.5 52.2 51.9 50.7 24.3
ALICE (Ours) 77.4 72.7 70.6 67.2 65.9 63.4 62.9 61.9 60.5 60.6 60.1 17.3

harmonic accuracy

CEC‡ [23] - 59.6 52.6 46.6 48.1 45.0 44.7 44.4 42.3 44.2 43.9 -
ALICE (Ours) - 70.0 65.6 59.3 59.6 57.6 58.9 58.8 57.8 58.8 59.0 -
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Table 5: Experimental results for the 8-step 5-way 1-shot FSCIL protocol on the
CIFAR100 dataset.

0 1 2 3 4 5 6 7 8 PD ↓
class-wise average accuracy

CEC‡ [23] 74.0 67.3 62.6 59.0 55.3 52.1 49.5 47.0 44.8 29.2
ALICE (Ours) 79.0 71.0 66.4 62.2 58.1 54.7 52.0 49.8 47.5 31.5

harmonic accuracy

CEC‡ [23] - 12.1 11.4 14.3 13.4 13.1 13.7 13.3 13.0 -
ALICE (Ours) - 35.7 33.9 33.0 29.2 28.2 27.6 27.3 26.5 -

Table 6: Experimental results for the 8-step 5-way 1-shot FSCIL protocol on the
miniImageNet dataset.

0 1 2 3 4 5 6 7 8 PD ↓
class-wise average accuracy

CEC‡ [23] 71.2 66.3 61.6 57.6 54.0 50.8 48.2 45.9 43.7 27.5
ALICE (Ours) 80.6 70.7 65.8 61.8 58.4 55.3 52.4 50.7 48.6 32.0

harmonic accuracy

CEC‡ [23] - 9.0 7.9 7.3 6.7 6.0 6.4 7.2 7.8 -
ALICE (Ours) - 35.2 25.2 24.5 26.0 25.3 23.9 26.8 27.1 -

Table 7: Experimental results for the 10-step 10-way 1-shot FSCIL protocol on
the CUB200 dataset.

0 1 2 3 4 5 6 7 8 9 10 PD ↓
class-wise average accuracy

CEC‡ [23] 75.0 69.5 64.9 59.9 57.0 53.1 50.7 48.0 46.0 44.8 43.0 32.0
ALICE (Ours) 77.4 66.7 62.7 58.6 55.3 53.1 50.9 49.3 47.1 46.9 45.7 31.7

harmonic accuracy

CEC‡ [23] - 32.5 31.8 24.8 27.2 25.5 25.4 24.5 24.3 26.0 25.5 -
ALICE (Ours) - 40.8 38.4 33.4 33.0 33.9 33.8 34.9 33.2 36.3 36.3 -
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