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Abstract. Despite their impressive performance on image classification
tasks, deep networks have a hard time generalizing to unforeseen cor-
ruptions of their data. To fix this vulnerability, prior works have built
complex data augmentation strategies, combining multiple methods to
enrich the training data. However, introducing intricate design choices
or heuristics makes it hard to understand which elements of these meth-
ods are indeed crucial for improving robustness. In this work, we take
a step back and follow a principled approach to achieve robustness to
common corruptions. We propose PRIME, a general data augmenta-
tion scheme that relies on simple yet rich families of max-entropy image
transformations. PRIME outperforms the prior art in terms of corruption
robustness, while its simplicity and plug-and-play nature enable combi-
nation with other methods to further boost their robustness. We analyze
PRIME to shed light on the importance of the mixing strategy on synthe-
sizing corrupted images, and to reveal the robustness-accuracy trade-offs
arising in the context of common corruptions. Finally, we show that the
computational efficiency of our method allows it to be easily used in both
on-line and off-line data augmentation schemes1.

1 Introduction

Deep image classifiers do not work well in the presence of various types of distri-
bution shifts [14,18,42]. Most notably, their performance can severely drop when
the input images are affected by common corruptions that are not contained
in the training data, such as digital artefacts, low contrast, or blurs [21,29]. In
general, “common corruptions” is an umbrella term coined to describe the set
of all possible distortions that can happen to natural images during their acqui-
sition, storage, and processing lifetime, which can be very diverse. Nevertheless,
while the space of possible perturbations is huge, the term “common corrup-
tions” is generally used to refer to image transformations that, while degrading
the quality of the images, still preserve their semantic information.

? The first two authors contributed equally to this work.
1 Our code is available at https://github.com/amodas/PRIME-augmentations
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Fig. 1. Images generated with PRIME, a simple method that uses a family of max-
entropy transformations in different visual domains to create diverse augmentations.

Building classifiers that are robust to common corruptions is far from trivial.
A naive solution is to include data with all sorts of corruptions during training,
but the sheer scale of all possible types of typical perturbations that might affect
an image is simply too large. Moreover, the problem is per se ill-defined since
there exists no formal description of all possible common corruptions.

To overcome this issue, the research community has recently favoured increas-
ing the “diversity” of the training data via data augmentation schemes [10,22,20].
Intuitively, the hope is that showing very diverse augmentations of an image to
a network would increase the chance that the latter becomes invariant to some
common corruptions. Still, covering the full space of common corruptions is
hard. Hence, current literature has mostly resorted to increasing the diversity
of augmentations by designing intricate data augmentation pipelines, e.g., intro-
ducing DNNs for generating varied augmentations [20,5], or coalescing multiple
techniques [44], and thus achieve good performance on different benchmarks.
This strategy, though, leaves a big range of unintuitive design choices, making
it hard to pinpoint which elements of these methods meaningfully contribute to
the overall robustness. Meanwhile, the high complexity of recent methods [44,5]
makes them impractical for large-scale tasks. Whereas, some methods are tai-
lored to particular datasets and might not be general enough. Nonetheless, the
problem of building robust classifiers is far from completely solved, and the gap
between robust and standard accuracy is still large.

In this work, we take a step back and provide a systematic way for de-
signing a simple, yet effective data augmentation scheme. By focusing on first
principles, we formulate a new mathematical model for semantically-preserving
corruptions, and build on basic concepts to characterize the notions of transfor-
mation strength and diversity using a few transformation primitives. Relying on
this model, we propose PRIME, a data augmentation scheme that draws trans-
formations from a max-entropy distribution to efficiently sample from a large
space of possible distortions (see Fig. 1). The performance of PRIME, alone, al-
ready tops the current baselines on different common corruption datasets, whilst
it can also be combined with other methods to further boost their performance.
Moreover, the simplicity and flexibility of PRIME allows to easily understand
how each of its components contributes to improving robustness.
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Altogether, the main contributions of our work include:

• We introduce PRIME, a simple method that is built on a few guiding prin-
ciples, which efficiently boosts robustness to common corruptions.

• We experimentally show that PRIME, despite its simplicity, achieves state-
of-the-art robustness on multiple corruption benchmarks.

• Last, our thorough ablation study sheds light on the necessity of having di-
verse transformations, on the role of mixing in the success of current meth-
ods, on the potential robustness-accuracy trade-off, and on the importance
of online augmentations.

Overall, PRIME is a simple model-based scheme that can be easily under-
stood, ablated, and tuned. Our work is an important step in the race for robust-
ness against common corruptions, and we believe that it has the potential to
become the new baseline for learning robust classifiers.

2 General model of visual corruptions

In this work, motivated by the “semantically-preserving” nature of common
corruptions, we define a new model of typical distortions. Specifically, we leverage
the long tradition of image processing in developing techniques to manipulate
images while retaining their semantics and construct a principled framework to
characterize a large space of visual corruptions.

Let x : [0, 1]2 → [0, 1]3 be a continuous image2 mapping pixel coordinates r =
(r1, r2) to RGB values. We define our model of common corruptions as the action
on x of the following additive subgroup of the near-ring of transformations [4]

Tx =

{
n∑
i=1

λi g
i
1 ◦ · · · ◦ gim(x) : gij ∈ {ω, τ, γ}, λi ∈ R

}
, (1)

where ω, τ and γ are random primitive transformations which distort x along
the spectral (ω), spatial (τ), and color (γ) domains. As we will see, defining
each of these primitives in a principled and coherent fashion will be enough to
construct a set of perturbations which covers most types of visual corruptions.

To guarantee as much diversity as possible in our model, we follow the princi-
ple of maximum entropy to define our distributions of transformations [8]. Note
that using a set of augmentations that guarantees maximum entropy comes
naturally when trying to optimize the sample complexity derived from certain
information-theoretic generalization bounds, both in the clean [45] and corrupted
settings [28]. Specifically, the principle of maximum entropy postulates favoring
those distributions that are as unbiased as possible given the set of constraints
that define a family of distributions. In our case, these constraints are given in
the form of an expected strength σ2, some boundary conditions, e.g., the dis-
placement field must be zero at the borders of an image, and finally the desired

2 In practice, we will work with discrete images on a regular grid.
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smoothness level K. The principle of smoothness helps formalize the notion of
physical plausibility, as most naturally occurring processes are smooth.

Formally, let I denote the space of all images, and let f : I → I be a random
image transformation distributed according to the law µ. Further, let us define
a set of constraints C ⊆ F , which restricts the domain of applicability of f ,
i.e., f ∈ C, and where F denotes the space of functions I → I. The principle
of maximum entropy postulates using the distribution µ which has maximum
entropy given the constraints:

maximize
µ

H(µ) = −
∫
F

dµ(f) log(µ(f)) (2)

subject to f ∈ C ∀f ∈ supp(µ),

where H(µ) represents the entropy of the distribution µ [8]. In its general form,
solving Eq. (2) for any set of constraints C is intractable. In Appendix A, we
formally derive the analytical expressions for the distributions of each of our
family of transformations, by leveraging results from statistical physics [1].

In what follows, we describe the analytical solutions to Eq. (2) for each of our
basic primitives. In general, these distributions are governed by two parameters:
K to control smoothness, and σ2 to control strength. These transformations fall
back to identity mappings when σ2 = 0, independently of K.

Spectral domain We parameterize the distribution of random spectral transfor-
mations using random filters ω(r), such that the transformation output follows

ω(x)(r) = (x ∗ (δ + ω′)) (r), (3)

where, ∗ is the convolution operator, δ(r) represents a Dirac delta, i.e., identity
filter, and ω′(r) is implemented in the discrete grid as an FIR filter of size
Kω × Kω with i.i.d random entries distributed according to N (0, σ2

ω). Here,
σ2
ω governs the transformation strength, while larger Kω yields filters of higher

spectral resolution. The bias δ(r) retains the output close to the original image.

Spatial domain We model our distribution of random spatial transformations,
which apply random perturbations over the coordinates of an image, as

τ(x)(r) = x(r + τ ′(r)). (4)

This model has been recently proposed in [34] to define a distribution of random
smooth diffeomorphisms in order to study the stability of neural networks to
small spatial transformations. To guarantee smoothness but preserve maximum
entropy, the authors propose to parameterize the vector field τ ′ as

τ ′(r) =
∑

i2+j2≤K2
τ

βi,j sin(πir1) sin(πjr2), (5)

where βi,j ∼ N (0, σ2
τ/(i2 + j2)). Such choice guarantees that the resulting mapping

is smooth according to the cut frequency Kτ , while σ2
τ determines its strength.
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Algorithm 1: PRIME

Input: Image x, primitives G = {Id, ω, τ γ}, where Id is the identity operator
Output: Augmented image x̃

1 x̃0 ← x
2 for i ∈ {1, . . . , n} do
3 x̃i ← x
4 for j ∈ {1, . . . ,m} do
5 g ∼ U(G) . Strength σ ∼ U(σmin, σmax)
6 x̃i ← g(x̃i)

7 end

8 end
9 λ ∼ Dir(1) . Random Dirichlet convex coefficients

10 x̃←
∑n
i=0 λix̃i

Color domain Following a similar approach, we define the distribution of ran-
dom color transformations as random mappings γ between color spaces

γ(x)(r) = x(r) +

Kγ∑
n=0

βn � sin (πnx(r)) , (6)

where βn ∼ N (0, σ2
γI3), with � denoting elementwise multiplication. Again, Kγ

controls the smoothness of the transformations and σ2
γ their strength. Compared

to Eq. (5), the coefficients in Eq. (6) are not weighted by the inverse of the
frequency, and have constant variance. In practice, we observe that reducing the
variance of the coefficients for higher frequencies creates color mappings that are
too smooth and almost imperceptible, so we decided to drop this dependency.

Finally, we note that PRIME is very flexible with respect to its core primi-
tives. In particular, PRIME can be easily extended to include other distributions
of maximum entropy transformations that suit an objective task. For example,
one might add the distribution of maximum entropy additive perturbations given
by η(x)(r) = x(r) + η′(r), where η′(r) ∼ N (0, σ2

η). Nonetheless, since most
benchmarks of visual corruptions disallow the use of additive perturbations dur-
ing training [21], we do not include an additive perturbation category.

Overall, as demonstrated by our results in Secs. 4.2 and 5.2, our model is
very flexible and can cover a large part of the semantic-preserving distortions. It
also allows to easily control the strength and style of the transformations with
just a few parameters. Moreover, changing the transformation strength enables
to control the trade-off between corruption robustness and standard accuracy,
as shown in Sec. 5.3. In what follows, we use this model to design an efficient
augmentation scheme to build classifiers robust to common corruptions.

3 PRIME: A simple augmentation scheme

We now introduce PRIME, a simple yet efficient augmentation scheme that uses
our PRImitives of Maximum Entropy to confer robustness against common
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spectral

Fig. 2. Images generated with the transformations of our common corruptions model.
Despite the perceptibility of the distortion, the image semantics are preserved.

corruptions. The pseudo-code of PRIME is given in Algorithm 1, which draws
a random sample from Eq. (1) using a convex combination of a composition of
basic primitives. Below we describe the main implementation details.

Parameter selection It is important to ensure that the semantic information
of an image is preserved after it goes through PRIME. As measuring semantic
preservation quantitatively is not simple, we subjectively select each primitive’s
parameters based on visual inspection, ensuring maximum permissible distortion
while retaining the semantic content of the image. However, to avoid relying on
a specific strength for each transformation, PRIME stochastically generates aug-
mentations of different strengths by sampling σ from a uniform distribution, with
different minimum and maximum values for each primitive. Figure 2 shows some
visual examples for each kind of transformation, while additional visual examples
along with the details of all the parameters can be found in Appendix B.

For the color primitive, we observed that fairly large values for Kγ (in the
order of 500) are important for covering a large space of visual distortions. Un-
fortunately, implementing such a transformation can be memory inefficient. To
avoid this issue, PRIME uses a slight modification of Eq. (6) and combines a
fixed number ∆ of consecutive frequencies randomly chosen in the range [0,Kγ ].

Mixing transformations The concept of mixing has been a recurring theme
in the augmentation literature [48,47,22,44] and PRIME follows the same trend.
In particular, Algorithm 1 uses a convex combination of n basic augmentations
consisting of the composition of m of our primitive transformations. In general,
the convex mixing procedure (i) broadens the set of possible training augmen-
tations, and (ii) ensures that the augmented image stay close to the original
one. We later provide empirical results which underline the efficacy of mixing
in Sec. 5.2. Overall, the exact mixing parameters are provided in Appendix B.
Note that, the basic skeleton of PRIME is similar to that of AugMix. However,
as we will see next, incorporating our maximum entropy transformations leads
to significant gains in common corruptions robustness over AugMix.
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Table 1. Clean and corruption accuracy, and mean corruption error (mCE) for differ-
ent methods with ResNet-18 on C-10, C-100, IN-100 and ResNet-50 on IN. mCE is the
mean corruption error on common corruptions un-normalized for C-10 and C-100; nor-
malized relative to standard model on IN-100 and IN. † indicates that JSD consistency
loss is not used. ∗Models taken from [9].

Dataset Method
Clean Common Corruption

Acc (↑) Acc (↑) mCE (↓)

C-10
Standard 95.0 74.0 24.0
AugMix 95.2 88.6 11.4
PRIME 94.2 89.8 10.2

C-100
Standard 76.7 51.9 48.1
AugMix 78.2 64.9 35.1
PRIME 78.4 68.2 31.8

IN-100

Standard 88.0 49.7 100.0
AugMix 88.7 60.7 79.1
DA 86.3 67.7 68.1
PRIME 85.9 71.6 61.0

DA+AugMix 86.5 73.1 57.3
DA+PRIME 84.9 74.9 54.6

IN

Standard∗ 76.1 38.1 76.7
AugMix∗ 77.5 48.3 65.3
DA∗ 76.7 52.6 60.4

PRIME† 77.0 55.0 57.5

DA+AugMix 75.8 58.1 53.6

DA+PRIME† 75.5 59.9 51.3

4 Performance analysis

In this section, we compare the classification performance of our method on mul-
tiple datasets with that of two current approaches: AugMix and DeepAugment
(DA). We illustrate that PRIME significantly advances the corruption robust-
ness over that of AugMix and DeepAugment on all the benchmarks. We also
show that our method yields additional benefits when employed in concert with
unsupervised domain adaptation [39].

4.1 Training setup

We consider the CIFAR-10 (C-10), CIFAR-100 (C-100) [25], ImageNet-100 (IN-
100) and ImageNet (IN) [11] datasets. IN-100 is a 100-class subset of IN obtained
by selecting every 10th class in WordNet ID order. We train a ResNet-18 [19]
on C-10, C-100 and IN-100; and a ResNet-50 on IN for 100 epochs. Following
AugMix, and for a complete comparison, we also integrate the Jensen-Shannon
divergence (JSD)-based consistency loss in PRIME which compels the network to
learn similar representations for differently augmented versions of the same input
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image. Detailed training setup appears in Appendix C. We evaluate our trained
models on the common corrupted versions (C-10-C, C-100-C, IN-100-C, IN-C) of
the aforementioned datasets. The common corruptions [21] constitute 15 image
distortions each applied with 5 different severity levels. These corruptions can
be grouped into four categories, viz. noise, blur, weather and digital.

4.2 Robustness to common corruptions

In order to assess the effectiveness of PRIME, we evaluate its performance
against C-10, C-100, IN-100 and IN common corruptions. The results are sum-
marized in Tab. 13. Amongst individual methods, PRIME yields superior results
compared to those obtained by AugMix and DeepAugment alone and advances
the baseline performance on the corrupted counterparts of the four datasets. As
listed, PRIME pushes the corruption accuracy by 1.2% and 3.3% on C-10-C and
C-100-C respectively over AugMix. On IN-100-C, a more complicated dataset,
we observe significant improvements wherein PRIME outperforms AugMix by
10.9%. In fact, this increase in performance hints that our primitive transforma-
tions are actually able to cover a larger space of image corruptions, compared
to the restricted set of AugMix. Interestingly, the random transformations in
PRIME also lead to a 3.9% boost in corruptions accuracy over DeepAugment
despite the fact that DeepAugment leverages additional knowledge to augment
the training data via its use of pre-trained architectures. Moreover, PRIME pro-
vides cumulative gains when combined with DeepAugment, reducing the mean
corruption error (mCE) of prior art (DA+AugMix) by 2.7% on IN-100-C. Lastly,
we also evaluate the performance of PRIME on full IN-C. However, we do not
use JSD in order to reduce computational complexity. Yet, even without the
JSD loss, PRIME outperforms, in terms of corruption accuracy, both AugMix
(with JSD) and DeepAugment by 6.7% and 2.4% respectively, while the mCE is
reduced by 7.8% and 2.9%. And last, when PRIME is combined with DeepAug-
ment, it also surpasses the performance of DA+AugMix (with JSD), reaching a
corruption accuracy of almost 60% and an mCE of 51.3%. Note here, that, not
only PRIME achieves superior robustness, but it does so efficiently. Compared to
standard training on IN-100, AugMix requires 1.20x time and PRIME requires
1.27x. In contrast, DA is tedious and we do not measure its runtime since it
also requires the training of two large image-to-image networks for producing
augmentations, and can only be applied offline.

4.3 Unsupervised domain adaptation

Recently, robustness to common corruptions has also been of significant interest
in the field of unsupervised domain adaptation [2,39]. The main difference is
that, in domain adaptation, one exploits the limited access to test-time corrupted
samples to adjust certain network parameters. Hence, it would be interesting to
investigate the utility of PRIME under the setting of domain adaption.

3 We provide the per-corruption performance of every method in Appendix H.
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Table 2. Performance of different methods in concert with domain adaptation on IN-
100. Partial adaptation uses 8 samples; full adaptation uses 400 corrupted samples.
Network used: ResNet-18.

IN-100-C acc. (↑) IN-100 (↑)

Method w/o single partial full single

Standard 49.7 53.8 62.0 63.9 88.1
AugMix 60.7 65.5 71.3 73.0 88.3
DA 67.7 70.2 72.7 74.6 86.3
PRIME 71.6 73.5 75.3 76.6 85.7

To that end, we combine our method with the adaption trick of [39]. Specif-
ically, we adjust the batch normalization (BN) statistics of our models using a
few corrupted samples. Suppose zs ∈ {µs, σs} are the BN mean and variance
estimated from the training data, and zt ∈ {µt, σt} are the corresponding statis-
tics computed from n unlabelled, corrupted test samples, then we re-estimate
the BN statistics as follows.

ẑ =
N

N + n
zs +

n

N + n
zt. (7)

We consider three adaptation scenarios: single sample (n = 1, N = 16), partial
(n = 8, N = 16) and full (n = 400, N = 0) adaptation. Here, we do not perform
parameter tuning for N . As shown in Tab. 2, simply correcting BN statistics
using as little as 8 corrupted samples pushes the corruption accuracy of PRIME
from 71.6% to 75.3%. In general, PRIME yields cumulative gains in combination
with adaptation and has the best IN-100-C accuracy.

5 Robustness insights using PRIME

In this section, we exploit the simplicity and the controllable nature of PRIME to
investigate different aspects behind robustness to common corruptions. We first
analyze how each transformation domain contributes to the overall robustness
of the network. Then, we empirically locate and justify the benefits of mixing
the transformations of each domain. Moreover, we demonstrate the existence of
a robustness-accuracy trade-off, and, finally, we comment on the low-complexity
benefits of PRIME in different data augmentation settings.

5.1 Contribution of transformations

We want to understand how the transformations in each domain of Eq. (1) con-
tribute to the overall robustness. To that end, we conduct an ablation study
on IN-100-C by training a ResNet-18 with the max-entropy transformations of
PRIME individually or in combination. As shown in Tab. 3, spectral transfor-
mations mainly help against blur, weather and digital corruptions. Spatial oper-
ations also improve on blurs, but on elastic transforms as well (digital). On the



10 A. Modas et al.

Table 3. Impact of the different max-entropy primitives (ω: spectral, γ: color, τ :
spatial) in PRIME on common corruption accuracy (↑) of a ResNet-18. All the trans-
formations are essential for the performance of PRIME. The JSD loss is not used.

Transform IN-100-C Noise Blur Weather Digital IN-100

None 49.7 27.3 48.6 54.8 62.6 88.0
ω 64.1 60.7 55.4 66.6 72.9 87.3
τ 53.8 30.1 56.2 57.6 65.4 87.0
γ 59.9 67.4 52.6 54.4 67.1 86.9
ω+τ 64.5 58.5 57.3 66.8 73.9 87.7
ω+γ 67.5 77.2 55.7 65.3 74.2 87.1
τ+γ 63.3 74.7 57.4 56.2 67.8 86.2
ω+τ+γ 68.8 78.8 58.3 66.0 74.8 87.1

contrary, color transformations excel on noises and certain high frequency digital
distortions, e.g., pixelate and JPEG artefacts, and have minor effect on weather
changes. Besides, incrementally combining the transformations lead to cumula-
tive gains e.g., spatial+color help on both noises and blurs. Yet, for obtaining the
best results, the combination of all transformations is required. This means that
each transformation increases the coverage over the space of possible distortions
and the increase in robustness comes from their cumulative contribution.

5.2 The role of mixing

In most data augmentation methods, besides the importance of the transforma-
tions themselves, mixing has been claimed as an essential module for increasing
diversity in the training process [48,47,22,44]. In our attempt to provide insights
on the role of mixing in the context of common corruptions, we found out that
it is capable of constructing augmented images that look perceptually similar to
their corrupted counterparts. In fact, the improvements on specific corruption
types observed in Tab. 3 can be largely attributed to mixing. As exemplified
in Fig. 3, careful combinations of spectral transformations with the clean image
introduce brightness and contrast-like artefacts that look similar to the corre-
sponding corruptions in IN-C. Also, combining spatial transformations creates
blur-like artefacts that look identical to zoom blur in IN-C. Finally, notice how
mixing color transformations helps fabricate corruptions of the “noise” category.
This means that the max-entropy color model of PRIME enables robustness to
different types of noise without explicitly adding any during training.

Note that one of the main goals of data augmentation is to achieve maximum
coverage of the space of possible distortions using a limited transformation bud-
get, i.e., within a few training epochs. The principle of max-entropy guarantees
this within each primitive, but the effect of mixing on the overall space is harder
to quantify. In this regard, we can use the distance in the embedding space, φ,
of a SimCLRv2 [7] model as a proxy for visual similarity [49,30]. We are inter-
ested in measuring how mixing the base transformations changes the likelihood
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spectral spectral
PRIME

spectral spectral
PRIME

PRIME PRIME

Fig. 3. Mixing produces images that are visually similar to the test-time corruptions.
Each example shows the clean image, the PRIME image and the corresponding com-
mon corruption that resembles the image produced by mixing. We also report the
mixing combination used for recreating the corruption. See Appendix D for additional
examples.

Table 4. Minimum cosine distances in the ResNet-50 SimCLRv2 embedding space
between 100 augmented samples from 1000 ImageNet images, and their corresponding
common corruptions.

Method
Min. cosine distance (×10−3)

Avg. (↓) Median (↓)
None (clean) 25.38 6.44

AugMix (w/o mix) 20.57 3.56
PRIME (w/o mix) 10.61 1.88

AugMix 17.48 2.61
PRIME 7.71 1.61

that an augmentation scheme generates some sample during training that is vi-
sually similar to some of the common corruptions. To that end, we randomly
select N = 1000 training images {xn}Nn=1 from IN, along with their C = 75
(15 corruptions of 5 severity levels) associated common corruptions {x̂cn}Cc=1,
and generate for each of the clean images another T = 100 transformed samples
{x̃tn}Tt=1 using each augmentation scheme. Moreover, for each corruption x̂cn we
find its closest neighbor x̃tn from the set of generated samples using the cosine
distance in the embedding space. Our overall measure of fitness is

1

NC

N∑
n=1

C∑
c=1

min
t

{
1−

(
φ(x̂cn)>φ(x̃tn)

‖φ(x̂cn)‖2 ‖φ(x̃tn)‖2

)}
. (8)

Table 4 shows the values of this measure applied to AugMix and PRIME,
with and without mixing. For reference, we also report the values of the clean (no
transform) images {xn}Nn=1. More percentile scores can be found in Appendix F.
Clearly, mixing helps reduce the distance between the common corruptions and
the augmented samples from both methods. We also observe that PRIME, even
with only 100 augmentations per image – in the order of the number of training



12 A. Modas et al.

10−3 10−2 10−1 100 101 102

Parameter scale α

0.90

0.92

0.94

V
al

id
at

io
n

ac
c.

Robustness tradeoff on CIFAR-10

0.80

0.84

0.88

10−2 10−1 100 101 102

Parameter scale α

0.82

0.84

0.86

Robustness tradeoff on IN-100

0.55

0.60

0.65

R
ob

us
t

ac
c.

Fig. 4. Robustness vs. accuracy of a ResNet-18 (w/o JSD) on CIFAR-10 (left) and
ImageNet-100 (right), when trained multiple times with PRIME. On each training
instance, the transformation strength is scaled by α. Note the different scale in axes.

epochs – can generate samples that are twice as close to the common corruptions
as AugMix. In fact, the feature similarity between training augmentations and
test corruptions was also studied in [29], with an attempt to justify the good per-
formance of AugMix on C-10. Yet, we see that the fundamental transformations
of AugMix are not enough to span a broad space guaranteeing high perceptual
similarity to IN-C. The significant difference in terms of perceptual similarity
in Tab. 4 between AugMix and PRIME may explain the superior performance
of PRIME on IN-100-C and IN-C (cf. Tab. 1)4.

5.3 Robustness vs. accuracy trade-off

An important phenomenon observed in the literature of adversarial robustness
is the so-called robustness-accuracy trade-off [16,43,35], where technically ad-
versarial training [27] with smaller perturbations (typically smaller ε) results
in models with higher standard but lower adversarial accuracy, and vice versa.
In this sense, we want to understand if the strength of the image transforma-
tions introduced through data augmentations in PRIME can also cause such
phenomenon in the context of robustness to common corruptions. As described
in Sec. 2, each of the transformations of PRIME has a strength parameter σ,
which can be seen as the analogue of ε in adversarial robustness. Hence, we can
easily reduce or increase the strength of the transformations by setting σ̂ = ασ,
where α ∈ R+. Then, by training a network for different values of α we can
monitor its accuracy on the clean and the corrupted datasets.

We train a ResNet-18 on C-10 and IN-100 using the setup of Sec. 4.1. For
reducing complexity, we do not use the JSD loss and train for 30 epochs. This
sub-optimal setting could cause some performance drop compared to the results
of Tab. 1, but we expect the overall trends in terms of accuracy and robustness
to be preserved. Regarding the scaling of the parameters’ strength, for C-10 we
set α ∈ [10−3, 102] and sample 100 values spaced evenly on a log-scale, while for
IN-100 we set α ∈ [10−2, 102] and we sample 20 values.

The results are presented in Fig. 4. For both C-10 and IN-100, it seems that
there is a sweet spot for the scale around α = 0.2 and α = 1 respectively, where

4 A visualization of the augmented space using PCA can be found in Appendix G.
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Fig. 5. Accuracy of a ResNet-18 (w/o JSD) on CIFAR-10 (left) and ImageNet-100
(right) when augmenting the training sets with additional PRIME counterparts off-line.
Dashed lines represent the accuracy achieved by training under the same setup, but
generating the transformed samples during training (on-line augmentation). Validation
accuracy is omitted because it is rather constant: around 93.4% for CIFAR-10 and
around 87% for ImageNet-100.

the accuracy on common corruptions reaches its maximum. For α smaller than
these values, we observe a clear trade-off between validation and robust accuracy.
While the robustness to common corruptions increases, the validation accuracy
decays. However, for α greater than the sweet-spot values, we observe that the
trade-off ceases to exist since both the validation and robust accuracy present
similar behaviour (slight decay). In fact, these observations indicate that robust
and validation accuracies are not always positively correlated and that one might
have to slightly sacrifice validation accuracy in order to achieve robustness.

5.4 Sample complexity

Finally, we investigate the necessity of performing augmentation during training
(on-line augmentation), compared to statically augmenting the dataset before
training (off-line augmentation). On the one hand, on-line augmentation is use-
ful when the dataset is huge and storing augmented versions requires a lot of
memory. Besides, there are cases where offline augmentation is not feasible as it
relies on pre-trained or generative models which are unavailable in certain sce-
narios, e.g., DeepAugment [20] or AdA [5] cannot be applied on C-100. On the
other hand, off-line augmentation may be necessary to avoid the computational
cost of generating augmentations during training.

To this end, for each of the C-10 and IN-100 training sets, we augment them
off-line with k = 1, 2, . . . , 10 i.i.d. PRIME transformed versions. Afterwards,
for different values of k, we train a ResNet-18 on the corresponding augmented
dataset and report the accuracy on the validation set and the common corrup-
tions. For the training setup, we follow the settings of Sec. 4.1, but without JSD
loss. Also, since we increase the size of the training set by (k+ 1), we also divide
the number of training epochs by the same factor, in order to keep the same
overall number of gradient updates.
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The performance on common corruptions is presented in Fig. 5. The first
thing to notice is that, even for k = 1, the obtained robustness to common
corruptions is already quite good. In fact, for IN-100 the accuracy (65%) is al-
ready better than AugMix (60.7% with JSD loss cf. Tab. 1). Regarding C-10, we
observe that for k = 4 the actual difference with respect to the on-line augmen-
tation is almost negligible (88.8% vs. 89.3%), especially considering the overhead
of transforming the data at every epoch. Technically, this means that augment-
ing C-10 with 4 PRIME counterparts is enough for achieving good robustness
to common corruptions. Finally, we also see in Fig. 5 that the corruption accu-
racy on IN-100 presents a very slow improvement after k = 4. Comparing the
accuracy at this point (67.2%) to the one obtained with on-line augmentation
and without JSD (68.8% cf. Tab. 3) we observe a gap of 1.6%. Hence, given the
cost of on-line augmentation on such large scale datasets, simply augmenting the
training with 4 extra PRIME samples presents a good compromise for achieving
competitive robustness. Nevertheless, the increase of 1.6% introduced by on-line
augmentation is rather significant, hinting that generating transformed samples
during training might be necessary for maximizing performance. In this regard,
the lower computational complexity of PRIME allows it to easily achieve this
+1.6% gain through on-line augmentation, since it only requires 1.27× addi-
tional training time compared to standard training, and only 1.06× compared
to AugMix, but with much better performance. This can be a significant advan-
tage with respect to complex methods, like DeepAugment, that cannot be even
applied on-line (require heavy pretraining).

6 Related work

Common corruptions Towards evaluating the robustness of deep neural net-
works (DNNs) to natural distribution shifts, the authors in [21] proposed com-
mon corruptions benchmarks (CIFAR-10-C and ImageNet-C) constituting 15
realistic image distortions. Later studies [20] considered the example of blurring
and demonstrated that performance improvements on these common corrup-
tions do generalize to real-world images, which supports the use of common
corruptions benchmarks. Recent work [29] showed that current augmentation
techniques undergo a performance degradation when evaluated on corruptions
that are perceptually dissimilar from those in ImageNet-C. In addition to com-
mon corruptions, current literature studies other benchmarks e.g., adversarially
filtered data [23], artistic renditions [20] and in-domain datasets [36]. In Ap-
pendix J, we show that PRIME also improves robustness on these benchmarks.

Improving corruption robustness Data augmentation has been the central
pillar for improving the generalization of DNNs [12,48,10,47,26]. A notable aug-
mentation scheme for endowing corruption robustness is AugMix [22], which
employs a careful combination of stochastic augmentation operations and mix-
ing. AugMix attains significant gains on CIFAR-10-C, but it does not perform as
well on larger benchmarks like ImageNet-C. DeepAugment (DA) [20] addresses
this issue and diversifies the space of augmentations by introducing distorted
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images computed by perturbing the weights of image-to-image networks. DA,
combined with AugMix, achieves the current state-of-the-art on ImageNet-C.
Other schemes include: (i) worst-case noise training [37] or data augmentation
through Fourier-based operations [41], (ii) inducing shape bias through stylized
images [17], (iii) adversarial counterparts of DeepAugment [5] and AugMix [44],
(iv) pre-training and/or adversarial training [46,24], (v) constraining the total
variation of convolutional layers [38] or compressing the model [13] and (vi)
learning the image information in the phase rather than amplitude [6] Besides,
Vision Transformers [15] have been shown to be more robust to common cor-
ruptions than standard CNNs [3,31] when trained on big data. It would thus be
interesting to study the effect of extra data alongside PRIME in future works.
Finally, unsupervised domain adaptation [2,39] using a few corrupted samples
has also been shown to provide a considerable boost in corruption robustness.
Nonetheless, domain adaptation is orthogonal to this work as it requires knowl-
edge of the target distribution.

7 Concluding remarks

We took a systematic approach to understand the notion of common corruptions
and formulated a universal model that encompasses a wide variety of semantic-
preserving image transformations. We then proposed a novel data augmentation
scheme called PRIME, which instantiates our model of corruptions, to confer ro-
bustness against common corruptions. From a practical perspective, our method
is principled yet efficient and can be conveniently incorporated into existing
training procedures. Moreover, it yields a strong baseline on existing corruption
benchmarks outperforming current standalone methods. Additionally, our thor-
ough ablations demonstrate that diversity among basic augmentations (primi-
tives) – which AugMix and other approaches lack – is essential, and that mixing
plays a crucial role in the success of both prior methods and PRIME. In gen-
eral, while complicated methods like DeepAugment perform well, it is difficult
to understand, ablate and apply these online. Instead, we show that a simple
model-based stance with a few guiding principles can be used to build a very
effective augmentation scheme that can be easily understood, ablated and tuned.
We believe that our insights and PRIME pave the way for building robust mod-
els in real-life scenarios. PRIME, for instance, provides a ready-to-use recipe for
data-scarce domains such as medical imaging.
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F.A.: Generalisation in humans and deep neural networks. In: Advances in Neural
Information Processing Systems (2018)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016)

20. Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai,
R., Zhu, T., Parajuli, S., Guo, M., Song, D., Steinhardt, J., Gilmer, J.: The many
faces of robustness: A critical analysis of out-of-distribution generalization. In:
IEEE Conference on Computer Vision and Pattern Recognition (2021)

21. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: International Conference on Learning Represen-
tations (2019)

22. Hendrycks*, D., Mu*, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan,
B.: Augmix: A simple method to improve robustness and uncertainty under data
shift. In: International Conference on Learning Representations (2020)

23. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial
examples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021)

24. Kireev, K., Andriushchenko, M., Flammarion, N.: On the effectiveness of adversar-
ial training against common corruptions. arXiv preprint arXiv:2103.02325 (2021)

25. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

26. Lopes, R.G., Yin, D., Poole, B., Gilmer, J., Cubuk, E.D.: Improving robustness
without sacrificing accuracy with patch gaussian augmentation. arXiv preprint
arXiv:1906.02611 (2019)

27. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (Apr 2018)

28. Masiha, M.S., Gohari, A., Yassaee, M.H., Aref, M.R.: Learning under distribu-
tion mismatch and model misspecification. In: IEEE International Symposium on
Information Theory, (ISIT) (2021)

29. Mintun, E., Kirillov, A., Xie, S.: On interaction between augmentations and cor-
ruptions in natural corruption robustness. arXiv preprint arXiv:2102.11273 (2021)

30. Moayeri, M., Feizi, S.: Sample efficient detection and classification of adversarial
attacks via self-supervised embeddings. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) (2021)

31. Morrison, K., Gilby, B., Lipchak, C., Mattioli, A., Kovashka, A.: Exploring cor-
ruption robustness: Inductive biases in vision transformers and mlp-mixers. arXiv
preprint arXiv:2106.13122 (2021)

32. Nesterov, Y.E.: A method for solving the convex programming problem with con-
vergence rate O(1/k2). Dokl. Akad. Nauk SSSR (1983)

33. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems (2019)



18 A. Modas et al.

34. Petrini, L., Favero, A., Geiger, M., Wyart, M.: Relative stability toward diffeomor-
phisms indicates performance in deep nets. In: Advances in Neural Information
Processing Systems (2021)

35. Raghunathan, A., Xie, S.M., Yang, F., Duchi, J., Liang, P.: Understanding and
mitigating the tradeoff between robustness and accuracy. In: Proceedings of the
37th International Conference on Machine Learning (Jul 2020)

36. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize
to ImageNet? In: Proceedings of the 36th International Conference on Machine
Learning (2019)

37. Rusak, E., Schott, L., Zimmermann, R.S., Bitterwolf, J., Bringmann, O., Bethge,
M., Brendel, W.: A simple way to make neural networks robust against diverse
image corruptions. In: Computer Vision – ECCV 2020 (2020)

38. Saikia, T., Schmid, C., Brox, T.: Improving robustness against common corruptions
with frequency biased models. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (2021)

39. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Im-
proving robustness against common corruptions by covariate shift adaptation. In:
Advances in Neural Information Processing Systems (2020)

40. Smith, L.N., Topin, N.: Super-convergence: Very fast training of residual networks
using large learning rates. arXiv preprint arXiv:1708.07120 (2018)

41. Sun, J., Mehra, A., Kailkhura, B., Chen, P.Y., Hendrycks, D., Hamm, J., Mao,
Z.M.: Certified adversarial defenses meet out-of-distribution corruptions: Bench-
marking robustness and simple baselines. arXiv preprint arXiv:arXiv:2112.00659
(2021)

42. Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., Schmidt, L.: Measuring
robustness to natural distribution shifts in image classification. In: Advances in
Neural Information Processing Systems (2020)

43. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be
at odds with accuracy. In: International Conference on Learning Representations
(May 2019)

44. Wang, H., Xiao, C., Kossaifi, J., Yu, Z., Anandkumar, A., Wang, Z.: Augmax: Ad-
versarial composition of random augmentations for robust training. In: Advances
in Neural Information Processing Systems (2021)

45. Xu, A., Raginsky, M.: Information-theoretic analysis of generalization capability
of learning algorithms. In: Advances in Neural Information Processing Systems
(2017)

46. Yi, M., Hou, L., Sun, J., Shang, L., Jiang, X., Liu, Q., Ma, Z.: Improved OOD
generalization via adversarial training and pretraing. In: Proceedings of the 86th
International Conference on Machine Learning (2021)

47. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF
International Conference on Computer Vision (2019)

48. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (2018)

49. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable ef-
fectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2018)



PRIME: A Few Primitives Can Boost Robustness to Common Corruptions 19

A Maximum entropy transformations

To guarantee as much diversity as possible in our model of common corruptions,
we follow the principle of maximum entropy to define our distributions of trans-
formations [8]. Note that using a set of augmentations that guarantees maximum
entropy comes naturally when trying to optimize the sample complexity derived
from certain information theoretic generalization bounds, both in the clean [45]
and corrupted setting [28]. Specifically, the principle of maximum entropy pos-
tulates favoring those distributions that are as unbiased as possible given the set
of constraints that defines a family of distributions. In our case, these constraints
are given in the form of an expected strength, i.e., σ2, desired smoothness, i.e.,
K, and/or some boundary conditions, e.g.,, the displacement field must be zero
at the borders of an image.

Let us make this formal. In particular, let I denote the space of all images x :
R2 → R3, and let f : I → I denote a random image transformation distributed
according to the law µ. Further, let us define a set of constraints C ⊆ F , which
restrict the domain of applicability of f , i.e., f ∈ C, and where F denotes the
space of functions I → I. The principle of maximum entropy postulates using
the distribution µ which has maximum entropy given the constraints:

maximize
µ

H(µ) =

∫
F

dµ(f) log(µ(f)) (9)

subject to f ∈ C ∀f ∼ µ,

where H(µ) represents the entropy of the distribution µ [8]. In its general form,
solving Eq. (9) for any set of constraints C is intractable. However, leveraging
results from statistical physics, we will see that for our domains of interest,
Eq. (9) has a simple solution. In what follows we derive those distributions for
each of our family of transformations.

A.1 Spectral domain

As we introduced in Sec. 2, we propose to parameterize our family of spectral
transformations using an FIR filter of size Kω ×Kω. That is, we are interested
in finding a maximum entropy distribution over the space of spectral transfor-
mations with a finite spatial support.

Nevertheless, on top of this smoothness constraint we are also interested
in controlling the strength of the transformations. We define the strength of a
distribution of random spectral transformations applied to an image x, as the
expected L2 norm of the difference between the clean and transformed images,
i.e.,

Eω‖x− ω(x)‖22 = Eω′‖ω′ ∗ x‖22, (10)

which using Young’s convolution inequality is bounded as

Eω′‖ω′ ∗ x‖22 ≤ ‖x‖21 Eω′‖ω′‖22. (11)
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Indeed, we can see that the strength of a distribution of random smooth spectral
transformations is governed by the expected norm of its filter. In the discrete
domain, this can be simply computed as

Eω′‖ω′‖22 =

Kω∑
i=1

Kω∑
j=1

Eω′ω′2
i,j . (12)

Considering this, we should then look for a maximum entropy distribution
whose samples satisfy

C =
{
ω′ ∈ RKω×Kω ∧ Eω′‖ω′‖22 = K2

ωσ
2
ω |ω ∼ µω

}
. (13)

Now, note that this set is defined by an equality constraint involving a sum
of K2

ω quadratic random variables. In this sense, we know that the Equipartition
Theorem [1] applies and can be used to identify the distribution of maximum
entropy. That is, the solution of Eq. (9) in the case that C is given by Eq. (13),
is equal to the distribution of FIR filters whose coefficients are iid with law
N (0, σ2

ω).

A.2 Spatial domain

The distribution of diffeomorphisms of maximum entropy with a fixed norm
was derived by Petrini et al. in [34]. The derivation is similar to the spectral
domain, but with the additional constraint that the diffeomorphisms produce a
null displacement at the borders of the image.

A.3 Color domain

We can follow a very similar route to derive the distribution of maximum entropy
among all color transformations, where, specifically, we constraint the transfor-
mations to yield γ(0) = 0 and γ(1) = 1 on every channel independently. Doing
so, the derivation of the maximum entropy distribution can follow the same steps
as in [34].

B PRIME implementation details

In this section, we provide additional details regarding the implementation of
PRIME described in Sec. 3. Since the parameters of the transformations are
empirically selected, we first provide more visual examples for different values of
smoothness K and strength σ. Then, we give the exact values of the parameters
we use in our experiments supported by additional visual examples and we also
describe the parameters we use for the mixing procedure.



PRIME: A Few Primitives Can Boost Robustness to Common Corruptions 21

B.1 Additional transformed examples

We provide additional visual examples for each of the primitives of PRIME illus-
trating the effect of the following two factors: (i) smoothness controlled by pa-
rameterK, and (ii) strength of the transformation σ on the resulting transformed
images created by the primitives. Figs. 6, 7 and 8 demonstrate the resulting spec-
trum of images created by applying spectral, spatial and color transformations
while varying the parameters K and σ. Notice how increasing the strength σ
of each transformation drifts the augmented image farther away from its clean
counterpart, yet produces plausible images when appropriately controlled.

K
=

3

= 0.5 = 1.0 = 2.0 = 4.0

K
=

5
K

=
7

Fig. 6. Example images (IN) generated with spectral transformations from our common
corruptions model. In each row, we enlarge the transformation strength σω from left
to right. From top to bottom, we increase the spectral resolution of the filter Kω.
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K
=

20
0

= 0.5 = 1.0 = 2.0 = 4.0

K
=

40
0

K
=

60
0

Fig. 7. Example images (IN) generated with spatial transformations from our common
corruptions model. In each row, we enlarge the transformation strength στ from left
to right. From top to bottom, we increase the cut frequency Kτ .

K
=

12
5

= 0.005 = 0.01 = 0.02 = 0.04

K
=

25
0

K
=

50
0

Fig. 8. Example images (IN) generated with color transformations from our common
corruptions model. In each row, we enlarge the transformation strength σγ from left
to right. From top to bottom, we increase Kγ .
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B.2 Transformation parameters

We now provide the parameters of each transform that we selected and used
in our experiments. In general, the values might vary for inputs of different
dimensionality and resolution (i.e., CIFAR-10/100 vs ImageNet images).

Spectral transform Regarding the spectral transform of Eq. (3) we found out
that, for the FIR filter ω′, a size of Kω = 3 results into semantically preserving
images for CIFAR-10/100 and ImageNet. For the latter, one can stretch the filter
size to 5 × 5 or even 7 × 7, but then slight changes on the strength, σω, might
destroy the image semantics. Eventually, given Kω = 3, we observed that σω = 4
is good enough for CIFAR-10/100 and ImageNet.

Spatial transform Concerning the spatial transform of Eq. (5), for the cut-off
parameter Kτ we followed the value regimes proposed by Petrini et al. [34] and
set Kτ = 100 for CIFAR-10/100; Kτ = 500 for ImageNet. Furthermore, for a
given Kτ , Petrini et al. also compute the appropriate bounds for the transfor-
mation strength, σ2

τmin
≤ σ2

τ ≤ σ2
τmax

, such that the resulting diffeomorphism re-
mains bijective and the pixel displacement does not destroy the image. In fact, in
their original implementation5, Petrini et al. directly sample στ ∼ U(στmin , στmax)
instead of explicitly setting the strength. In our implementation, we also follow
the same approach.

Color transform Regarding the color transform of Eq. (6) we found out that
for CIFAR-10/100 a cut-off value of Kγ = 10 and a strength of σγ = 0.01 re-
sult into semantically preserving images for CIFAR-10/100; while for ImageNet,
the corresponding values are Kγ = 500 and σγ = 0.05. As for the bandwidth
(consecutive frequencies) ∆ we observed that a value of ∆ = 20 was memory
sufficient for ImageNet, but for CIFAR-10/100, due to its lower dimensionality,
we can afford all the frequencies to be used, e.g., ∆ = Kγ .

Finally, as mentioned in Sec. 3, we randomly sample the strength of the transfor-
mations σ from a uniform distribution of given minimum and maximum values.
Regarding the maximum, we always set it to be the one we selected through
visual inspection, while the minimum is set to 0. Fig. 9 displays additional aug-
mented images created by applying each of the primitive transformations in our
model using the aforementioned set of parameters on ImageNet. Our choice of
parameters produces diverse image augmentations, while retaining the semantic
content of the images.

5 The official implementation of Petrini et al. diffeomorphisms can be found at https:
//github.com/pcsl-epfl/diffeomorphism.

https://github.com/pcsl-epfl/diffeomorphism
https://github.com/pcsl-epfl/diffeomorphism
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clean spectral spatial color

Fig. 9. Example images (IN) generated with the transformations of our common cor-
ruptions model. Despite the perceptibility of the introduced distortion, the image se-
mantics are preserved.
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B.3 Parameters for mixing procedure

Regarding the mixing parameters of our experiments, we fix the total number
of generated transformed images (width) to be n = 3. As for the composition
of the transformations (depth), we follow a stochastic approach such that, on
every iteration i ∈ {1, . . . , n}, only m̂ ∈ [1,m] compositions are performed, with
m = 3. In fact, in Algorithm 1 we do not explicitly select randomly a new m̂ for
every i but we provide the identity operator Id instead. This guarantees that, in
some cases, no transformation is performed.

C Detailed experimental setup

We now provide all the experimental details for the performance evaluation of
Sec. 4. All models are implemented in PyTorch [33] and are trained for 100 epochs
using a cyclic learning rate schedule [40] with cosine annealing and a maximum
learning rate of 0.2 unless stated otherwise. For IN, we fine-tune a regularly
pretrained network (provided in PyTorch) with a maximum learning rate of
0.01 following Hendrycks et al. [20]. We use SGD optimizer with momentum
factor 0.9 and Nesterov momentum [32]. On C-10 & C-100, we set the batch
size to 128 and use a weight decay of 0.0005. On IN-100 and IN, the batch size
is 256 and weight decay is 0.0001. We employ ResNet-18 [19] on C-10, C-100
and IN-100; and use ResNet-50 for IN. The augmentation hyperparameters for
AugMix and DeepAugment are the same as in their original implementations.

D Additional mixing examples

Continuing Sec. 5.2, we present additional examples in Fig. 10 to demonstrate the
significance of mixing in PRIME. We observe that the mixing procedure is capa-
ble of constructing augmented images that look perceptually similar to common
corruptions. To illustrate this, we provide several examples in Fig. 10 for PRIME
(upper half) and AugMix (lower half) on CIFAR-10 and ImageNet-100. As shown
in Figs. 10a and 10b, mixing spectral transformations with the clean images tends
to create weather-like artefacts resembling frost and fog respectively. Carefully
combining clean and spatially transformed images produces blurs (Fig. 10c) and
even elastic transform (Fig. 10e). Moreover, blending color augmentation with
clean image produces shot noise as evident in Fig. 10d; Whereas spectral+color
transformed image looks similar to snow corruption (Fig. 10f). All these obser-
vations explain the good performance of PRIME on the respective corruptions.

Apart from the mixing in PRIME, the mixing in AugMix also plays a crucial
role in its performance. In fact, a combination of translate and shear operations
with the clean image create blur-like modifications that resemble defocus blur
(Fig. 10g) and motion blur (Fig. 10i). This answers why AugMix excels at blur
corruptions and is even better than DeepAugment against blurs (cf. Tab. 7). In
addition, on CIFAR-10, notice that mixing solarize and clean produces impulse
noise-like modifications (Fig. 10j), which justifies the improvements on noise
attained by AugMix (refer Tab. 6).
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PRIME

clean
PRIME

clean + spectral
ImageNet-100-C

frost

(a) clean+spectral

≈ frost

clean
PRIME

clean + spectral + spectral
ImageNet-100-C

fog

(b) clean+spectral

+spectral ≈ fog

clean
PRIME

spatial + spatial
ImageNet-100-C

glass_blur

(c) spatial+spatial

≈ glass blur

clean
PRIME

clean + color
ImageNet-100-C

shot_noise

(d) clean+color

≈ shot noise

clean
PRIME

clean + spatial spatial
ImageNet-100-C
elastic_transform

(e) clean+spatial ◦ spatial
≈ elastic transform

(f) spectral+color

≈ snow

AugMix

clean
AugMix

clean + trans + trans
ImageNet-100-C

defocus_blur

(g) clean+translate

+translate ≈ defocus blur

clean
AugMix

trans + shear  shear
ImageNet-100-C
elastic_transform

(h) translate+shear ◦ shear
≈ elastic transform

clean
AugMix

shear + trans + trans
CIFAR-10-C
motion_blur

(i) shear+translate+

translate ≈ motion blur

clean
AugMix

clean + solarize
CIFAR-10-C

impulse_noise

(j) clean+solarize

≈ impulse noise

Fig. 10. The mixing procedure creates distorted images that look visually similar to
the test-time corruptions. In each example (CIFAR-10/ImageNet-100), we show the
clean image, the PRIME/AugMix augmented image and the corresponding common
corruption that resembles the image produced by mixing. We also report the mixing
combination used for recreating the corruption. ◦ stands for composition and + repre-
sents convex combination (mixing). (Top 3 rows): PRIME, and (Last 2 rows): AugMix.
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E SimCLR nearest neighbours

Regarding the minimum distances in the SimCLRv2 embedding space of Tab. 4,
we also provide in Fig. 11 some visual examples of the nearest neighbours of
each method. In general, we observe that indeed smaller distance in the embed-
ding space typically corresponds to closer visual similarity in the input space,
with PRIME generating images that resemble more the corresponding common
corruptions, compared to AugMix. Nevertheless, we also notice that for “Blurs”
AugMix generates images that are more visually similar to the corruptions than
PRIME, an observation that is on par with the lower performance of PRIME
(without JSD) on blur corruptions (cf. Tab. 7) compared to AugMix.

Corruption AugMix (no) AugMixPRIME (no) PRIME
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Fig. 11. Examples of nearest neighbours in SimCLRv2 embedding space. Columns:
(first): the common corruption; (second): AugMix transformations (no mixing); (third):
PRIME transformations (no mixing); (fourth): AugMix; (fifth): PRIME.



28 A. Modas et al.

Table 5. Percentiles of the minimum cosine distances in the ResNet-50 SimCLRv2
embedding space between 100 augmented samples from 1000 ImageNet images, and
their corresponding common corruptions.

Method
Min. cosine distance (×10−3) (↓)
5% 10% 25% 50% 75%

None (clean) 0.33 0.64 1.97 6.43 17.44

AugMix (w/o mix) 0.17 0.31 1.04 3.55 10.71
PRIME (w/o mix) 0.04 0.07 0.24 1.87 7.11

AugMix 0.11 0.21 0.69 2.61 8.37
PRIME 0.08 0.12 0.32 1.61 5.76

F Cosine distance statistics

Recall that in Tab. 4 we provide the average and the median of the minimum
cosine distances computed in the SimCLRv2 embedding space. We now provide
in Tab. 5 the values for different percentiles of these distances. We observe that
the behaviour is consistent across different percentiles: PRIME (with or without
mixing) is always producing feature representations that are more similar to
the common corruptions, compared to any version of AugMix. Note also that
for smaller percentiles (5%, 10%, 25%) it seems that PRIME without mixing
reaches even lower values than PRIME. However, the difference with respect to
PRIME can be considered as insignificant since it is in the order of 10−5 (note
that all values in the table are in the order of 10−3); while a larger population
of images (> 1000) would potentially smooth out this difference.

G Embedding space visualization

To qualitatively compare how diverse are the augmentations of PRIME with
respect to other methods, we can follow the procedure in [44]. We randomly
select 3 images from ImageNet, each one belonging to a different class. For each
image, we generate 100 transformed instances using AugMix and PRIME, while
with DeepAugment we can only use the original images and the 2 transformed
instances that are pre-generated with the EDSR and CAE image-to-image net-
works that DeepAugment uses. Then, we pass the transformed instances of each
method through a ResNet-50 pre-trained on ImageNet and extract the features
of its embedding space. On the features extracted for each method, we perform
PCA and then visualize the projection of the features onto the first two princi-
pal components. We visualize the projected augmented space in Fig. 12, which
demonstrates that PRIME generates more diverse (larger variance) features than
AugMix and DeepAugment.
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Fig. 12. Projections of augmentations generated by different methods on the embed-
ding space of a ResNet-50.

H Performance per corruption

Beyond the average corruption accuracy that we report in Tab. 1, we also pro-
vide here the performance of each method on the individual corruptions. The
results on CIFAR-10/100 and ImageNet/ImageNet-100 are shown on Tab. 6
and Tab. 7 respectively. Compared to AugMix on CIFAR-10/100, the improve-
ments from PRIME are mostly observed against Gaussian noise (+7.6%/12.3%),
shot noise (+3.3%/7.0%), glass blur (+6.4%/11.0%) and JPEG compression
(+1.3%/2.6%). These results show that PRIME can really push the performance
against certain corruptions in CIFAR-10/100-C despite the fact that AugMix is
already good on these datasets. However, AugMix turns out to be slightly bet-
ter than PRIME against impulse noise, defocus blur and motion blur modifica-
tions; all of which have been shown to be resembled by AugMix created images
(see Fig. 10). With ImageNet-100, PRIME enhances the diversity of augmented
images, and leads to general improvements against all corruptions except cer-
tain blurs. On ImageNet, we observe that, in comparison to DeepAugment, the
supremacy of PRIME is reflected on almost every corruption type, except some
blurs and pixelate corruptions where DeepAugment is slightly better. When
PRIME is used in conjunction with DeepAugment, compared to AugMix com-
bined with DeepAugment, our method seems to lack behind only on blurs, while
on the rest of the corruptions achieves higher robustness.

Table 6. Per-corruption accuracy of different methods on C-10/100 (ResNet-18).

Dataset Method Clean CC
Noise Blur Weather Digital

Gauss. Shot Impulse Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

C-10
Standard 95.0 74.0 45.1 58.7 54.9 83.2 53.3 76.9 79.1 83.1 79.3 89.0 93.6 76.3 83.9 75.1 77.9
AugMix 95.2 88.6 79.3 84.8 85.8 94.1 78.9 92.4 93.4 89.7 89.0 91.9 94.3 90.5 90.5 87.6 87.5
PRIME 94.2 89.8 86.9 88.1 88.6 92.6 85.3 90.8 92.2 89.3 90.5 89.8 93.7 92.4 90.1 88.1 88.8

C-100
Standard 76.7 51.9 25.3 33.7 26.6 60.8 47.1 55.5 57.6 60.8 56.2 62.5 72.2 53.2 63.4 50.1 52.7
AugMix 78.2 64.9 46.7 55.1 60.6 76.2 47.3 72.6 74.3 67.4 64.4 69.9 75.5 67.4 69.6 64.9 61.8
PRIME 78.4 68.2 59.0 62.1 68.1 74.0 58.3 70.5 72.3 68.9 68.5 69.8 76.8 74.4 70.1 65.5 64.4
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Table 7. Per-corruption accuracy of different methods on IN-100 (ResNet-18) and IN
(ResNet-50). † indicates that JSD consistency loss is not used. ∗Models taken from [9].

Dataset Method Clean CC
Noise Blur Weather Digital

Gauss. Shot Impulse Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

IN-100

Standard 88.0 49.7 30.9 29.0 22.0 45.6 44.6 50.4 53.9 43.8 46.2 50.5 78.6 42.9 68.8 68.0 70.6
AugMix 88.7 60.7 45.2 45.8 43.4 58.7 53.3 69.5 71.0 49.1 52.7 60.2 80.7 59.6 73.3 73.6 74.7
DA 86.3 67.7 76.3 75.6 75.7 64.2 61.7 61.3 62.7 54.4 62.8 55.7 81.6 49.7 69.9 83.3 80.6
PRIME 85.9 71.6 80.6 80.0 80.1 57.2 66.3 66.2 68.2 61.5 68.2 57.2 81.2 68.3 73.7 82.9 81.9

DA+AugMix 86.5 73.1 75.2 75.8 74.9 74.1 68.5 76.0 72.1 59.9 66.8 61.4 82.1 72.4 73.1 83.8 81.1
DA+PRIME 84.9 74.9 81.1 80.9 81.2 70.5 74.2 72.0 71.5 66.3 73.6 56.6 81.9 72.8 74.8 83.4 82.3

IN

Standard∗ 76.1 39.2 29.3 27.0 23.8 38.8 26.8 38.7 36.2 32.5 38.1 45.4 68.0 39.0 45.3 44.8 53.4
AugMix∗ 77.5 48.3 40.6 41.1 37.7 47.7 34.9 53.5 49.0 39.9 43.8 47.1 69.5 51.1 52.0 57.0 60.3
DA∗ 76.7 52.6 56.6 54.9 56.3 51.7 40.1 48.7 39.5 44.2 50.3 52.1 71.1 48.3 50.9 65.5 59.3

PRIME† 77.0 55.0 61.9 60.6 60.9 47.6 39.0 48.4 46.0 47.4 50.8 54.1 71.7 58.2 56.3 59.5 62.2

DA+AugMix 75.8 58.1 59.4 59.6 59.1 59.0 46.8 61.1 51.5 49.4 53.3 55.9 70.8 58.7 54.3 68.8 63.3

DA+PRIME† 75.5 59.9 67.4 67.2 66.8 56.2 47.5 54.3 47.3 52.8 56.4 56.3 71.7 62.3 57.3 70.3 65.1

I Performance per severity level

We also want to investigate the robustness of each method on different severity
levels of the corruptions. The results for CIFAR-10/100 and ImageNet/ImageNet-
100 are presented in Tab. 8 and Tab. 9 respectively. With CIFAR-10/100, PRIME
predominantly helps against corruptions with maximal severity and yields +3.9%
and +7.1% gains on CIFAR-10 and CIFAR-100 respectively. Besides on ImageNet-
100, PRIME again excels at corruptions with moderate to higher severity. This
observations also holds when PRIME is employed in concert with DeepAug-
ment. With ImageNet too this trend continues, and we observe that, compared
to DeepAugment, PRIME improves significantly on corruptions of larger severity
(+3.4% and +5.5% on severity levels 4 and 5 respectively). Also, this behaviour
is consistent even when PRIME is combined with DeepAugment and is compared
to DeepAugment+AugMix, where we see that again on levels 4 and 5 there is a
significant improvement of +2.1% and +3.7% respectively.

Table 8. Average accuracy for each corruption severity level of different methods on
C-10 and C-100 (ResNet-18).

Dataset Method Clean CC Avg.
Severity

1 2 3 4 5

C-10
Standard 95.0 74.0 87.4 81.7 75.7 68.3 56.7
AugMix 95.2 88.6 93.1 91.8 89.9 86.7 81.7
PRIME 94.2 89.8 92.8 91.6 90.4 88.6 85.6

C-100
Standard 76.7 51.9 66.7 59.4 52.8 45.0 35.4
AugMix 78.2 64.9 73.3 70.0 66.6 61.3 53.4
PRIME 78.4 68.2 74.0 71.6 69.2 65.6 60.5



PRIME: A Few Primitives Can Boost Robustness to Common Corruptions 31

Table 9. Average accuracy for each corruption severity level of different methods on
IN-100 (ResNet-18) and IN (ResNet-50). † indicates that JSD consistency loss is not
used. ∗Models taken from RobustBench [9].

Dataset Method Clean CC Avg.
Severity

1 2 3 4 5

IN-100

Standard 88.0 49.7 73.5 61.0 49.8 37.2 27.0
AugMix 88.7 60.7 80.4 71.8 63.8 50.3 37.2
DA 86.3 67.7 81.2 75.4 69.9 61.2 50.8
PRIME 85.9 71.6 81.7 77.5 73.4 66.9 58.4

DA+AugMix 86.5 73.1 82.7 78.0 75.5 69.6 59.9
DA+PRIME 84.9 74.9 82.0 78.7 76.4 71.8 65.5

IN

Standard∗ 76.1 39.2 60.6 49.8 39.8 27.7 18.0
AugMix∗ 77.5 48.3 66.7 58.3 51.1 39.1 26.5
DA∗ 76.7 52.6 69.0 61.7 55.4 44.9 32.1

PRIME† 77.0 55.0 68.9 63.1 56.9 48.3 37.6

DA+AugMix 75.8 58.1 70.3 64.5 60.5 53.0 42.2

DA+PRIME† 75.5 59.9 70.8 66.3 61.6 55.1 45.9

J Performance on other corruptions

Finally, to examine the universality of PRIME, we evaluate the performance
of our ImageNet-100 trained models against two other corrupted datasets: (i)
ImageNet-100-C (IN-100-C) [29], and (ii) stylized ImageNet-100 (SIN-100) [17].
While IN-100-C is composed of corruptions that are perceptually dissimilar to
those in IN-100-C, stylized IN-100 only retains global shape information and
discard local texture cues from IN-100 test images, via style transfer. Thus, it
would be interesting test the performance of PRIME against these datasets since
it would serve as a indicator for general corruption robustness of PRIME. More
information about the corruption types contained in IN-100-C is available in the
original paper [29].

Tab. 10 enumerates the classification accuracy of different standalone ap-
proaches against IN-100-C on average, individual corruptions in IN-100-C and
SIN-100. We can see that PRIME surpasses AugMix and DeepAugment by 4%
and 1.2% respectively on IN-100-C. PRIME particularly helps against certain
distortions such as blue noise sample (BSmpl), inverse sparkles and plasma noise.
PRIME also works well against style-transferred images in SIN-100 and improves

Table 10. Classification accuracy of different methods on IN-100-C, IN-100-C and
Stylized IN-100 (SIN-100) with ResNet-18.

Method Clean
IN-100-C IN-100-C IN-100-C

SIN-100
Avg. Avg. BSmpl Brown Caustic Ckbd CSine ISpark Perlin Plasma SFreq Spark

Standard 88.0 49.7 55.1 47.6 71.3 70.1 66.4 29.5 45.7 72.1 34.6 34.9 78.4 18.8
AugMix 88.7 60.7 61.0 63.0 73.2 75.3 69.4 39.9 44.9 77.4 42.8 44.7 79.8 28.0
DA 86.3 67.7 63.8 77.1 76.6 72.6 60.9 42.9 44.3 78.0 43.4 64.5 77.8 29.9

PRIME 85.9 71.6 65.0 74.9 74.3 73.2 59.2 53.4 47.5 76.8 48.6 66.9 75.5 33.1
+1.5x epochs 86.1 72.5 65.9 77.1 75.6 74.1 59.4 54.0 46.3 77.6 50.4 67.7 76.4 34.1
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Table 11. Classification accuracy of different methods on IN-C, IN-C, ImageNet-R
(IN-R) and Stylized IN (SIN) with ResNet-50. † indicates that JSD consistency loss is
not used. ∗Models taken from RobustBench [9].

Method Clean
IN-C IN-C IN-C

IN-R SIN
Avg. Avg. BSmpl Brown Caustic Ckbd CSine ISpark Perlin Plasma SFreq Spark

Standard∗ 76.1 39.2 40.0 36.2 57.8 54.1 46.1 14.4 20.9 61.6 24.3 19.0 65.2 36.2 7.4
AugMix∗ 77.5 48.3 46.5 59.5 56.5 59.1 51.7 25.6 21.6 65.3 23.1 36.2 66.4 41.0 11.2
DA∗ 76.7 52.6 48.3 60.1 61.1 57.7 46.8 25.4 24.4 68.4 26.5 45.6 66.8 42.2 14.2

PRIME† 77.0 55.0 49.6 59.5 61.4 60.1 48.1 26.9 28.3 66.5 36.4 41.9 66.5 42.2 14.0

accuracy by 5.1% over AugMix and 3.2% over DeepAugment. Besides, the di-
versity of our method means that we can actually get a better performance by
increasing the number of training epochs. With 1.5x training epochs, we observe
about 1% accuracy refinement on each benchmark.

We also perform a similar analysis with ImageNet trained models and evalu-
ate their robustness on three other distribution shift benchmarks: (i) IN-C [29],
(ii) SIN [17] as described previously and (iii) ImageNet-R (IN-R) [20]. ImageNet-
R contains naturally occurring artistic renditions (e.g., paintings, embroidery,
etc.) of objects from the ImageNet dataset. The classification accuracy achieved
by different methods on these datasets is listed in Tab. 11. On IN-C, PRIME
outperforms AugMix and DeepAugment by 3.1% and 1.3% respectively. Besides,
PRIME also obtains competitive results on IN-R and SIN datasets. Altogether,
our empirical results indicate that the performance gains obtained by PRIME
indeed translate to other corrupted datasets.
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