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Abstract. Contrastive learning has proven effective for pre-training im-
age models on unlabeled data with promising results for tasks such as
medical image classification. Using paired text (like radiological reports)
during pre-training improves the results even further. Still, most ex-
isting methods target image classification downstream tasks and may
not be optimal for localized tasks like semantic segmentation or object
detection. We therefore propose Localized representation learning from
Vision and Text (LoVT), to our best knowledge, the first text-supervised
pre-training method that targets localized medical imaging tasks. Our
method combines instance-level image-report contrastive learning with
local contrastive learning on image region and report sentence represen-
tations. We evaluate LoVT and commonly used pre-training methods
on an evaluation framework of 18 localized tasks on chest X-rays from
five public datasets. LoVT performs best on 10 of the 18 studied tasks
making it the preferred method of choice for localized tasks.

Keywords: Representation Learning · Contrastive Learning · Text Su-
pervision

1 Introduction and Motivation

In medical applications of computer vision, high-quality annotated data is scarce
and expensive to acquire, as manually labeling samples typically requires trained
physicians[72]. Therefore, the requirement for large labeled datasets can become
quite problematic and may limit the applications of deep learning in this field.
One approach to overcome this problem is to utilize radiological reports that
are paired with medical images. Such reports are produced routinely in clinical
practice and are typically written by medical experts (e.g. radiologists). They
thus provide a valuable source of semantic information that is available with
little additional costs. Rule-based Natural Language Processing (NLP) models
like CheXpert[37] extract labels from these reports allowing the automatic cre-
ation of large datasets but they also have some significant limitations. Most
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importantly, such approaches are typically limited to classification tasks. They
generate overall labels for reports (and therefore the paired images) but relating
these labels to specific image regions is nontrivial so they cannot be used for
localized tasks like semantic segmentation or object detection. Also, rule-based
NLP models have to be manually created and cannot generalize to different clas-
sification tasks or even different report writing styles[37]. Instead of using these
reports to generate classification labels, the reports can be utilized directly in the
pre-training method, as was first proposed in the ConVIRT method[96]. Here,
the semantic information contained in the reports is used as weak supervision to
pre-train image models that are then fine-tuned on labeled downstream tasks,
where results can be improved or the number of labeled samples can be reduced.
We argue that while this approach is quite promising it is not designed for lo-
calized downstream tasks. For example, ConVIRT[96] only works on per-sample
image representations and does not explicitly provide more localized represen-
tations that might be beneficial for localized tasks like semantic segmentation
and object detection. In this work, we therefore study how pre-training methods
perform on localized tasks and develop a novel pre-training method designed for
localized tasks.

Our contributions are as follows:

– We propose a local contrastive loss allowing to align local representations of
sentences or image regions while encouraging spatial smoothness and sensi-
tivity.

– We split each report into sentences and each image into regions (i.e. patches),
compute representations for sentences and regions and align them using an
attention mechanism and our proposed local contrastive loss.

– We compute global (i.e. per-image and per-report) representations using
attention-pooling on the region and sentence representations, and then use
a global contrastive loss to align them.

– We propose Localized representation learning from Vision and Text (LoVT),
a pre-training method that extends ConVIRT[96] using our proposed ideas
and outperforms it on most localized downstream tasks.

– We evaluate our method trained using MIMIC-CXR[42,41,40,26] on a down-
stream evaluation framework[58] with 18 localized tasks on chest X-rays, in-
cluding object detection and semantic segmentation on five public datasets.
We compare it with several self- and text-supervised methods and with trans-
fer from classification in more than 1400 evaluation runs. Our method LoVT
proves as the most successful method outperforming all other methods on
10 out of 18 tasks.

2 Related Work

In recent years, contrastive learning[90,63,36,33,57,47,9,31,30,10,94,3,23,7,6], has
become the state-of-the-art approach for self-supervised representation learning
on images. It has been successfully applied as pre-training method in medical
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imaging including downstream tasks such as image classification on chest X-
rays[24,76,77].

Most contrastive learning approaches use, unlike our method, only instance-
level contrast, i.e. represent each view of the image by a single vector. While
the resulting representations are well-suited for global downstream tasks, they
are not designed for localized downstream tasks. Therefore, there is a number of
recent approaches that use region-level contrast[92,91,88,8,65,56], i.e. they act
on representations of image regions. Unlike our method, these methods do not
utilize paired text.

Recently however, there is much focus on self-supervised representation learn-
ing methods that pre-train image models for downstream tasks by taking ad-
vantage of the companion text[67,39,96,12,73,51]. VirTex[12] and ICMLM[73] use
image captioning tasks (generative tasks). ConVIRT[96], CLIP[67] and ALIGN[39]
on the other hand use multiview contrastive learning[2]. These approaches have
been found to be more effective for discriminative downstream tasks[67]. Con-
VIRT, CLIP, and ALIGN all follow the same general framework where an image
and a text encoder are trained jointly using the NT-Xent loss (which is also
used in SimCLR) on image and text views. The text views are based on single
sentences from companion text, in the case of ConVIRT it is a sentence sam-
pled from the radiology report. The main difference between these methods is
the datasets they are studied on, ConVIRT is trained on chest X-rays while the
other methods use natural images. Additionally, CLIP uses attention pooling
to compute image representations from feature maps while the other methods
use the default pooling method from the image encoder (average pooling in the
case of ResNet50[32]). Our method follows a similar framework but adds local
contrastive losses for better performance on localized tasks. Also, it encodes the
whole report instead of sampling a single sentence and uses attention pooling in
the image and text encoders. LocTex[51] does localized pre-training on natural
images with companion text and predicts alignment of text and image regions.
Unlike our method, it uses supervision generated by mouse gazes instead of
learning the alignment implicitly using a local contrastive loss. Most related to
our work is the recently published local Mutual Information approach [48] that
performs contrastive learning on report sentences and image regions but tar-
gets classification instead of localized tasks and does therefore neither encourage
contrast between regions nor spatial smoothness.

3 Method

3.1 Assumptions and Intuition

As shown in Fig. 1, a radiology report is typically split into several sections,
including a Findings section, describing related radiological images, and an As-
sessment section, interpreting the findings. As these sections describe medical
aspects observed (Findings) in one or more related images and conclusions (As-
sessment) drawn from it, they provide supervision for identifying relevant pat-
terns in the images and interpretations of these patterns. Both sections can be
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EXAMINATION: CHEST (PA and LAT)

INDICATION: year old woman with ?pleural effusion

FINDINGS:
Cardiac size cannot be evaluated.
Large left pleural effusion is new.
Small right effusion is new.
The upper lungs are clear.
Right lower lobe opacities are better seen in prior
CT.
There is no pneumothorax.
There are mild degenerative changes in the tho-
racic spine.

IMPRESSION:
Large left pleural effusion.

Fig. 1. Example radiology report describing chest X-Rays. Taken from the MIMIC-
CXR[42,41,26] dataset.

split into sentences and each of these sentences typically describes one or a few
aspects of which we assume that most are related to one or a few very localized
regions in a paired image. We randomly sample one of the images related to
a given report and split it into 7 × 7 equally-sized regions. More precisely, we
augment and resize the image to a size of 224× 224, feed it into a convolutional
neural network, and use the output feature map of size 7×7 as region representa-
tions. A language model encodes the tokens of the report as contextualized (i.e.
considering their meaning in the whole report) vector representations from which
we compute sentence representations. A many-to-many alignment model is then
used to compute cross-modal representations from uni-modal representations,
i.e. image region representations from sentence representations and vice-versa.
We argue that by aligning cross-modal and uni-modal representations, the im-
age region representations are encouraged to contain the high-level semantics
present in the report.

3.2 Model Overview

Fig. 2 shows the general architecture of our proposed LoVT model. Each training
sample xi is a pair of an image xI

i ∈ R224×224 and the related report xR
i con-

sisting of Mi sentences. Both, x
I
i and xR

i , are encoded independently into two
global representations, for image and report respectively, and multiple local rep-
resentations per sample, corresponding to image regions and report sentences,
respectively. An attention-based alignment model then computes cross-modal
representations (i.e. sentence representations from image regions and vice-versa)
which are aligned with the local uni-modal representations using local con-
trastive losses. Additionally, the global representations are aligned using a global
contrastive loss. The encoders and the alignment model are trained jointly on
batches of image-report pairs xi. The details of the model and the loss function
will be described in the following sections.
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Large left pleural effusion is new.

Small right effusion is new.

There are mild degenerative ...


There is no pneumothorax.

Att
Pool


Att
Pool


Fig. 2. Architecture of LoVT. Given an image xI
i and the related report xR

i , the
encoders EI and ER compute image region and report sentence representations, re-
spectively, which are projected using fI and fR. The alignment models AR→I and
AI→R compute cross-modal report-to-image (zR→I

i,k ) and image-to-report (zI→R
i,m ) rep-

resentations which are aligned with the uni-modal representations (zI
i,k and zR

i,m) using
the local losses Llocal-image and Llocal-report, respectively. Global image (ȳI

i ) and report
(ȳR

i ) representations are computed using attention pooling on the local representations,
are then projected using f̄I and f̄R and aligned using the global loss Lglobal.

3.3 Encoding

Each image xI
i is encoded into K = H ×W (we use K = 7 × 7) region repre-

sentations yI
i,k ∈ RdI

using the image encoder EI , where k is the index of the

image region, and dI is the dimension of the image region representation space.
Our approach is encoder agnostic, i.e. any model encoding image regions into
vector representations can be used for EI . We use a ResNet50[32] and take the
feature map before global average pooling as region representations. Similarly,

each report xR
i is encoded into Mi sentence representations yR

i,m ∈ RdR
using

the report encoder ER. Here Mi is the number of sentences of report sample i,
m is the index of the sentence, and dR is the dimension of the report sentence
representation space. Note that while K is constant, Mi may be different for
each sample. Any model encoding sentences into vector representations can be
used for ER. We use BERT base[14] to jointly encode the tokens of the concate-
nated sentences of each report and then perform max pooling over the token
representations of each sentence to get sentence representations.

The global (i.e. per-sample) representations ȳI
i and ȳR

i are each computed
by an attention pooling layer (not shared between modalities) on the region and
sentence representations, respectively. It is implemented using multi-head query-
key-value attention[82] where the query is computed from the globally averaged
region or sentence representations. This pooling approach was first proposed for
the image encoder of CLIP[67].

Following previous works[96,9,30], we compute projected local representa-

tions zI
i,k ∈ RdZ

and zR
i,m ∈ RdZ

, and projected global representations z̄I
i ∈ Rd̄Z

and z̄R
i ∈ Rd̄Z

from the representations yI
i,k, y

R
i,m, ȳI

i , and ȳR
i , using the (non-

shared) nonlinear transformations fI , fR, f̄I , and f̄R, respectively, where dZ
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is the dimension of the shared local and d̄Z of the shared global representation
space (we use 512 for both). Note that for local representations the projections
are applied to each region k or sentence m independently.

3.4 Alignment Model

Following our assumptions (see Sec. 3.1), we compute an alignment of image
regions and sentences and compute cross-modal representations using the align-
ment models AI→R and AR→I , which are based on single-head query-key-value
attention[82].

For each sentence m the cross-modal representation zI→R
i,m is computed by

letting zR
i,m attend to all image region representations zI

i,k (of the related image).

We therefore compute the probability αI→R
i,m,k that sentence m is aligned with

region k based on the scaled dot product scores of their projected representations,

i.e. αI→R
i,m,k = softmaxk

(
(QzR

i,m)T (QzI
i,k)√

dZ

)
, where the linear query-key projection

Q is a learned matrix. Then the alignment model AI→R uses αI→R
i,m,k to compute

zI→R
i,m as projected weighted sum of the image region representations zI

i,k:

zI→R
i,m = O

(
K∑

k=1

αI→R
i,m,k

(
V zI

i,k

))
, (1)

where the value projection V , and the output projection O are learned matrices.
In a similar fashion the cross-modal representations zR→I

i,k are computed by

AR→I :

zR→I
i,k = O

(
Mi∑
m=1

αR→I
i,k,m

(
V zR

i,m

))
, (2)

with αR→I
i,k,m = softmaxm

(
(QzI

i,k)
T (QzR

i,m)
√
dZ

)
. Note that as AR→I and AI→R share

the same matrices Q, V , and O, the only difference between αR→I
i,k,m and αI→R

i,m,k

is transposition and the index over which softmax is applied.

3.5 Loss Function

Global Alignment For global alignment we follow ConVIRT[96] and maximize
the cosine similarity between paired image and report representations while min-
imizing the similarity between non-paired (i.e. from different samples) represen-
tations. The loss consists of a image-report part, where all non-paired report
representations from the batch are used as negatives:

ℓ
I∥R
global = − log

ecos(z̄
I
i ,z̄R

i )/τ∑
j e

cos(z̄I
i ,z̄R

j )/τ
, (3)
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and a report-image part, defined analogously:

ℓ
R∥I
global = − log

ecos(z̄
R
i ,z̄I

i )/τ∑
j e

cos(z̄R
i ,z̄I

j )/τ
, (4)

where τ is the similarity temperature (we use 0.1) and all logarithms are natural.
Both parts are combined using the hyperparameter λ ∈ [0, 1] (we use 0.75):

Lglobal =
1

N

N∑
i=1

[
λ · ℓI∥Rglobal + (1− λ) · ℓR∥I

global

]
. (5)

Local Alignment The global alignment loss does not only align the global rep-
resentations but it also prevents the global representations from collapsing to
a constant vector using negative samples to contrast the positive pairs. Simi-
larly, we propose local alignment losses encouraging spatial (sentence) sensitivity
through negatives from the same sample, i.e. preventing the local representations
to be similar for all regions (sentences) of an image (report). We use two NT-
Xent-based[9] local losses: Llocal-image, aligning region representations zI

i,k with

zR→I
i,k , and Llocal-report, aligning sentence representations zR

i,m with zI→R
i,m .

Some regions or sentences may not be relevant for aligning a sample (e.g.
background regions or sentences not related to the image). Therefore, we in-
troduce region weights wI

i,k and sentence weights wR
i,m, which are computed as

the attention probabilities from the respective attention pooling layer (which
was used to compute global representations), averaged over all attention heads.
These weights are used in the local loss functions such that irrelevant represen-
tations do not have to be aligned. Note that we do not backpropagate through
the region or sentence weights.

The loss Llocal-image allows for having multiple positive pairs within each
sample by giving each pair of regions (k, l) a positiveness probability pIk,l ∈ [0, 1].
We then treat each positive pair as its own (weighted) example and contrast it
with all other pairs (again all logarithms are natural):

ℓ
I∥R→I
local-image = −

K∑
l=1

pIk,l log
ecos(z

I
i,k,z

R→I
i,l )/τ ′

∑
k′ e

cos
(
zI
i,k,z

R→I
i,k′

)
/τ ′

(6)

ℓ
R→I∥I
local-image = −

K∑
l=1

pIk,l log
ecos(z

R→I
i,k ,zI

i,l)/τ
′

∑
k′ e

cos
(
zR→I
i,k ,zI

i,k′

)
/τ ′

(7)

Llocal-image =
1

2N

N∑
i=1

K∑
k=1

wI
i,k ·

[
ℓ
I∥R→I
local-image + ℓ

R→I∥I
local-image

]
. (8)

Here τ ′ is the similarity temperature and is set to 0.3. We assume that nearby
image regions are often similar and that therefore nearby regions are more likely
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to be positives while distant regions are more likely to be negatives. Thus, we
define the positiveness probability pIk,l of two image regions as the complemen-
tary cumulative exponential distribution of dx (their spatial ℓ2-distance in 2D
space normalized by the length of the diagonal

√
H2 +W 2) and set pIk,l to zero

above cutoff threshold T ∈ [0,∞):

pIk,l =
1[dx(k,l)≤T ] · e−dx(k,l)/β∑

k′ 1[dx(k,k′)≤T ] · e−dx(k,k′)/β
. (9)

Here β ∈ (0,∞) is a sharpness hyperparameter. We set β = 1 and T = 0.5. Note
that the normalization of dx is equal to rescaling T and β, i.e. it allows us to
define both hyperparameters independently of the image size.

The definition of pIk,l is derived by modeling the occurrence of related fea-
tures at specific distances in the image as a Poisson point process, such that
the ℓ2-distance of related features follows the exponential distribution. We as-
sume a Poisson process due to its property of being memoryless, i.e. knowing
that a feature is already related to another feature at some distance does not
change how distant additional related features can be found. Also, the probabil-
ity density function of the exponential distribution is decreasing (with support
on the interval [0,∞)), which seems reasonable as it is typically more likely that
related features are near than far. Its cumulative distribution function then de-
scribes the probability that two related features are within a given radius and
its complementary function that of being outside a given radius. The threshold
T assures that very distant pairs do not count as positives. The loss Llocal-image

thus encourages spatial smoothness of image regions while maintaining spatial
sensitivity through negative samples. Note that it is related to the pixel-contrast
loss proposed in[92], where the main novelty of our work is the partly smooth
definition of pIk,l based on the exponential distribution.

The local report loss Llocal-report is defined similarly but we do not assume
prior knowledge about the similarity of sentences and therefore only have a single
positive pair per sentence (again all logarithms are natural):

ℓ
R∥I→R
local-report = − log

ecos(z
R
i,m,zI→R

i,m )/τ ′

∑
m′ e

cos
(
zR
i,m,zI→R

i,m′

)
/τ ′

(10)

ℓ
I→R∥R
local-report = − log

ecos(z
I→R
i,m ,zR

i,m)/τ
′

∑
m′ e

cos
(
zI→R
i,m ,zR

i,m′

)
/τ ′

(11)

Llocal-report =
1

2N

N∑
i=1

Mi∑
m=1

wR
i,m ·

[
ℓ
R∥I→R
local-report + ℓ

I→R∥R
local-report

]
(12)

Total Loss The total loss L is computed as the weighted sum of global and local
losses:

L = γ · Lglobal + µ · Llocal-image + ν · Llocal-report , (13)
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where γ, µ, and ν are loss weights to balance the individual losses and are set
to 1.0, 0.75, and 0.75, respectively. We determined these loss weights by running
small grid searches (see Appendix E.1 for details).

4 Evaluation

4.1 Downstream Tasks and Experimental Setup

We evaluate our method on a downstream evaluation framework[58] with 18
localized tasks on chest X-rays, which we will shortly describe here. For more
details, we refer to Appendix E.3.

Evaluation Protocols We only use the pre-trained ResNet50 (from the image
encoder). For semantic segmentation tasks we evaluate in the following settings::
(i) U-Net Finetune: Here the ResNet50 is used as backbone of a U-Net[70] and
is finetuned jointly with all other layers, (ii) U-Net Frozen: Here the ResNet50
is used as frozen backbone of a U-Net[70] and only the non-backbone layers are
finetuned, and (iii) Linear: Here an element-wise linear layer is trained that
is applied after the last feature map (before pooling) of the frozen ResNet50,
before the results are upsampled to the segmentation resolution.

For object detection tasks we use the following protocols: (i)YOLOv3 Fine-
tune: Here the ResNet50 is used as backbone of a YOLOv3[69] model and is
finetuned jointly with the non-backbone layers, (ii) YOLOv3 Frozen: Here
the ResNet50 is used as frozen backbone of a YOLOv3[69] model and only the
non-backbone layers are finetuned, and (iii) Linear: Here the object detection
ground truth is converted to segmentation masks and then the Linear segmen-
tation protocol is used for evaluation.

Downstream Datasets We evaluate the pre-trained ResNet50 on several medi-
cal datasets, namely (i) RSNA Pneumonia Detection[86,74], with more than
260000 frontal-view chest X-rays with detection targets for pneumonia opacities.
We use the YOLOv3 Finetune, YOLOv3 Frozen, and Linear protocols, each with
1%, 10%, and 100% of the training samples; (ii) COVID Rural[81,13], with
more than 200 frontal-view chest X-rays with segmentation masks for COVID-19
lung opacity regions. We use the UNet Finetune, UNet Frozen, and Linear pro-
tocols; (iii) SIIM-ACR Pneumothorax Segmentation[75], with more than
12000 frontal-view chest X-rays with segmentation masks for pneumothorax. We
use the UNet Finetune, UNet Frozen protocols, but due not use Linear due to
the fine-grained nature of the segmentation masks; (iv) Object CXR[38] with
9000 frontal-view chest X-rays with detection targets for foreign objects. We
use the YOLOv3 Finetune, YOLOv3 Frozen, and Linear protocols; (v) NIH
CXR[86], with almost 1000 frontal-view chest X-rays with detection targets for
eight pathologies (Atelectasis, Cardiomegaly, Effusion, Infiltrate, Mass, Nodule,
Pneumonia, and Pneumothorax). Due to the limited data per class, we only use
the Linear protocol. The different evaluation protocols complement each other:
While the U-Net Finetune and YOLOv3 Finetune protocols evaluate how well
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the pre-trained image models could be fine-tuned for practical applications, the
Linear protocols directly evaluate the learned local representations (i.e. feature
maps) while adding as few parameters as possible and therefore mostly omitting
the variance introduced by random initialization during downstream evaluation.
The U-Net Frozen and YOLOv3 Frozen protocols can be seen as middle ground
between the two extremes, where representations are frozen but evaluated in a
more practical setting (but with many randomly initialized layers). Overall this
allows the analysis of many aspects of the pre-trained representations.

Tuning and Evaluation Procedure We tune all models on a single downstream
task, RSNA YOLOv3 Frozen 10%. Other downstream tasks have not been eval-
uated during tuning to make sure that models are not biased towards the down-
stream tasks. After tuning, each model was evaluated on all downstream tasks.
For each task the downstream learning rates were tuned individually per model
(using single evaluation runs) before running five evaluations (all using the tuned
learning rate). We report the average results of these five runs and their 95%-
confidence interval.

Pre-Training Dataset We train our method on version 2 of MIMIC-CXR[40,41,42,26]
as, to our best knowledge, it is the largest and most commonly used dataset of
this kind. Since all downstream tasks contain only frontal views, we remove all
lateral views, such that roughly 21000 training samples remain, each with a
report and one or more frontal images.

Baselines We compare our method against several baseline methods:

– Random Init.: The ResNet50 is initialized using its default random initial-
ization

– ImageNet[71] Init.: The ResNet50 is initialized with weights pre-trained
on the ImageNet ILSVRC-2012 task[71];

– CheXpert[37]: The ResNet50 is pre-trained using supervised multi-label
binary classification with CheXpert[37] labels on frontal chest X-rays of
MIMIC-CXR

– Global image pre-training methods: The ResNet50 is pre-trained us-
ing the self-supervised pre-training methods SimCLR[9] or BYOL[30] on
frontal chest X-rays of MIMIC-CXR. We decided to include SimCLR as is
uses a similar loss function as LoVT and we include BYOL because of its
widespread use.

– Local image pre-training methods: The ResNet50 is pre-trained using
the self-supervised pre-training method PixelPro[92] on frontal chest X-rays
of MIMIC-CXR. We include PixelPro to study the effect of local contrastive
losses when using only images.

– Global image-text pre-training methods: The ResNet50 is pre-trained
using the image-text methods ConVIRT[96] or CLIP[67] on frontal MIMIC-
CXR. Note that for comparability we adapted CLIP to use the same image
and text encoders as ConVIRT such that the main difference between CLIP
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Table 1. Results on the RSNA pneumonia detection tasks with different training set
sizes. All results are averaged over five evaluation runs and the 95%-confidence interval
is shown. The best results per task are underlined, the second-best results are dash-
underlined and the best results per pre-training category (general initialization, pre-
training on 30% and 100%) are highlighted in bold. Note that the YOLOv3 Frozen 10%
task (task 5) was used for tuning of all methods and may therefore not be representative
as methods may overfit on this task.

RSNA YOLOv3 Finetune RSNA YOLOv3 Frozen RSNA Lin. Seg.
mAP (%) mAP (%) Dice (%)

1% 10% 100% 1% 10% 100% 1% 10% 100%

General initialization methods
Random 2.4±0.5 5.1±1.2 14.9±1.7 1.0±0.2 4.0±0.3 8.9±0.9 21.9±1.2 5.3±0.0 5.3±0.0
ImageNet [71] 5.0±0.7 12.4±0.8 19.0±0.2 3.6±1.4 8.0±0.1 15.7±0.3 27.5±0.6 38.3±0.0 43.3±0.0

Pre-Training on 30 % of frontal MIMIC-CXR
CheXpert [37] 8.3±0.8 12.4±1.6 21.3±0.3 7.0±1.0 14.8±0.8 18.8±0.4 38.9±0.2 45.5±0.2 48.1±0.0
BYOL [30] 7.0±1.0 11.9±1.1 18.8±0.2 9.6±0.2 14.0±1.2 21.0±0.2 42.9±0.1 47.8±0.2 50.0±0.0
SimCLR [9] 6.7±0.5 12.9±0.5 20.4±1.8 7.9±1.0 11.9±0.1 19.9±0.2 43.1±0.0 46.0±0.0 48.2±0.0
PixelPro [92] 4.8±0.6 12.6±1.2 19.8±0.4 3.1±0.2 6.4±0.5 13.4±0.3 25.9±0.2 34.6±0.0 39.8±0.1
ConVIRT [96] 7.4±1.3 12.7±1.5 18.3±0.4 9.8±0.3 14.8±1.1 18.4±1.1 42.1±0.1 47.1±0.2 50.2±0.0
CLIP [67]* 7.2±0.8 12.8±1.2 19.7±0.5 9.3±0.4 16.1±1.1 19.6±1.4 44.3±0.1 48.8±0.1 50.7±0.0
LoVT (Ours) 7.7±1.0 11.7±0.5 17.2±1.3 8.6±1.5 17.9±0.4 18.0±0.1 46.0±0.0 49.4±0.0 51.5±0.0

Pre-Training on 100 % of frontal MIMIC-CXR
CheXpert [37] 10.0±1.9 12.4±0.9 22.2±0.4 5.8±0.4 11.9±0.7 20.0±0.2 40.0±0.1 44.3±0.0 46.9±0.0
BYOL [30] 5.6±0.8 11.0±0.2 17.3±1.1 6.8±1.6 12.1±1.1 15.9±0.6 41.9±0.0 45.1±0.0 46.8±0.0
SimCLR [9] 7.1±0.7 12.2±0.8 18.8±1.0 5.4±0.2 13.1±0.2 17.3±1.6 43.0±0.0 45.1±0.0 47.0±0.0
PixelPro [92] 4.8±0.3 11.0±1.5 17.4±1.7 4.6±1.6 5.4±1.1 12.6±1.3 23.9±0.4 34.8±0.2 40.2±0.1
ConVIRT [96] 10.7±1.1 13.3±0.8 18.5±0.4 8.2±0.9 15.6±1.2 17.9±0.3 44.6±0.1 48.5±0.0 50.4±0.3
CLIP [67]* 7.0±1.5 10.7±1.1 19.9±0.8 11.9±0.7 15.0±1.1 18.7±0.0 45.2±0.0 49.3±0.1 51.1±0.0
LoVT (Ours) 8.5±0.8 13.2±0.6 18.1±3.2 9.6±1.2 16.4±1.3 20.5±1.0 46.3±0.0 50.1±0.0 51.8±0.0

Task Nr. 1 2 3 4 5 6 7 8 9

* Modified to use the same image and text encoders as ConVIRT and LoVT.

and ConVIRT is that CLIP uses attention pooling to compute the scan repre-
sentation while ConVIRT uses average pooling. We include both methods as
LoVT builds upon a similar general framework, where we include ConVIRT
because it targets chest X-rays (like LoVT) and include CLIP because of its
widespread use and as it uses (like LoVT) attention pooling in the image
encoder. We decided not to include VirTex[12] and ICMLM[73] as they use
generative tasks, which have been found to be less effective for discriminative
downstream tasks[67].

4.2 Downstream Results

We present the downstream results of our model LoVT and the baselines, with
pre-training on 100% and 30% of MIMIC-CXR. Tab. 1 shows the results on
different subsets of the RSNA dataset and Tab. 2 shows the results on the re-
maining downstream datasets, i.e. on COVID Rural, SIM-ACR Pneumothorax,
Object CXR, and NIH CXR.

Comparison of Methods We found that there is no single pre-training method
performing best on all evaluated downstream tasks. On most tasks (15 out of 18)
image-text self-supervised methods (i.e. LoVT, CLIP, or ConVIRT) outperform
the other methods, such that they should be preferred if paired text is available.

Our model LoVT is the best method (over all pre-training settings) on 10
of 18 tasks, and significantly outperforms all other methods in 6 of these tasks,
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Table 2. Results on downstream tasks on the COVID Rural, SIIM Pneumothorax,
Object CXR, and NIH CXR datasets. All results are averaged over five evaluation runs
and the 95%-confidence interval is shown. The best results per task are underlined, the
second-best results are dash-underlined and the best results per pre-training category
(general initialization, pre-training on 30% and 100%) are highlighted in bold.

COVID Rural SIIM-ACR Pneumoth. Object CXR NIH CXR
UNet UNet Linear UNet UNet YOLOv3 YOLOv3 Linear Linear

Finetune Frozen Finetune Frozen Finetune Frozen

Dice (%) Dice (%) Dice (%) Dice (%) Dice (%) fROC (%) fROC (%) Dice (%)
Avg

Dice (%)

General initialization methods
Random 34.0±1.1 32.2±1.8 6.0±0.0 23.2±1.0 23.9±1.6 49.5±1.2 28.4±1.4 6.9±0.0 0.5±0.4
ImageNet [71] 43.9±2.0 41.9±1.7 32.6±0.7 38.5±0.9 36.9±0.7 62.5±0.4 52.7±1.3 37.8±0.0 2.6±1.6

Pre-Training on 30 % of frontal MIMIC-CXR
CheXpert [37] 43.5±4.9 44.1±3.2 32.1±2.0 38.9±0.9 40.7±0.7 62.2±0.6 46.3±1.9 16.5±7.7 8.7±0.6
BYOL [30] 46.2±1.6 47.5±1.6 36.9±1.7 43.1±0.6 42.9±0.3 59.6±1.0 55.7±1.0 32.3±0.1 6.0±0.1
SimCLR [9] 44.9±2.9 41.4±3.7 33.0±0.0 42.6±0.4 39.2±0.7 61.9±0.8 54.3±1.0 33.2±0.1 13.3±0.5
PixelPro [92] 47.0±3.4 38.5±3.9 26.6±0.4 39.3±0.8 39.1±0.3 63.1±0.7 46.3±0.2 29.9±0.2 1.8±0.0
ConVIRT [96] 48.8±2.2 44.2±3.1 45.0±3.0 42.5±1.0 42.5±0.2 62.5±0.1 54.0±0.7 37.7±0.1 11.4±0.8
CLIP [67]* 49.3±2.0 46.5±2.3 46.2±0.3 42.8±1.5 42.5±0.6 62.9±0.8 55.5±2.1 39.0±0.0 12.5±1.0
LoVT (Ours) 49.5±1.3 49.2±4.6 49.2±0.2 43.4±0.7 43.1±0.6 61.0±1.3 55.8±1.1 37.6±0.2 13.4±0.8

Pre-Training on 100 % of frontal MIMIC-CXR
CheXpert [37] 46.2±1.7 45.9±3.9 37.7±0.4 34.2±0.8 37.7±0.3 57.5±1.1 39.8±2.4 19.4±0.1 15.2±0.0
BYOL [30] 50.7±2.7 42.0±3.0 32.9±0.0 42.6±0.7 40.7±0.7 60.6±1.1 53.1±0.8 21.8±0.1 5.7±0.0
SimCLR [9] 48.1±2.5 44.1±2.1 35.3±0.0 41.2±0.8 38.7±0.5 61.1±0.7 48.7±0.5 30.0±0.0 11.8±0.0
PixelPro [92] 42.4±4.4 37.7±1.0 18.9±6.4 39.4±1.2 38.7±0.6 65.0±0.5 46.2±1.2 29.7±0.1 1.8±0.0
ConVIRT [96] 47.9±0.7 46.0±1.1 42.7±2.0 39.3±0.3 43.1±0.3 60.6±1.2 52.5±1.0 36.0±0.0 18.6±0.1
CLIP [67]* 48.6±2.4 45.8±4.1 41.7±0.1 44.0±0.7 45.0±0.5 62.8±0.5 56.9±1.4 39.4±0.0 11.4±0.8
LoVT (Ours) 51.2±2.5 46.2±2.4 44.0±0.8 44.1±0.3 43.9±0.7 62.1±0.5 57.4±0.5 39.9±0.0 9.4±0.5

Task Nr. 10 11 12 13 14 15 16 17 18

* Modified to use the same image and text encoders as ConVIRT and LoVT.

while the second-best method CLIP significantly outperforms all other methods
only on 2 tasks. LoVT outperforms image-only methods (i.e. BYOL, SimCLR,
and PixelPro) on 14 tasks, where the localized image-only method PixelPro out-
performs LoVT only on one task (task 15). On 11 tasks LoVT outperforms other
text-supervised methods (i.e. ConVIRT and CLIP), on 14 tasks it outperforms
CheXpert classification and on all but two tasks it outperforms ImageNet initial-
ization. When using 100% of the pre-training data LoVT is the best pre-training
method on 11 tasks (better by at least the confidence interval on 5 tasks) and
when using 30% on 11 tasks (significantly the best on 4 tasks). LoVT performs
best on all COVID Rural tasks, best on most Linear tasks, and quite well on
the Frozen protocol, but does not perform well on the NIH CXR dataset and
when finetuned on the RSNA dataset. As there is no single method performing
best on all tasks and LoVT performs best in the majority of tasks, this makes
LoVT the default method of choice for localized downstream tasks.

Relevance of Pre-Training Dataset Size In our experiments we do not observe
a consistent benefit of using roughly 210000 pre-training samples (i.e. 100% of
the data) over using roughly 63000 samples (i.e. 30%). While on some datasets
like RSNA and Object CXR many methods often perform better when pre-
trained on 210000 samples (100%), on other datasets like COVID Rural, methods
often perform better when pre-trained on 63000 samples (30%). When comparing
LoVT pre-trained on 30% of the data with other methods pre-trained in both
settings (i.e. 30% and 100%), we observe that LoVT outperforms image-only
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Fig. 3. Spatial smoothness and sensitivity of image region representations. Left: LoVT
(Ours). Middle: No local losses. Right: No local losses and no attention pooling.
Cosine similarities of image region pairs yI

i,k,y
I
i,k′ (each from the same sample) plotted

as violin plots (with their width representing the number of pairs and quartiles shown
as dashed lines) over their spatial distance in the 7 × 7 image space (normalized and
rounded to one decimal digit). We trained all models on 30% of the data and computed
the representations on the test set.

methods (i.e. BYOL, SimCLR, and PixelPro) on 12 tasks, other text-supervised
methods (i.e. ConVIRT and CLIP) on 7 tasks and CheXpert classification on 12
tasks, showing that LoVT effectively reduces the number of required pre-training
samples.

Relevance of Downstream Dataset Size The results shown in Tab. 1 suggest that,
as expected, larger downstream training sets lead to better results. However, we
observe that for text-supervised methods (i.e. LoVT, CLIP, and ConVIRT),
the downstream training set size is often less relevant compared to other meth-
ods. On the RSAN YOLOv3 Frozen tasks, LoVT (100%) outperforms ImageNet
initialization by 31% when using 100% of the downstream samples, while it
outperforms ImageNet initialization by even 167% when only using 1% of the
samples.

Spatial Smoothness and Sensitivity We analyze the influence of the local losses
and attention pooling on the spatial smoothness and sensitivity of image region
representations and therefore plot in Fig. 3 the distributions of the cosine sim-
ilarity of image region pairs over their spatial distances. For our LoVT model
spatial smoothness and sensitivity can be observed as the quartiles and extreme
points of the cosine similarity distributions decrease monotonously with increas-
ing spatial distance, except for a few very distant region pairs with distances
larger than 0.6. Note that these spatially very distant region pairs very likely
represent opposite borders (or corners) of the image such that they both very
likely contain background, explaining that they have more similar representa-
tions. Without local losses Llocal-image and Llocal-report, the quartiles and extreme
points decrease only for small spatial distances while increasing again for points
further away, showing that spatial smoothness is only present for nearby regions
and spatial sensitivity of more distant region is not optimal. When addition-
ally replacing attention pooling with average (for image regions) and max (for



14 P. Müller et al.

sentences) pooling, similar results can be observed except that the quartiles
are decreasing faster and the maximum points do not decrease for nearby re-
gions. We can therefore deduce that the local losses effectively encourage spatial
smoothness and sensitivity while attention pooling alone has only little effect.

Analysis of LoVT and Ablation Study We refer to Appendix A for a detailed
analysis of our method LoVT, including an ablation study (focusing on local
weighting, global and local losses, and attention pooling), an analysis of the
distribution and alignment of learned representations, and an analysis of the
region weights wI

i,k.

5 Discussion

Limitations of our Evaluation Procedure We did not tune image encoder, down-
stream architectures, or preprocessing for downstream tasks, resized all inputs
to only 224× 224, and applied no data augmentation. Therefore, the presented
downstream results are below results typically reported for these datasets. The
evaluation procedure is kept simple to i) limit computational resources, ii) avoid
bias induced by downstream tuning, and iii) allow for a fair comparison of pre-
training methods, being the main purpose of this work. We assume that benefits
observed in our evaluation procedure also indicate benefits for tuned real-world
tasks, although they cannot be precisely quantified by our evaluation method.

Limitations of LoVT LoVT learns its alignment model implicitly based only
on latent representations and instance-level pairing information. This makes the
model sensitive to hyperparameters and hard to train. Also, it only uses local
negatives from the same sample which restricts the number of negatives and may
therefore limit its performance. Additionally, the alignment model is restricted
to a simple attention mechanism and the regions are based on fixed patches that
are not adaptive to the contents of the image. This may restrict the capabilities
of the model and therefore of the pre-training method. For a detailed discussion
of these limitations as well as of the potential negative societal impact we refer
to Appendix C.

Conclusion We study pre-training for localized medical imaging on chest X-
rays and propose a novel text-supervised method called LoVT, that combines
instance-level contrastive learning with local contrastive learning. We evaluate
our method on a novel evaluation framework consisting of 18 localized tasks on
chest X-rays and compare it with typically used pre-training and initialization
methods. While there is no single best method on all tasks, our method LoVT
is the best method on 10 out of 18 studied tasks making it the method of choice
for localized tasks.

We hope that our work provides valuable insights that encourage using pre-
training for localized medical imaging and that our method inspires future work
on localized text-supervised pre-training.
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Table 3. Results of the ablation study evaluated on the RSNA YOLOv3 Frozen 10%
task. Results are averaged over five evaluation runs and the 95%-confidence interval is
shown. The best results are highlighted in bold.

Method Global loss Local losses
Local

weighting
Pool LR scheduler

RSNA YOLOv3
Frozen 10 %

LoVT (Ours) ✓ ✓ ✓ attention cyclic-cosine 17.9±0.4

– ✓ ✓ ✗ attention cyclic-cosine 16.9±1.3

– ✓ ✓ ✗1 avg/max cyclic-cosine 15.7±0.4

– ✗ ✓ ✗1 – cyclic-cosine 12.3±0.7

– ✓ non-smooth Llocal-scan ✓ attention cyclic-cosine 15.6±1.4
– ✓ Llocal-report only ✓ attention cyclic-cosine 16.2±0.7

– ✓ Llocal-scan only ✓ attention cyclic-cosine 13.7±1.2
– ✓ ✗ – attention cyclic-cosine 17.4±0.9
– ✓ ✗ – avg/max cyclic-cosine 14.2±1.0

CLIP2 single sentence ✗ – attention cyclic-cosine 16.1±1.1
– single sentence ✗ – avg/max cyclic-cosine 15.8±1.3
ConVIRT single sentence ✗ – avg/max reduce-on-plateau 14.8±1.1

1 Not realizable.
2 Modified to use the same image and text encoders as ConVIRT and LoVT.

A Analysis and Ablation Study

In this section we analyze the relevance of different components of LoVT (as
proposed in the main paper) and study its learned representations. In order to
save computational resources, all further analysis and the ablation study are
conducted on 30% of the pre-training data.

Ablation Study We conduct an ablation study to analyze the relevance of com-
ponents of LoVT and the effects of the changes we made compared to ConVIRT.
Focus of our ablation study are (i) the local weighting, (ii) the global and lo-
cal losses, (iii) and attention pooling. We compare different model variants and
their results on the RSNA YOLOv3 Frozen 10% task in Tab. 3. Note that we
focus our ablation study on this single task as this is the task used for tuning all
models and baselines while the other tasks are only used for the final evaluation
(see Appendix E.3).

Starting from the unmodified LoVT model we first remove the local (region
and sentence) weighting in the local losses, i.e. we use constant weights wI

i,k and

wR
i,m, and observe inferior results, showing the relevance of these weights. We

then also remove attention pooling and replace it by average (avg) pooling for
images and max pooling for reports. The performance further decreases high-
lighting the importance of attention pooling. Note that the local weights cannot
be computed without attention pooling, making a model with local weighting
but without attention pooling non-realizable. We further remove the global loss
Lglobal, i.e. set γ = 0 and only use the local losses without local weighting, and
observe a large drop in downstream performance. We assume that this is caused
by missing contrast between samples. Without the global loss, local weights can
again not be computed, making a model with local weighting but without global
loss non-realizable.

We also study the relevance of the local losses Llocal-image and Llocal-report.
Starting again from unmodified LoVT, we first adapt the local image loss Llocal-image
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by redefining the positiveness score in a non-smooth way with pIk,l ∝ 1[dx(k,l)≤T ].
The performance drops showing the relevance of the smoothness. When remov-
ing any of the local losses completely, i.e. either setting µ = 0 or ν = 0 and
keeping only the global and one of the local losses (Llocal-image or Llocal-report),
the performance also drops compared to unmodified LoVT, showing that both
local losses are required for optimal results. Note that removing Llocal-report leads
to a larger drop in downstream performance than removing only Llocal-image, in-
dicating that Llocal-report is more relevant for alignment. When both local losses
are fully removed by setting µ = 0 and ν = 0, such that only the global loss
remains, the performance slightly drops compared to unmodified LoVT showing
that the local losses are relevant components of the model. However, the drop in
performance is smaller than when removing only one of the local losses, which
indicates that the symmetry of the local losses is essential for them to work. If
we further replace attention pooling by avg/max pooling, a large drop in perfor-
mance is observed, which again highlights the importance of attention pooling.
Note that without avg/max pooling the local losses provide more improvements
than when using attention pooling.

We also study the differences to ConVIRT[96] and (modified) CLIP[67].
Starting from ConVIRT, replacing their learning rate schedule (reducing on
plateaus) by our cyclic cosine schedule (see Appendix E.1) improves the results.
Further replacing their avg/max pooling (to compute global representations) by
attention pooling improves the results even further. This settings corresponds
to (modified) CLIP. In ConVIRT (and CLIP), only a single sentence per re-
port is sampled when computing report representations. Replacing this sampling
method by ours, where all sentences of a report are used to compute its repre-
sentation, the results are improved if attention pooling is used. If no attention
pooling is used, the performance degrades when using all sentences instead of a
single randomly sampled one.

In our ablation study we highlighted the importance of all components of
LoVT. We also showed that some of our proposed changes can also be used to
improve the ConVIRT or CLIP models.

Representation Distribution and Alignment Analysis We analyze how represen-
tations are distributed and how well they are aligned. In Fig. 4 we show the
standard deviation (std) of image ȳI

i and image region yI
i,k representations of

LoVT and variants of it without local losses or global loss. It can be observed
that the (total) std of image region representations yI

i,k is similar in all three
studied settings, indicating that the local and global losses have little influ-
ence on the overall variance of local representations. We additionally analyze
the mean per-sample std and std of per-sample centroids of yI

i,k to study how
representations are distributed within a sample and between different samples,
respectively. The per-sample std of yI

i,k is smallest when only using the global
loss (no local losses) and largest when only using the local losses (no global
loss). Vice versa, the centroids std is largest when only using the global loss
(no local losses) and smallest when only using the local losses (no global loss).
Therefore, the local losses encourage the representations to differ within each
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Fig. 4. Standard deviation (std) of image (ȳI
i ) and image region (yI

i,k) representations.
Left: LoVT (Ours) Middle: No local losses. Right: No global loss. For yI

i,k we addi-
tionally show the mean std per-sample, i.e. how different representations are within a
sample, and the std of the per-sample centroids. The models were trained on 30% of
frontal MIMIC-CXR and then evaluated on the whole test set.

sample, i.e. ensure spatial sensitivity, while the global loss encourages them to
differ between samples, i.e. prevents the collapse of per-image representations to
a constant vector. The std of global image representations ȳI

i behaves similarly
to the centroids std of yI

i,k, except that the local losses have only little influence
on it. Note that the centroids std and std of global image representations almost
completely vanish without the global loss, while there is still notable per-sample
std present without the local losses. This highlights the importance of the global
loss for preventing the collapse of representations.

In Fig. 5 we plot the alignment quality of local representations, i.e. the ℓ2-
distance of report-to-image (zR→I

i,k ) with their related image region representa-

tions (zI
i,k) and of image-to-report (zI→R

i,m ) with report sentence representations

(zR
i,m). We compare the representations learned by LoVT with (default) and

without global loss. It can be observed that in both cases the image-to-report
representations are better aligned than the report-to-image representations. This
can be expected, as most of the information contained in the report is based on
the image, making it easy to compute sentence representations from image re-
gion representations, while images contain additional details not described by
the reports, making it harder to compute report-to-image representations. Both,
report-to-image and image-to-report representations, are slightly better aligned
when the global loss is used additionally to the local losses during training (as
in the unmodified LoVT model). One can therefore deduce that the global loss
supports the learning of local representations.

In Fig. 6 we plot a t-SNE[55] projection of local representations learned by
LoVT. Sentence representations are similarly distributed to image-to-report rep-
resentations confirming, as already observed in the alignment analysis, that the
model is able to align both distributions. Only one cluster of sentence represen-
tations is separated from image-to-report representations. We assume that these
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Fig. 5.Alignment quality of local representations. Left: LoVT (Ours)Right: No global
loss. Measured by the ℓ2-distance of uni-modal with their related cross-modal represen-
tations. Blue: Report-to-image (zR→I

i,k ) with image region (zI
i,k) representations. Or-

ange: Image-to-report (zI→R
i,m ) with report sentence (zR

i,m) representations. All repre-
sentations are ℓ2-normalized before the distance is computed. The models were trained
on 30% of frontal MIMIC-CXR and then evaluated on the whole test set.

are sentences that do not describe features present in the image, e.g. describing
features from lateral views or differences to previous studies of the patient. Im-
age region representations and report-to-image representations are distributed
differently, which again confirms that these could not be fully aligned. In the
t-SNE[55] projection the image region representations are split into many clus-
ters. We assume that this is a result of the negatives in the local image loss
encouraging contrast between (spatially distant) region representations of each
sample, such that our model behaves similarly to a clustering algorithm.

To further study the effect of the local losses, we plot t-SNE[55] projections
of image region representations from samples of the RSNA pneunomia detection
dataset in Fig. 7. We compare the representations learned using our unmodified
LoVT model, our model without local losses, and our model without local losses
and attention pooling. For the unmodified LoVT model, image region clusters
can again be observed while such clusters cannot be observed without the local
losses. This confirms our assumption that these clusters are a result of the local
losses. It can also be observed that in the unmodified LoVT model the represen-
tations of pneumonia positive regions are distributed in a very confined area of
space and are therefore probably easily separable from non-pneumonia regions.
Without local losses the positive region representations are more spread over
the space making them harder to separate. If attention pooling is not used as
well, the positive region representations are distributed around multiple areas
in space which may also hurt separability. Therefore, using the local losses and
attention pooling improves separability of downstream representations which is
confirmed by the results shown in Tab. 3.
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Fig. 6. t-SNE[55] plot of projected local uni-modal representations (points) and the
aligned cross-modal representations (crosses). Blue: Image regions (zI

i,k). Orange:
Report sentences (zR

i,m). Purple: Report-to-image (zR→I
i,k ). Red: Image-to-report

(zI→R
i,m ). We trained our model on 30% of frontal MIMIC-CXR and computed the

representations on the first 100 samples of the test set.
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Fig. 7. t-SNE[55] plots of image region representations from samples of the RSNA
pneumonia detection dataset. The color of each point indicates the overlap of the
related region with a pneumonia opacity region. Left: LoVT (Ours). Middle: No local
losses. Right: No local losses and no attention pooling. We trained all models on 30%
of frontal MIMIC-CXR and computed the representations on the first 100 samples of
the RSNA test set.

Local Weights In order to understand how the weighting of image regions works,
we study how the region weights wI

i,k are distributed. In Fig. 8 we therefore
plot the mean region weights on the mean image of the pre-training test set.
The weights are distributed horizontally symmetrically around the center of the
images and most focus is on the lungs and around the spine. This indicates that
the weighting works as expected, as most pathologies in a frontal chest X-ray
are typically observed at lungs or heart.

B Discussion of the Limitations of LoVT

Weak Supervision and Sensitivity to Hyperparameters As no supervision for
the alignment of image regions and report sentences is available, we implicitly
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Fig. 8. Local image region weights wI
i,k of different regions averaged over all samples

and plotted on top of the mean image. The model was trained on 30% of frontal
MIMIC-CXR. Weights and mean image were computed on the whole test set.

learn an alignment model in the latent representation space. We jointly learn
this alignment model and the latent representations of image regions and report
sentences, having only the global alignment information of image-report pairs
as supervision. Therefore, we suspect that the model tends to converge to local
optima, explaining its sensitivity to hyperparameters, especially to the learning
rate. While using the cyclic-cosine learning rate schedule helps, our method is
still hard to train and tune. We leave studying more explicit supervision, e.g. by
including generative losses, to future work.

Limited Negatives for Local Alignment We only use local negatives from the
same sample. By design, the number of local negatives is therefore very limited
and many of these negatives may be very easy. This may limit the model perfor-
mance on downstream tasks[9,31]. In preliminary experiments we also included
negatives from other samples but could not observe a benefit. We leave the study
of losses with more negatives (e.g. based on the MoCo[31] approach) or without
explicit negatives (e.g. based on the BYOL[30] approach) to future work.

Limited Alignment Model We decided to use single-head scaled dot product
attention with linear projections as our alignment model. While this keeps the
alignment model simple and computationally cheap, it also limits its capabilities.
We leave studying more complex alignment models, like multi-head attention or
(one or more) transformer[82] layers, to future work.

Non-Adaptive Regions In LoVT the image region representations are computed
for fixed regions, i.e. patches. Their boundaries are arbitrary and relevant fea-
tures may therefore be spread across regions or multiple neighboring features
may be in the same region, making it hard to learn region representations. We
leave studying other techniques for finding content-based regions and computing
their representations to future work.
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C Discussion of Negative Societal Impact

In this section we discuss the possible negative societal impact of our work. We
identified three primary aspects: i) usage of our method in medical applications,
ii) data privacy issues, and iii) energy consumption.

Usage in Medical Applications As our method is targeted towards medical appli-
cations, potential issues in our method may lead to harm through misdiagnosis.
Most of the potential issues, including interpretability and reliability issues, are
not specific to our method but apply to most deep learning methods in medicine
and we therefore do not discuss them here. Still, we identified another poten-
tial issue: data bias learned during pre-training. While bias from data may be
learned by most machine learning methods, in our case the bias might be learned
from both, pre-training and fine-tuning data. During fine-tuning the pre-training
dataset might not be available making it hard to identify such a data bias. As
possible mitigation strategies the pre-training dataset (if available) should also
be analyzed for data bias or the fine-tuned model should be tested for learned
bias before using it in medical applications. Note that this issue applies to most
transfer learning approaches including other pre-training methods.

Data Privacy Issues Information learned from the pre-training dataset is con-
tained in the pre-trained model weights, which may include information about
individuals in the dataset. When distributing such models to make them available
for others to fine-tune, this information is distributed as well. If the pre-training
dataset is non-public but the pre-trained model is made publicly available, this
may lead to data leakage and therefore a privacy breach. This is especially prob-
lematic if individuals can be re-identified. Therefore, pre-trained models should
be distributed only under the same conditions as the pre-training dataset or
other precaution measures, like privacy-preserving machine learning, should be
taken to prevent data leakage. We thus decided not to release our pre-trained
model weights publicly. Note that this issue applies to most transfer learning
approaches including other pre-training methods.

Energy Consumption and Environmental Impact Training of deep learning mod-
els consumes substantial amounts of energy and may therefore have environmen-
tal impacts. In our experiments, we observe that pre-training (including LoVT
and the baselines) typically takes 0.5-2 days while downstream tasks typically
only train for minutes to a few hours per run. While we did not study the ex-
act energy consumption, we use the training times as an estimate and conclude
that the energy consumption, and therefore the environmental impact, during
pre-training is substantially higher than during finetuning. We observe that in
our setting most studied pre-training methods, including LoVT, have similar
runtimes (1-2 days, depending on the exact hyperparameters, for training on
the full dataset) and only CheXpert pre-training is significantly faster (typically
taking 0.5-1 days for pre-training). Besides training, also hyperparameter tuning
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needs to be considered, which may be required when applying LoVT to another
pre-training dataset.

While, as we observed, the high energy consumption of pre-training is an ef-
fect that is general to many methods, it should still be considered when deciding
whether and how to use LoVT. An approach to reduce the energy consumption
is to limit the hyperparameter tuning of LoVT on the pre-training dataset (e.g.
only tune the learning rate) and use the defaults from our paper for most hyper-
parameters, although tuning other hyperparameters may improve downstream
results. Instead, hyperparameter tuning could be more focused on the finetuning
of the model. Additionally, pre-trained models should be made publicly available
where this does not lead to privacy issues.

D Detailed Discussion of Related Work

D.1 Self-supervised Representation Learning

State-of-the-art methods for pre-training image models using self-supervised
representation learning can be categorized into generative and discriminative
approaches. Generative models learn a distribution over the training images
and a latent representation space. Typically, these approaches are autoencod-
ing models[83,46,60,68], which learn to reconstruct the input image (or parts of
it), adversarial models[28,18,22,4,19], where data and representation are mod-
eled jointly, autoregressive models[62,61], where image regions are conditioned
on previous image regions, or flow-based models[15,16,44], which estimate high-
dimensional densities from data. Generative models can recover the original data
distribution without the need for assumptions on downstream tasks and are
therefore well-suited for a wide range of applications, most notably for genera-
tive tasks[50]. However, they have some inherent problems, most notably, they
model the distribution in the data space (e.g. in pixel-space) and therefore fo-
cus too much on low-level details (like pixels) instead of encouraging high-level
abstractions that are typically required for discriminative downstream tasks like
classification[50].

Discriminative approaches are better suited for such tasks as they define dis-
criminative objectives based on pretext tasks created from the unlabeled data.
Early discriminative approaches relied on heuristics when defining the pretext
tasks[21,17,95,59,25], limiting the generality of the resulting representations. In
recent years, contrastive approaches[90,63,36,33,57,47,9,31,30,10,94,3,23], have
become the state-of-the-art discriminative approaches for self-supervised repre-
sentation learning. Contrastive methods act in the representation space and try
to align representations of similar images (e.g. different views from the same im-
age) while spreading representations of different images. Clustering approaches
like DeepCluster[5] also belong to the contrastive approaches. Discriminative
approaches are in general very lightweight and contrastive methods are cur-
rently state-of-the art for discriminative downstream tasks. However, they are
not suited for generative tasks and many aspects, like the need for negative
sampling, are not well-understood yet although being tackled by approaches like
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BYOL[30], SimSiam[10], BarlowTwins[94], and VICReg[3]. Contrastive methods
have also been successfully applied to medical imaging including image classifi-
cation on chest X-rays[24,76,77].

Most contrastive learning approaches use instance-level contrast, i.e. repre-
sent each view of the image by a single vector. While the resulting representa-
tions are well-suited for global downstream tasks like image classification they
lack properties like spatial sensitivity or smoothness required for more local-
ized downstream tasks (like segmentation or detection)[92]. Therefore, there is a
number of recent approaches that use region-level contrast[92,91,88,8,65,56], i.e.
they act on representations of image regions. These approaches are more suited
for localized tasks and therefore typically outperform instance-level methods on
such tasks.

D.2 Multimodal Representation Learning

While self-supervised representation learning on a single modality (e.g. images)
already achieves great results, in some settings more modalities are available.
Utilizing such additional modalities can improve the downstream results as ad-
ditional information is available that can be utilized during representation learn-
ing. One form of such additional modalities is text, that often accompanies im-
ages in the form of captions or linked reports. Early works on combining image
and text modalities did not focus on pre-training for downstream tasks but
instead on learning aligned representations for cross-modal retrieval[85,27], on
encoder-decoder tasks like image captioning[84,43,20], and on joint prediction
tasks like visual question answering[29] and visual grounding[11,34]. In recent
years, several works utilized transformer[82] models to compute joint represen-
tations of image content and text[79,54,78,80,97,35]. They pre-trained their mod-
els using self-supervised tasks like multi-modal alignment prediction on paired
image-text datasets and then finetuned them on multi-modal downstream tasks
like image retrieval or visual question answering. While these methods can ef-
fectively pre-train joint image-text models, these models cannot be used for
image-only downstream tasks. Recently, there is much focus on self-supervised
representations learning methods that pre-train image models for downstream
tasks by taking advantage of the companion text[67,39,96,12,73]. VirTex[12]
and ICMLM[73] use image captioning tasks (generative tasks), ConVIRT[96],
CLIP[67] and ALIGN[39] use multiview contrastive learning[2] (contrastive tasks).
In[87] generative and contrastive losses are combined to train on mixed chest X-
ray data, i.e. where only for some images paired reports is available. LocTex[51]
does localized pre-training on natural images with companion text using a dot
product based model to predict alignment of text and image regions. Unlike our
method it uses supervision generated by mouse gazes instead of learning the
alignment implicitly using a local contrastive loss. Most related to our work is
the recently published local-mi[48] that does contrastive learning on report sen-
tences and image regions but aligns each sentence with its most related region
instead of using an alignment model like our method. Also, it targets classifi-
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cation instead of localized tasks and does therefore neither encourage contrast
between regions nor spatial smoothness.

E Experiment Details

In all our experiments we use PyTorch[64] Version 1.10 (BSD-style license5) and
train on a single NVIDIA Quadro RTX 8000.

E.1 Pre-Training

Pre-training Data and Pre-Processing Our method can be used with any dataset
containing pairs of medical images and reports supposing that the reports con-
tain multiple sentences and the sentences in the reports provide a semantically
useful description of the contents in the image. We use version 2 of MIMIC-
CXR[42,41,40,26] as, to our best knowledge, it is the largest and most commonly
used dataset of this kind conatining more than 200, 000 imaging studies, each
with one or more frontal or lateral chest X-rays and one semi-structured free-
text radiology report, written by a practicing radiologist during routine clinical
care, describing radiological findings of the images.

We download the already pre-processed images from its JPG-version6 and
remove all except the frontal views, i.e. we only keep the antero-posterior (AP)
and postero-anterior (PA) views. We download the reports from MIMIC-CXR7

and extract the text from the Findings and Impression sections. Reports con-
taining none of these sections are removed. For each report we concatenate the
extracted text from both sections and remove reports where the extracted text
contains less than three tokens (based on tokenizing it using Stanza[66]). We
split the extracted text into sentences using Stanza[66] again. Finally, we re-
move all samples that contain no images or no report (after the previous steps)
and then apply the training/validation/test splits provided by MIMIC-CXR-
JPG[40] such that we have 210228/1712/2867 training/validation/test samples
(i.e. studies with one report and one or more images each), respectively.

Encoders and Model Details In the image encoder we use the ResNet50 imple-
mentation from Torchvision8 and initialize it with ImageNet[71] weights9. In the
report encoder we use the BERT base PyTorch implementation from Hugging-
face Transformers[89]10 and initialize it with weights from ClinicalBERT[1]11

that was trained on clinical notes.
5 https://github.com/pytorch/pytorch/blob/master/LICENSE
6 https://physionet.org/content/mimic-cxr-jpg/2.0.0/ (PhysioNet Credentialed
Health Data License)

7 https://physionet.org/content/mimic-cxr/2.0.0/ (PhysioNet Credentialed
Health Data License)

8 https://github.com/pytorch/vision (BSD 3-Clause License)
9 https://pytorch.org/hub/pytorch_vision_resnet/ (BSD 3-Clause License)

10 https://github.com/huggingface/transformers (Apache-2.0 License)
11 https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT (MIT License )

https://github.com/pytorch/pytorch/blob/master/LICENSE
https://physionet.org/content/mimic-cxr-jpg/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
https://github.com/pytorch/vision
https://pytorch.org/hub/pytorch_vision_resnet/
https://github.com/huggingface/transformers
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
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We model the nonlinear transformations fI , fR, f̄I , and f̄R as shallow
neural networks without shared parameters, consisting of a (element-wise) linear
layer with output size 2048, batch norm, and ReLU followed by another linear
layer with output size 512. This follows previous works[9,30,96] except for the
batch norm which we found beneficial.

Data Augmentation For image augmentations we first randomly sample one of
the frontal chest X-rays of the sample (i.e. study) and then follow the aug-
mentation scheme of ConVIRT[96], i.e. random cropping (resized to 224× 224),
horizontal flipping, affine transformations, contrast and brightness jittering and
Gaussian blur. We also tried removing geometric augmentations but found this
setting to perform worse. For text augmentations we concatenate all sentences of
the Findings and Assessment sections of the report in the sample but randomly
change the order by swapping pairs of sentences with a probability of 0.6. We
also tried randomly removing or duplicating sentences but did not find it to be
beneficial.

Training Details and Cyclic Cosine Learning Rate Schedule For pre-training, we
experimented with different learning rate schedules and found that a cyclic cosine
learning rate schedule[52] where the restarts also follow the cosine function and
with a cycle length of two epochs (i.e. one decreasing and one increasing epoch)
is beneficial. As both modalities have different properties (e.g. type of contained
information) and the encoders have different architectures, they may converge
at different speeds making it hard for both to adapt to each other. Therefore, we
assume that the decreasing phase of the schedule allows the encoders to catch up
and adapt to each other while the increasing phase allows them to learn faster
and escape local optima. We use the AdamW[53] optimizer with a batch size
of 32, with 16 gradient accumulation steps, an initial learning rate of 1× 10−4 ,
and weight decay 1× 10−6 and train until the validation loss does not decrease
for 10 consecutive epochs.

Hyperparameter Tuning We tune the hyperparameters of LoVT using only the
RSNA YOLOv3 Frozen 10% task (see Appendix E.3). For the hyperparameters
of the global loss, i.e. τ and λ, and for the global representation dimension d̄Z

we use the default values from ConVIRT[96]. In preliminary experiments, we
tried different values for the local representation dimension dZ but did not find
that small changes to it have significant influence on the results, and therefore set
dZ = d̄Z (i.e. 512). We determined the hyperparameters of the local losses, i.e. τ ′,
β, and T , in preliminary experiments including grid searches and manual tuning.
The loss weights γ, µ, and ν were determined by running small grid searches in
the following way: We first set γ = µ = ν = 1 and run a grid search to balance
the local loss weights µ and ν while keeping γ fixed, i.e. trying (µ = 0.5, ν = 1.5),
(µ = 1.0, ν = 1.0), and (µ = 1.5, ν = 0.5). After we found that (µ = 1.0, ν = 1.0)
performs best, we ran a grid search to balance local and global losses while
keeping µ = ν, i.e. trying (γ = 0.75, µ = 1.0, ν = 1.0), (γ = 1.0, µ = 1.0, ν = 1.0),
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(γ = 1.0, µ = 0.75, ν = 0.75), and (γ = 1.0, µ = 0.25, ν = 0.25). We found that
(γ = 1.0, µ = 0.75, ν = 0.75) performs best.

All hyperparameters except the learning rate are tuned using 30% of the pre-
training dataset and we tune the learning rate individually on 30% and 100%
of the pre-training data. Note that we also slightly tune the learning rate when
tuning other hyperparameters and in our ablation study.

E.2 Baselines

Random and ImageNet Init. For random initialization we do not pre-train the
ResNet50 backbone but instead initialize it randomly following its default initial-
ization. For the ImageNet initialization we use the weights9 provided by Torchvi-
sion.

CheXpert We train the ResNet50 backbone using multi-label binary classifica-
tion on MIMI-CXR. We use five CheXpert[37] labels (Cardiomegaly, Edema,
Consolidation, Atelectasis, and Pleural Effusion), which are included in the
MIMIC-CXR-JPG[40] dataset, and convert them to binary labels following the
U-Ones mapping[37] (i.e. mapping all uncertain labels to positive labels). Dur-
ing CheXpert pre-training we use the full ResNet50 model including the average
pooling and the fully connected (FC) layer but throw away the latter two for
downstream tasks. All layers except the FC layer are initialized from ImageNet
weights9 and we randomly initialize the FC layer such that it has an output di-
mension of five (matching the number of classes). We use the sigmoid activation
on the outputs, multi-label binary cross-entropy loss and the Adam[45] optimizer
and train with batch size 64 and weight decay 1× 10−6 until the validation Area
Under Receiver Operating Characteristic (AUROC) does not increase for 10 con-
secutive epochs after which we select the checkpoint with the best validation AU-
ROC. We tuned the initial learning rate and set it to 3× 10−4 (1× 10−4 when
trained on 30% of the data). If the validation AUROC does not increase for three
consecutive epochs we multiply the current learning rate by 0.5.

SimCLR[9] We use the PyTorch implementation available at https://github.
com/spijkervet/SimCLR (MIT License) with the default image augmentations
from the paper (with images resized to 224×224) except for color jittering where
we do not adjust saturation and hue due to the monochrome nature of chest X-
rays. Following [96] we set the output dimension to 128 and hidden size to 4096,
use batch size 128, and weight decay 1× 10−4 For training, we use the Adam[45]
optimizer and the cosine decay learning rate schedule[52], without restarts, over
100 epochs, with a single warm-up epoch. We tuned the initial learning rate and
set it to 3× 10−4

BYOL[30] We use the PyTorch implementation available at https://github.
com/lucidrains/byol-pytorch (MIT License) with the default image augmen-
tations from the paper (with images resized to 224×224) except for color jittering
where we do not adjust saturation and hue due to the monochrome nature of

https://github.com/spijkervet/SimCLR
https://github.com/spijkervet/SimCLR
https://github.com/lucidrains/byol-pytorch
https://github.com/lucidrains/byol-pytorch
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chest X-rays. We set the output dimension to 128 and hidden size to 4096, use
decay rate 0.99, batch size 64, and weight decay 1× 10−4 For training, we use
the Adam[45] optimizer and the cosine decay learning rate schedule[52], without
restarts, over 100 epochs, with a single warm-up epoch. We tuned the initial
learning rate and set it to 1× 10−4 (3× 10−5 when trained on 30% of the data).

PixelPro[92] We use the PyTorch implementation available at https://github.
com/lucidrains/pixel-level-contrastive-learning (MIT License) with the
default image augmentations from the paper (with images resized to 224× 224)
except for color jittering where we do not adjust saturation and hue due to the
monochrome nature of chest X-rays.

We set the output dimension to 512 and hidden size to 2048, use batch size
64, and weight decay 1× 10−5 For training, we use the Adam[45] optimizer and
the cosine decay learning rate schedule[52], without restarts, over 100 epochs,
with a single warm-up epoch. We tuned the initial learning rate and set it to
1× 10−3

ConVIRT[96] We use our own implementation of ConVIRT (as the general
framework of ConVIRT is similar to LoVT) and train until the validation loss
does not decrease for 15 consecutive epochs after which we use the check-
point with the lowest validation loss. We tuned the learning rate and set it
to 1× 10−4 (1× 10−5 when trained on 30% of the data). If the validation loss
does not decrease for 12 consecutive epochs we multiply the current learning rate
by 0.5. We use the default values from the paper for all other hyperparameters.

CLIP[67] We use our own implementation of CLIP (as the general framework
of CLIP is similar to LoVT). For better comparability with LoVT and the other
baselines, we use ResNet50 and BERT base as encoders. Following the frame-
work of CLIP we only encode single sentences and therefore randomly sample
a sentence from the report (as in ConVIRT). We use the AdamW[53] optimizer
with a batch size of 32 (the same as used in ConVIRT and LoVT), with 16
gradient accumulation steps, and the cyclic cosine learning rate scheduler (as in
LoVT) with an initial learning rate of 1× 10−4 , and weight decay 1× 10−6 and
train until the validation loss does not decrease for 10 consecutive epochs.

Batch Sizes of the Baselines Most contrastive learning methods are very sensitive
to the used batch size, therefore the batch size is an important hyperparameter
when comparing such methods. However, increasing the batch size also increases
the GPU memory consumption and different methods have different memory
requirements, such that using the same batch size for all methods does not
allow for a fair comparison as in practice available GPU memory is typically
limited. We therefore decided to use three different batch sizes: The smallest
batch size (3212) is used for all text-supervised methods (i.e. ConVIRT, CLIP

12 We use this batch size as it was used in ConVIRT and as memory requirements are
then kept below 24GB allowing training on widely used GPUs.

https://github.com/lucidrains/pixel-level-contrastive-learning
https://github.com/lucidrains/pixel-level-contrastive-learning
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and our LoVT) as they require much memory due to their language model and
they are also less sensitive to the batch size[96]. For image-only methods with
a momentum encoder (i.e. BYOL and PixelPro) we use a larger batch size (64)
and for SimCLR we further increase the batch size (128) as it does not have a
momentum encoder and is very sensitive to the used batch size.

E.3 Downstream Evaluation

Datasets

– RSNA Pneumonia Detection[86,74] (Licensed following the competition
rules13): We download the dataset from its Kaggle page14 but use only their
training set which we randomly split into our training, validation, and test
set resulting in 16010/5337/5337 training/validation/test samples, respec-
tively. For each sample we compute a segmentation mask (used in the Linear
evaluation) from all the ground truth detection boxes of that sample.

– COVID Rural[81,13] (TCIA Data Usage Policy and CC BY 4.0 License):
We download the dataset from its Github repository15 and randomly split
it into training, validation, and test set of sizes 133/44/44, respectively.

– SIIM-ACR Pneumothorax Segmentation[75] (Licensed following the
competition rules16): We download the dataset from its Kaggle re-upload17,
which is officially recommended on the original challenge website18, but use
only their training set which we randomly split into our training, validation,
and test set resulting in 7229/2409/2409 training/validation/test samples,
respectively.

– Object CXR[38] (CC BY-NC 4.0 License): We download the dataset from
a re-upload19 as it is no longer available at its original source20. We ran-
domly split their training set into our training and validation set and use
their development set as our test set such that we have 6400/1600/1000
training/validation/test samples, respectively. For each sample we compute
a segmentation mask (used in the Linear evaluation) from all the ground
truth detection boxes of that sample.

– NIH CXR[86] (Licensed for public use with attribution21): We download
the ChestX-ray8 dataset provided by the NIH Clinical Center from its official
website22 but use only the samples where bounding boxes are provided as

13 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/rules
14 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
15 https://github.com/haimingt/opacity_segmentation_covid_chest_X_ray/tree/

master/covid_rural_annot
16 https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/rules
17 https://www.kaggle.com/seesee/siim-train-test/
18 https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/overview/

siim-cloud-healthcare-api-tutorial
19 https:

//academictorrents.com/details/fdc91f11d7010f7259a05403fc9d00079a09f5d5
20 https://jfhealthcare.github.io/object-CXR/
21 https://nihcc.app.box.com/v/ChestXray-NIHCC/file/249502714403
22 https://nihcc.app.box.com/v/ChestXray-NIHCC/

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/rules
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://github.com/haimingt/opacity_segmentation_covid_chest_X_ray/tree/master/covid_rural_annot
https://github.com/haimingt/opacity_segmentation_covid_chest_X_ray/tree/master/covid_rural_annot
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/rules
https://www.kaggle.com/seesee/siim-train-test/
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/overview/siim-cloud-healthcare-api-tutorial
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/overview/siim-cloud-healthcare-api-tutorial
https://academictorrents.com/details/fdc91f11d7010f7259a05403fc9d00079a09f5d5
https://academictorrents.com/details/fdc91f11d7010f7259a05403fc9d00079a09f5d5
https://jfhealthcare.github.io/object-CXR/
https://nihcc.app.box.com/v/ChestXray-NIHCC/file/249502714403
https://nihcc.app.box.com/v/ChestXray-NIHCC/
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ground truth. We randomly split these samples into our training, validation,
and test set such that we have 588/196/196 training/validation/test samples,
respectively.

E.4 Evaluation Protocols

In this section we describe the details of the evaluation protocols used in the
evaluation framework[58], including downstream model architectures and train-
ing details. Note that we do not use image augmentations in any of the evaluation
protocols but resize and pad the input images to size 224× 224.

U-Net Finetune We do not use the original UNet[70] architecture but instead
build a UNet-like model23 based on the pre-trained ResNet50 model. Therefore,
we use the ResNet50 (except its avg pooling and FC layer) as the contracting
path (left side) of our UNet-like model. The last feature map of ResNet50 has
a size of 7× 7 and dimension 2048. Here we add two more convolutional blocks
(each with a 3 × 3 convolution followed by batchnorm and ReLU) with output
dimension 2048 to the contracting path. For the expansive path (right side)
we closely follow the architecture of the original UNet but use five instead of
four upsampling blocks (each with 2× 2 transposed convolution, concatenation,
and two 3× 3 convolutions each followed by batchnorm and ReLU) which have
output dimensions 1024, 512, 256, 128, and 64, respectively. For concatenation
the ResNet50 blocks conv4, conv3, conv2, conv1, and the input image are used.
We add a single 1× 1 convolution that predicts the positive class scores and use
the binary Dice loss from the Segmentation Models Pytorch library[93].

For training, we use the Adam[45] optimizer with weight decay 1× 10−6

The learning rate is tuned individually for each model and task based on the
best validation Dice24. The learning rate is multiplied by 0.5 if the validation
Dice does not decrease for three consecutive epochs. We use a warmup period
in which we do not train the ResNet50 backbone but only the other, randomly
initialized, layers with a learning rate of 1× 10−3 after which we train the whole
model (including the ResNet50). On the COVID Rural dataset we use batch
size eight, a warmup period of 20 iterations and do early stopping (based on
validation Dice) after 20 epochs. On the SIIM-ACR Pneumothorax dataset we
use batch size 64, a warmup period of 100 iterations and do early stopping after
10 epochs. Finally we report the test Dice of the epoch with the best validation
Dice.

U-Net Frozen We use the same architecture and loss function as in the U-Net
Finetune protocol but freeze the pre-trained ResNet50 weights and never train

23 Our implementation is based on https://github.com/kevinlu1211/

pytorch-unet-resnet-50-encoder/blob/master/u_net_resnet_50_encoder.py

(MIT License)
24 We use the micro-averaged Dice score based on this implementation:

https://torchmetrics.readthedocs.io/en/latest/references/modules.html#f1

(Apache-2.0 License)

https://github.com/kevinlu1211/pytorch-unet-resnet-50-encoder/blob/master/u_net_resnet_50_encoder.py
https://github.com/kevinlu1211/pytorch-unet-resnet-50-encoder/blob/master/u_net_resnet_50_encoder.py
https://torchmetrics.readthedocs.io/en/latest/references/modules.html#f1
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them. Instead we only train the other layers using the same hyperparameters
as in the U-Net Finetune protocol (except for the warmup period which is not
relevant in this setting).

Linear We use the frozen pre-trained ResNet50 (except for its avg pooling and
FC layer) to compute 7 × 7 feature maps. A randomly initialized element-wise
linear layer (i.e. a 1 × 1 convolution) is applied to these feature maps and the
results are upsampled to the segmentation resolution using bilinear interpolation
to predict the class scores. We then use the binary Dice loss from the Segmenta-
tion Models Pytorch library[93]. For the NIH CXR dataset we train each class
independently using the binary Dice loss.

For detection tasks we first compute segmentation masks from the detection
ground truth using the union of all target bounding boxes per sample and then
interpret the task as a segmentation task. Note that for the Object CXR dataset
we create bounding box masks only for box and ellipse detection targets but use
polygon masks for polygon detection targets.

For training, where we only train the linear layer, we use the Adam[45] op-
timizer with weight decay 1× 10−6 The learning rate is tuned individually for
each model and task based on the best validation Dice24. The learning rate is
multiplied by 0.5 if the validation Dice does not decrease for three consecutive
epochs. On the COVID Rural Linear and the RSNA Lin. Seg. 1% tasks we use
batch size eight and do early stopping (based on validation Dice) after 20 epochs.
On all other Linear tasks we use batch size 64 and do early stopping after 10
epochs. Finally we report the test Dice of the epoch with the best validation
Dice. Note that for the NIH CXR Linear task we use the macro averaged Dice
(Avg Dice) as metric.

YOLOv3 Finetune We closely follow the architecture25 of the original YOLOv3[69]
but use the pre-trained ResNet50 as its backbone (replacing the Darknet-53
backbone) while randomly initializing all other layers. The backbone features
for the three prediction scales are extracted from the outputs of the conv3
(highest resolution), conv4, and conv5 (lowest resolution) blocks of ResNet50,
respectively. We use the default anchors presented in their paper but scale them
according to our image input size of 224× 224.

For training, we use the losses and loss weights from the YOLOv3 paper and
train with the Adam[45] optimizer with weight decay 1× 10−6 The learning
rate is tuned individually for each model and task based on the best validation
mean Average Precision (mAP). We compute26 the mAP score following the
COCO[49] mAP and with the following Intersection over Union (IoU) thresholds:
0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75. The learning rate is multiplied by 0.5 if the
validation mAP does not decrease for three consecutive epochs. We use a warmup
period of 100 iterations in which we do not train the ResNet50 backbone but
only the other layers with a learning rate of 1× 10−3 after which we train the

25 Our implementation is based on https://github.com/BobLiu20/YOLOv3_PyTorch
26 https://github.com/bes-dev/mean_average_precision (MIT License)

https://github.com/BobLiu20/YOLOv3_PyTorch
https://github.com/bes-dev/mean_average_precision
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whole model (including the ResNet50). On the RSNA YOLOv3 Finetune 1%
task we use batch size eight and do early stopping (based on validation mAP)
after 20 epochs. On all other YOLOv3 Finetune tasks we use batch size 64 and
do early stopping after 10 epochs. Finally we report the test mAP of the epoch
with the best validation mAP.

YOLOv3 Frozen We use the same architecture and loss functions as in the
YOLOv3 Finetune protocol but freeze the pre-trained ResNet50 weights and
never train them. Instead we only train the other layers using the same hyper-
parameters as in the YOLOv3 Finetune protocol (except for the warmup period
which is not relevant in this setting).
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