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Abstract 

Self-supervised learning (SSL) aims to eliminate one of the major bot- 

tlenecks in representation learning - the need for human annotations. As 

a result, SSL holds the promise to learn representations from data in-the- 

wild, i.e., without the need for finite and static datasets. Instead, true SSL 

algorithms should be able to exploit the continuous stream of data being 

generated on the internet or by agents exploring their environments. But do 

traditional self-supervised learning approaches work in this setup? In this 

work, we investigate this question by conducting experiments on the contin- 

uous self-supervised learning problem . While learning in the wild, we expect to 

see a continuous (infinite) non-IID data stream that follows a non-stationary 

distribution of visual concepts. The goal is to learn a representation that 

can be robust, adaptive yet not forgetful of concepts seen in the past. We 

show that a direct application of current methods to such continuous setup 

is 1) inefficient both computationally and in the amount of data required, 

2) leads to inferior representations due to temporal correlations (non-IID 

data) in some sources of streaming data and 3) exhibits signs of catastrophic 

forgetting when trained on sources with non-stationary data distributions. 

We propose the use of replay buffers as an approach to alleviate the issues of 

inefficiency and temporal correlations. We further propose a novel method 

to enhance the replay buffer by maintaining the least redundant samples. 

Minimum redundancy (MinRed) buffers allow us to learn effective repre- 

sentations even in the most challenging streaming scenarios composed of 

sequential visual data obtained from a single embodied agent, and allevi- 

ates the problem of catastrophic forgetting when learning from data with 

non-stationary semantic distributions. 

1 Introduction 

We are witnessing yet another paradigm shift in the field of computer vision: 

from supervised to self-supervised learning (SSL). This shift promises to unleash
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Figure 1: Conventional vs. Continuous Self-Supervised Learning. The conventional setup of fixed 

datasets for SSL violates key properties exhibited by data continuously gathered in-the-wild: infinite, 

non-IID and non-stationary semantics. Hence, for SSL methods that aim to be deployed in-the-wild, 

the conventional setup serves as a poor benchmark. In this work, we introduce the problem of 

continuous self-supervised learning to facilitate the evaluation of such methods and expose novel 

challenges. 

the true potential of data, as we are no longer bound by the cost of manual 

labeling. Unsurprisingly, recent work has begun to scale current methods to 

extremely large datasets of up to 1 billion images [ 8 , 9 , 24 – 26 ] with the hope of 

learning better representations. In this paper, we pose the question: Are we ready 

to deploy SSL in-the-wild to harness the full potential of unlimited data? 

While SSL promises to exploit the infinite stream of data generated on the 

internet or by a robotic agent, current practices in SSL still rely on the traditional 

dataset setup. Images and videos are accumulated to create a training corpus, 

followed by optimization on hundreds of shuffled passes through the data. 

The primary reason for working with datasets is the need for reproducible 

benchmarks, but one question remains: is this traditional static learning setup 

right for benchmarking self-supervised learning? Does this setup accurately 

reflect the challenges of a self-supervised system deployed in the wild? We 

believe the answer is NO. For example, consider a self-supervised system 

attempting to learn representations of cars over the years from the web. Current 

setups only evaluate static learning and do not evaluate the ability to adapt 

representations to new car models (and not forget old ones). Another example 

is to consider a deployed robotic self-supervised learning agent that actively 

collects frames from its video feed. This data is heavily structured and correlated 

due to temporal coherence. However, existing SSL benchmarks do not reflect 

this challenge since they rely on datasets that can be randomly sampled to 

produce IID samples. 

In this paper, we move past dataset-driven SSL and investigate the efficacy 

of existing methods on the Continuous Self-Supervised Learning problem. 

More specifically, we explore the challenges faced in two possible methods 

of deployment: (a) an internet-based SSL model which relies on continuously 

acquired images/videos; (b) an agent-based SSL system that learns directly 
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from an agent’s sensors. Both settings rely on a streaming data source that con- 

tinuously generates new data, presenting three unique challenges that should 

be reflected when benchmarking SSL approaches (see Figure 1). 

First, storing infinite amounts of data is not feasible and obtaining data in the 

wild often incurs a cost of time due to bandwidth or sensor speed limitations. 

As a result, epoch-based training is impossible, and a naive deployment of 

conventional SSL approaches, using each sample only once, would lead to 

inefficient learners, often waiting for data to be made available, while under- 

utilizing the data at its disposal. One solution is to rely on replay buffers to 

decouple data acquisition from the training pipeline. The first question we pose 

is how effective replay mechanism are at allowing representations to continue 

to improve while data is being collected? 

Second, streaming data sources cannot be “shuffled” to create mini-batches 

of IID samples. Instead, the ordering of samples is dictated by the source itself. 

We show that this creates challenges for conventional representation learning 

approaches, as training data is not necessarily IID. Hence, we also pose the 

question of how to adapt existing SSL methods to learn robust representations 

under various non-IID conditions? 

Third, real-world data is non-stationary. For example, a higher number of 

football-related images are seen during the world cup. Also, robots exploring 

indoor environments observe temporally clustered semantic distributions - a 

sequence of bedroom objects, followed by a sequence of kitchen objects, and 

so on. An intelligent lifelong learning system should be able to continuously 

learn new concepts without forgetting old ones from non-stationary data distri- 

butions. However, we show empirically that conventional contrastive learning 

approaches can overfit their representations to the current distribution, display- 

ing signs of forgetting. We thus pose the question of how to design SSL methods 

that can learn under non-stationary conditions? 

Overall, the main contributions of this work can be summarized as follows. 

We identify three critical challenges that arise in the continuous self-supervised 

learning setup, namely, training efficiency, robustness to non-IID data streams 

and learning under non-stationary semantic distributions. For each challenge, 

we construct a curated data stream that simulates this challenge and quantita- 

tively demonstrate the shortcomings of existing SSL methods. We also propose 

initial solutions to these problems, with the goal of encouraging further research 

along these directions. We explore the idea of Buffered SSL, which involves 

augmenting existing approaches with a replay buffer to improve training effi- 

ciency. Second, we propose a novel method to handle non-IID data streams 

by decorrelating stored samples. Finally, we show that decorrelated buffers also 

prevent forgetting and improve continual learning under non-stationary data 

distributions. 
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Figure 2: Overview : We investigate the problem of continuous self-supervised learning, exposing 

three challenges faced by SSL methods deployed in-the-wild. First, the infinite nature of data streams 

implies that samples cannot be repeated. We show that augmenting an existing SSL method [ 13 ] 

with replay buffers can significantly alleviate this issue. Second, data gathered continuously in-the- 

wild is often temporally correlated, violating the IID assumption of optimization algorithms. We 

show that enhancing replay buffers to maintain minimally redundant samples (MinRed), we can 

generate data that are less correlated. Finally, semantic distributions of data gathered in-the-wild 

are non-stationary. This poses the challenge of “forgetting" concepts seen in past distributions. We 

show that MinRed buffers can also alleviate the issue of “forgetting" by collecting unique samples 

from various semantic groups. 

2 Related Work 

Self-supervised visual representation learning is now a mature area of research, 

capable of producing models that even outperform fully supervised methods 

when transferred to a variety of downstream tasks [ 9 , 13 , 27 , 29 ]. Despite 

forgoing the use of labeled data, these methods are still trained on fixed-size 

curated datasets originally developed for the supervised setting. This paper 

explores the various challenges of deploying self-supervised learning systems 

truly in-the-wild. 

Self-supervised learning has a long history in computer vision [ 7 , 35 , 42 , 50 , 

69 , 70 ] aiming to learn representations of visual data by solving tasks that can 

be defined without human annotations. A breadth of methodologies has been 

proposed from generative models such as denoising auto-encoders [ 77 ], sparse 

coding [ 36 , 54 , 55 ], inpainting [ 59 ] and colorization [ 18 , 34 , 86 ], to methods 

that learn representations predictive of spatial context [ 19 , 22 , 53 ], temporal 

context [ 21 , 47 , 58 , 60 , 78 , 79 ], or concurrent modalities like audio [ 4 , 52 , 57 , 69 ], 

text [17, 23, 61] or speech [43, 44]. 

One successful approach is to learn transformation invariant representa- 

tions [ 12 , 20 , 28 , 29 , 46 , 56 , 64 , 80 ]. Prior work has developed improved image 

augmentations [ 12 , 46 ], backbone models [ 10 , 24 ], stable (slow-moving) learning 

targets [ 9 , 15 , 29 ], and transformation invariant loss functions [ 10 , 13 , 27 , 56 , 84 ]. 

As a result, SSL has produced impressive models that improve state-of-the-art 

on a diverse set of downstream tasks like recognition [ 9 , 10 ], detection [ 29 ] and 

video object segmentation [10]. 

Given its success, a few attempts have been made to scale SSL to large 

uncurated datasets, such as YFCC-100M [ 8 , 26 ] and Instagram-1B [ 9 , 24 ]. Goyal 

et al. [ 26 ] showed that tasks such as colorization [ 86 ], context prediction [ 53 ] 

and rotation [ 22 ] have diminishing returns on large datasets, due to the low 
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complexity of the task, and argued for the development of more complex tasks. 

Transformation invariance objectives, coupled with heavy data augmentations, 

have increased the task’s complexity substantially. As a result, recent attempts 

of scaling up augmentation invariance [ 9 , 24 , 25 ] have seen some performance 

gains. However, we argue that these methods are still not ready to be deployed 

truly in-the-wild. Beyond the difficulties of training on uncurated data, already 

studied in prior work [ 9 , 24 ], training on fixed datasets ignores important 

challenges of streaming data, such as the non-iid nature of streaming sources, 

data acquisition costs, and model saturation due to its fixed capacity. 

Continual and lifelong learning: The ability to continuously learn new 

concepts or tasks over time is often referred to as lifelong learning [ 74 ] or never- 

ending learning [ 14 , 48 ]. Lifelong learning has traditionally been studied in 

supervised and reinforcement learning settings. In both cases, the model is 

expected to learn from a set of distinct tasks presented sequentially, without 

forgetting previous ones [ 32 , 38 , 63 , 75 , 85 ]. However, these works usually 

assume access to full supervision in the form of class labels or external rewards, 

not available in the streaming setup. 

Techniques developed for supervised continual learning are nevertheless 

useful in the Continuous SSL problem. Rehearsal techniques [ 2 , 6 , 66 , 67 , 72 ] 

store and replay a small set of training samples from previous tasks to avoid 

forgetting previously learned skills or concepts. While there is no notion of 

well-defined tasks in Continuous SSL, we show that replay buffers help improve 

training efficiency. We also propose replay buffers that minimize the redun- 

dancy of stored memories to decorrelate highly correlated streaming sources. 

Beyond rehearsal techniques, expandable models [ 68 , 82 ] have also been used 

to reduce catastrophic forgetting in supervised continual learning. This is often 

accomplished either by progressively growing the model each time a new task is 

added [ 37 , 68 , 82 ], or maintaining a common backbone model which is adapted 

to each task separately using small task-specific adaptation blocks [ 41 , 51 , 66 ]. 

The lack of well-defined tasks in streaming SSL makes lifelong learning more 

challenging, as it needs to learn from data distributions that may shift over time. 

Lifelong Generative Models: None of the existing literature has investigated 

how discriminative self-supervised representation learning methods perform in 

the full continuous learning setup (streaming, non-IID and non-stationary data). 

However, recent works [ 1 , 62 , 65 , 81 ] have attempted to address a sub-problem 

of ours, i.e ., learning self-supervised representations using generative models 

in a continual learning setting where the domain of data exhibits significant 

shifts during training. These works present approaches to locate domain shifts 

in order to avoid the problem of catastrophic forgetting. These techniques are 

made possible by the fact that training data is constructed by collecting samples 

from images in significantly different datasets - for example, [ 81 ] uses Celeb- 

A[ 40 ] faces followed by 3D-Chair[ 5 ] images). In contrast, we consider a more 

realistic setting of ImageNet images with a smoothly changing distribution 

of classes. Furthermore, as highlighted above, these works do not address 

other critical challenges of deploying SSL in-the-wild, as they are limited to 

epoch-based optimization, do not consider non-curated and/or high correlated 
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streaming sources, data efficiency, or the issue of early convergence. 

3 Problem Setup and Challenges 

The goal of this work is to investigate the efficacy of self-supervised represen- 

tation learning on a continuous source of streaming data generated in the real 

world, which we refer to as the continuous self-supervised learning problem . First, 

we describe the distinction between conventional training and the continuous 

self-supervised learning setup. We then discuss the various unique challenges 

that appear in the continuous case. 

3.1 Streaming vs Conventional Self-Supervised Learning 

Existing self-supervised learning methods rely on fixed-size datasets. These 

datasets D = { x1 

, . . . , xN 

} are finite ( i.e ., N << ∞ ), immutable ( i.e ., D does not 

change) and readily available ( i.e ., all its samples xi 

can be easily accessed at all 

times). Due to these properties, samples can be indexed, shuffled, and accessed 

at any point in training. Conventional SSL takes advantage of these possibilities 

by iterating over the datasets multiple times (epochs). 

In contrast, Continuous SSL relies on a streaming source S , defined as a time- 

series of unlabeled sensory data S = ( x1 

, x2 

, . . . , xT ) , potentially of infinite 

length T −→ ∞ . At any given moment in time t , fetching data from a streaming 

source S yields the current sample xt. Future samples { xτ 

∀ τ > t } are not 

accessible at time t , and past samples { xτ 

∀ τ < t } are only accessible if stored 

when fetched. 

In the Continuous SSL setup, one important parameter is the ratio between 

the data loading time tdata 

and the time taken to perform one optimization step 

topt. In most deployment setups tdata 

> topt, due to slower data transfer speed 

or low sensor frame rates. Therefore, even with parallelization, optimization 

algorithms can wait idle for tidle 

= tdata 

− topt. Therefore, SSL methods developed 

for the continuous setup should be able to efficiently and continually build better 

representations, while training on samples obtained from a streaming source. 

3.2 Why Continuous SSL? Does scaling the number of unique 

images help representation learning? 

To understand the effect of increasing the scale of training data (potentially 

to infinite), we indexed all Creative Commons images uploaded to the photo- 

sharing website Flickr.com between 2008 and 2021. We then used this index 

to create datasets of varying sizes, and train visual representations through 

self-supervision over multiple epochs in the Conventional SSL setup. 

We adopt SimSiam [ 13 ] as a prototypical example of contrastive learning 

methods, which have been shown to be effective for Conventional SSL. SimSiam 

learns representations by optimizing the augmentation invariance loss

  \Lcal (x_1, x_2) = - \sg (\z _1)^T g(\z _2) - \sg (\z _2)^T g(\z _1) 



  
 



 

(1) 
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Figure 3: ImageNet downstream accuracy of a 

SimSiam model trained on datasets of different 

sizes with a ResNet-18 backbone. 

where x1 

and x2 

are two random 

transformations of an image x , zi 

= 

f ( xi) is the model output represen- 

tations, sg ( · ) the stop gradient and 

g ( · ) a prediction head. Refer to [ 13 ] 

for full details. §3.2 shows the lin- 

ear classification accuracy on Ima- 

geNet for models trained on differ- 

ent datasets as a function of the num- 

ber of model updates. Unsurprisingly, 

training with more diverse data leads 

to better representations. This high- 

lights the benefits of scaling unique 

images, which Continuous SSL will 

take to the extreme. 

3.3 Challenges of Continuous SSL 

Learning representations in the Continuous SSL setup poses novel challenges 

that Conventional SSL methods do not face. 

- Epochs vs One Pass Streaming sources do not allow revisiting samples 

obtained in the past unless they were stored. Since storing the full stream is 

infeasible due to the potentially infinite length, Continuous SSL methods are 

required to learn representations in “one pass" over the samples. 

- Sampling Efficiency Sampling data from streaming sources in the real world 

can be inefficient due to sensor frame rates or bandwidth limitations. This 

significantly increases the time taken to learn representations as optimization 

algorithms may have to wait idly while waiting for data. 

- Correlated Samples Many streaming sources in the wild exhibit temporal 

coherence. For example, consecutive frames from online videos or from a robot 

exploring its environment display minimal changes. Such correlations break 

the IID assumption on which conventional optimization algorithms rely. 

- Lifelong learning Access to infinite streams of data provides us the op- 

portunity to continuously improve visual representations. However, the non- 

stationary nature of data streams in the wild cause conventional SSL methods 

to quickly forget features that are no longer relevant for the current distribu- 

tion. This poses another challenge: as we continuously acquire new data, how 

can Continuous SSL methods integrate new concepts in their representations 

without forgetting previously learned ones? 

While all these challenges co-exist in the wild, evaluating current SSL meth- 

ods directly would prevent us from analyzing each one comprehensively and 

in isolation. Instead, we disentangled each challenge by designing a set of 
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data streams that highlight each problem separately, and assess its effect on 

existing SSL methods. This helps us building a thorough characterization of 

each challenge and inform us on how to tackle them. We believe a disentangled 

analysis will help the community build intuitions about the impact of each 

challenge on continuous SSL as a whole. Section §4 introduces the challenge 

of one pass training and computational efficiency. Section §5 introduces the 

non-iid data setup, and Section §6 analyses the lifelong learning setting. 

4 Efficient Training 

Computational and data efficiency are two challenges that currently prevent 

SSL from being deployed on continuous data streams in-the-wild. For most 

practical applications, tdata 

: toptim 

might be high, so SSL methods should use 

idle time to improve the models. Second, fetching new samples can still be 

costly. For example, exploration robots often run on batteries, and web crawlers 

are limited by network bandwidths. Trivially deploying current SSL methods 

to the streaming setup would discard each batch of data after being used once. 

However, current deep learning optimization practices show that iterating over 

the same samples over multiple epochs helps learn better representations. For 

example, supervised learning on ImageNet [ 30 , 33 ] iterates over the dataset 100 

times, and SSL approaches [ 12 ] have been shown to keep improving even after 

seeing each sample 800 times. Therefore, we would like to answer the question 

of how to improve data efficiency while still following the streaming setting. 

4.1 Buffered Self-Supervised Learning 

We present a simple solution to the challenges above. The key idea is to maintain 

a fixed-size replay buffer that stores a small number of recent samples. This idea is 

inspired by experience replay [ 39 ] commonly used in reinforcement learning [ 3 , 

49 , 71 ] and supervised continual learning [ 31 , 67 ]. As shown in Figure 4a, the 

replay buffer decouples the streaming source from the training pipeline. The 

streaming data can be added to the replay buffer when available, replacing the 

oldest samples ( i.e. first-in-first-out (FIFO) update rule). Simultaneously, mini- 

batches of training data can be generated at any time by randomly sampling 

from the buffer. As shown in Figure 4b, replay buffers allow us to continue 

training during the otherwise idle wait time tidle. Replay buffers also allow us 

to reuse samples by sampling them multiple times, hence reducing the total 

data cost. We refer to this approach as Buffered Self-Supervised Learning . 

4.2 Single-pass training experiments 

We study the effectiveness of replay buffers when training with a single pass 

of the data. We trained ResNet-18 SimSiam models with and without replay 

buffers, with various amounts of idle time tidle 

= tdata 

− toptim. All models were 
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(b) Optimization under limited streaming bandwidth. 

Figure 4: Buffered Self-Supervised Learning. Buffered SSL introduces a replay buffer, which 

allows the model to continuously train even under limited bandwidth settings.
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Figure 5: Streaming SSL with limited 

bandwidth. Comparison of buffered and 

non-buffered approaches for various limited 

bandwidth settings. tdata 

: toptim 

denotes the 

ratio of data acquisition time to the optimiza- 

tion time. Buffered SSL can take advantage 

of the idle time to effectively improve the 

learned representations instead of waiting 

idly for new data. 

trained using the first 20 million images in our Flickr index as the streaming 

source. 

Figure 5 shows the ImageNet linear classification performance for increasing 

tdata. By maintaining a small replay buffer (containing only the most recent 

64k images), Buffered SSL was able to make good use of the idle time and 

improve representations significantly (41.4% accuracy on ImageNet) over the 

bottlenecked Conventional SSL approach (32.5% ImageNet accuracy). Replay 

buffers also improve data efficiency in the Continuous SSL setup, as each sample 

can be reused multiple times. Data usage is proportional to the hyper-sampling 

rate K , defined as the ratio between the number of mini-batches generated for 

training and acquired from the streaming source. 

To understand the limits of hyper-sampling, we trained a ResNet-18 SimSiam 

model with a replay buffer for a fixed amount of updates (780 000 iterations). 

Table 1 shows a comparison of Buffered SSL at varying hyper-sampling rates K , 

to Conventional SSL trained on the same amount of data, and Epoch-based SSL 

methods trained for K epochs. Epoch-based SSL and Buffered SSL are optimized 

with the same number of updates, but the former violates the streaming setup. 

Despite being required to train on a single pass of the data, Buffered SSL with a 

hyper-sampling rate of K = 10 achieved similar performance to epoch-based 
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Table 1: Data Efficiency: Augmenting SSL methods with replay buffers can improve efficiency 

allowing us to train on data streams with one pass. We show that Buffered SSL methods outperform 

the Conventional SSL methods and achieve performances close to training for multiple epochs.

 

Epochs 

Hyper 

Sampling 

Memory 

Size 

ImageNet 

Top1 Acc 

iNaturalist 

Top1 Acc

 

Training DB: Flickr 20M 

Conventional SSL 1 - - 32.3 9.8 

Buffered SSL 1 10 16K 41.4 16.7 

Buffered SSL 1 10 64K 41.8 17.3 

Buffered SSL 1 10 256K 41.5 17.5

 

Epoch-based SSL∗ 10 - - 41.9 17.5

 

Training DB: Flickr 5M 

Conventional SSL 1 - - 14.5 2.8 

Buffered SSL 1 40 16K 39.9 16.1 

Buffered SSL 1 40 64K 41.0 17.1 

Buffered SSL 1 40 256K 41.5 17.3

 

Epoch-based SSL∗ 40 - - 41.8 17.0

 

Training DB: Flickr 1M 

Conventional SSL 1 - - 8.0 1.5 

Buffered SSL 1 200 16K 30.5 9.5 

Buffered SSL 1 200 64K 36.4 14.3 

Buffered SSL 1 200 256K 38.8 15.5

 

Epoch-based SSL∗ 200 - - 41.7 17.3

 

∗Epoch-based SSL violates the streaming setting (reference only).

 

training, even for buffers as small as 64K images (0.3% of the 20M unique 

images seen). Table 1 also shows that, as hyper-sampling rates increase, the 

size of the replay buffer becomes critical. For example, for K = 200 , Buffered 

SSL still improves significantly over Conventional SSL on the same amount 

of data, regardless of buffer size. However, better representations are learned 

as the buffer size increases. Since, in high hyper-sampling regimes, the buffer 

is updated slowly with new images from the streaming source, increasing the 

buffer size prevents the model from quickly overfitting to the samples in the 

buffer. 

5 Correlated Data Sources 

Visual data obtained in-the-wild is often correlated and non- IID . For example, 

video feed from a self-driving car collects very similar consecutive frames. 

This is in stark contrast to the data used in Conventional SSL methods. For 

example, the ImageNet dataset allows sampling images from a collection of 1000 

uniformly distributed object classes. Even methods trained on larger datasets 

like Instagram-1B [ 24 , 26 ] are less likely to encounter heavily correlated samples 

in the mini-batches. However, the constant flow of data in the Continuous 

SSL setup generally violates these assumptions even in the static image setup 
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Table 2: Visually Correlated SSL: Linear classification performance of buffered and unbuffered 

SimSiam representations trained on data sources with high temporal coherence. MinRed buffers 

learns better representations by decorrelating the data.

 

Epochs 

Hyper 

Sampling 

Memory 

Size 

ImageNet 

Top1 Acc 

iNaturalist 

Top1 Acc

 

Streaming source: Kinetics ( Nseq=16) 

Conventional SSL 5 - - 17.7 3.0 

Buffered SSL 1 5 64K 25.9 8.4 

Buffered SSL (MinRed) 1 5 64K 26.2 7.9

 

Decorrelated source∗ 5 - - 25.9 7.9

 

Streaming source: Kinetics ( Nseq=64) 

Conventional SSL 5 - - 7.6 0.8 

Buffered SSL 1 5 64K 11.7 1.4 

Buffered SSL (MinRed) 1 5 64K 31.2 9.9

 

Decorrelated source∗ 5 - - 30.7 9.9

 

Streaming source: Krishna CAM 

Conventional SSL 5 - - 0.4 0.03 

Buffered SSL 1 5 16K 0.5 0.05 

Buffered SSL (MinRed) 1 5 16K 15.2 3.43 

Buffered SSL 1 5 64K 1.7 0.07 

Buffered SSL (MinRed) 1 5 64K 17.9 5.91

 

Decorrelated source∗ 5 - - 19.2 6.94

 

∗Decorrelated sources violate the streaming setting (reference only).

 

(images uploaded near events are likely to be highly correlated). 

Let ( xi 

: i ∈ D ) be a sequence of samples. When xi 

is generated by randomly 

sampling from a large dataset, samples are close to IID. Hence, the probability 

pc 

that two samples xi 

and xj 

are highly correlated is low, pc 

≈ 0 . Correlated 

samples may indicate images that are visually very similar or visually dissimilar 

but depict similar semantic content. However, in the Continuous SSL setup, the 

IID assumption is generally violated, leading to pc 

>> 0 . Under the assumption 

that consecutive samples in a continuous stream of data have the same correla- 

tion probability pc, the likelihood of a random pair in a batch ( xi 

, . . . , xi + b) of 

size b being correlated ( correlation likelihood ) is large, and given by

  \label {eq:l_corr} \mathcal {L}_\text {Seq} = P_c(b, p_c) = \frac {2}{b(b-1)}\sum _{i=1}^{b-1}\sum _{j=i+1}^b p_c^{j-1} = \frac {2p_c}{b(b-1)} \Big ( \frac {p_c^b-1}{(1-p_c)^2}+b\frac {p_c}{1-p_c}\Big ). 



  





 



















 









 







 





 

(2) 

Introducing a replay buffer of size B >> b , as proposed in §4.1, lowers the 

correlation likelihood to LFIFO 

= Pc( B , pc) ≈ 

b

 

B 

LSeq 

< Pc( b, pc)
1, and enables 

more effective representation learning. 

5.1 Minimum Redundancy Replay Buffer 

While replay buffers are able to reduce the correlation likelihood, prohibitively 

large replay buffers ( B >> b ) are required to significantly lower LFIFO 

in heavily

 

1Approximation holds for large values of B and b , and pc 

̸ = 1 . 
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(b) Krishna CAM 

Figure 6: Estimate of within batch correlation while training w/ and w/o replay buffers. 

correlated setups ( pc 

≈ 1 ). In order to overcome this, we propose a modified 

replay buffer to only retain de-correlated samples, thereby actively reducing pc. 

We call this the Minimum Redundancy Replay Buffer (MinRed). 

To accomplish this, we rely on the learned embedding space to identify 

redundant samples. Consider a replay buffer B with a maximum capacity of B , 

already containing B samples with representation z̄i. To add a new sample x 

to B , we rely on the cosine distance between all pairs of samples to discard the 

most redundant:

  \Bcal \leftarrow \Bcal \backslash i^* \cup \{x\} \quad \mbox {where} \quad i^* =\arg \min _{i\in \Bcal } \min _{j\in \Bcal } d_{\mathtt {cos}}(\bar {\z }_i, \bar {\z }_j). 

       











 

(3) 

In other words, we discard the sample with minimum distance to its nearest 

neighbor. To represent instances, we track the features z̄i 

of all samples in 

the buffer using a moving average z̄i 

= αz̄i 

+ (1 − α ) zi, where zi= f ( xi) is 

the current feature of the ith sample, and α the moving average coefficient. 

Since redundant samples are dropped from the buffer, the probability pc 

of two 

consecutive samples in the buffer being correlated decreases. If this probability 

decreases from pc 

to η pc 

where η << 1 , the correlation likelihood is lowered to 

LMinRed= Pc( B , η pc) < Pc( B , pc) , which facilitates representation learning. 

5.2 Experiments with non-IID data streams 

We assess the performance of SSL methods on two data streams with heavy tem- 

poral coherence. The first data stream is created by concatenating samples from 

videos in the Kinetics dataset [ 11 ]. From each video, we sample Nseq 

frames 

at random and add them sequentially to the data stream. The second training 

stream is taken as consecutive frames from the KrishnaCAM dataset2 [ 73 ] which 

records ego-centric videos spanning nine months of the life of a computer vision 

graduate student. On each stream, we train the baseline SimSiam (Conventional 

SSL), SimSiam augmented with replay buffers (Buffered SSL) and SimSiam 

augmented with MinRed buffers (Buffered SSL (MinRed)). We evaluate these 

representations by training a linear classifier on the ImageNet [ 16 ] and iNatural- 

ist [ 76 ] datasets. Results are shown in Table 2. We observe that the correlated 

nature of the data heavily disrupts training of the conventional models. While

 

2Concatenated videos are looped over 10 times to create a large stream. 
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the regular replay buffers alleviate this issue to some extent, learned representa- 

tions still suffer when trained on heavy correlated data streams (as in Kinetics 

Nseq=64 and KrishaCAM). Finally, the proposed MinRed buffers demonstrate 

significant gains in these setups. Models trained with MinRed buffers are gener- 

ally very close to the “oracle" setting of training from completely decorrelated 

streams of data ( i.e. randomly sampling from the collection of all frames from 

all videos, and thus violating the streaming assumption). 

Correlation of training samples: One of the benefits of Buffered SSL is the 

ability to generate training samples with low correlation likelihood and thus 

closer to IID . We analyzed the contents of the replay buffer over the duration of 

training to track the correlation likelihood (see Figure 6). We confirmed that the 

contents of MinRed replay buffers are significantly less correlated than FIFO 

buffers. In KrishnaCAM, MinRed buffers tend to maintain memories of past 

unique frames for longer periods of time. In Kinetics, MinRed buffers also yield 

training mini-batches with frames from a larger number of unique videos. 

6 Lifelong Self-Supervised Learning 

As we explore the world, we come across different distributions of object classes, 

some previously seen and some unseen. For example, we see furniture and 

appliances every day. But we also encounter novel concepts like zebras when 

we visit a zoo. This suggests that the distribution of semantic classes is often cor- 

related in time with occasional changes in distribution. However, Conventional 

SSL methods learn from a limited vocabulary of concepts that is repeatedly 

seen thousands of times (often uniformly). This provides a simplification of 

the learning setup that does not reflect the non-stationary nature of concepts 

in-the-wild. 

6.1 A non-stationary data stream to benchmark SSL 

To evaluate deployable SSL methods, we must use benchmarks that simulate 

the non-stationary semantic distributions we encounter in-the-wild. Inspired 

by supervised continual learning [ 32 , 38 ], we introduce a setup with smooth 

shifting semantic distributions. Partitions will be made publically available. 

First, we create four datasets D1 

, D2 

, D3 

, D4 

by splitting the classes of the 

ImageNet-21K dataset [ 16 ]. We create the splits based on the Wordnet [ 45 ] 

hierarchy such that each Di 

contains images from semantically similar classes. 

For each class, we hold out 25 images per class for evaluation. The training 

data stream is created by sampling images at random from the four datasets 

{Dp1 

, Dp2 

, Dp3 

, Dp4 

} where [ p1 

, p2 

, p3 

, p4] is a permutation of the sequence [1 , 2 , 3 , 4] . 

Images are sampled from the datasets sequentially such that images from Dpi 

are seen only after most images of Dpi − 1 

are sampled (see Appendix for a de- 

tailed description of the sampling procedure), simulating a smooth change in 

semantic distribution. The goal is to learn a representation that can discriminate 
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(b) Generalization 

Figure 7: Continual unsupervised representation learning on full ImageNet (14M images). The 

dataset is partitioned in 4 separate tasks which are seen in a sequence Dp 1 

→ Dp 2 

→ Dp 3 

→ Dp 4. 

Forgetting 7a is measured by computing the relative accuracy drop on each task after training on 

data of the task itself. Minimum redundancy buffers naturally retain instances from previous tasks, 

thus mitigating the catastrophic forgetting observed with conventional SSL and regular replay 

buffers. Generalization 7b is measured as the overall accuracy across all 15790 full ImageNet classes. 

By ensuring that images from past class distributions are not forgotten, minimum redundancy 

buffers can learn better representations overall. All results are averaged over 3 different sequences 

pi. 

concepts from all datasets without overfitting or forgetting concepts seen earlier. 

6.2 Experiments with non-stationary distributions 

We train representations using conventional SimSiam, SimSiam with replay 

buffers (§4.1) and SimSiam with minimum redundancy buffers (§5.1) on a single 

pass of this stream of data. During evaluation, we train a linear classifier on 

the learned representations to recognize all classes in the ImageNet-21k dataset, 

and measure the accuracy on the held-out set of each Dpi 

separately. All results 

were averaged over 3 permutations of p1 

, . . . , p4. 

Figure 7a plots the drop in classification accuracy on each dataset Dpi 

after 

the representation is trained on new data Dpi +1 

, Dpi +2 

, etc ., relative to the initial 

accuracy at the end of training on Dpi . This serves as a measure of forgetting - a 

larger drop indicates that the representation is losing its ability to discriminate 

older classes. The results show that all methods suffer from forgetting. However, 

SimSiam with MinRed buffers displays less forgetting compared to conventional 

and buffered SimSiam. Intuitively, this can be attributed to the MinRed criteria 

that leads to retention of images from the older semantic distributions. Figure 7b 

also shows the accuracy on all classes as training progresses. We observe that 

SimSiam with MinRed buffers consistently yields better generalization. In 

supplementary material, we also evaluated the learned representations on 

unseen classes, by testing only on future data streams Dpi + t
. Since MinRed 

buffers maintain training buffers with wider coverage of semantics, the learned 

representations were also shown to be more generalizable even to unseen 

concepts. 

7 Discussion and Future Work 

In this work, we exposed three challenges that require investigation to build 

robust deployable self-supervised learners. We improve the efficiency of Con- 
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tinuous SSL by leveraging replay buffers to revisit old samples. In future work, 

developing approaches for quickly rejecting samples by preemptively eval- 

uating their value might yield improved data efficiency. We also propose a 

novel minimum redundancy buffer to discard correlated samples allowing us 

to mimic the generation of IID training data, even in highly correlated settings. 

An alternative future direction could focus on learning representations that take 

advantage of the correlated nature of the data stream to learn from fine-grained 

discrepancies. 

In data streams with non-stationary semantic distributions, we show that 

MinRed buffers alleviate the issue of catastrophic forgetting, as they are ca- 

pable of maintaining unique samples from past distributions. However, we 

observed signs of saturating generalization as new concepts are introduced. 

Some possible reasons could be: 1) the cosine decay learning rate schedule and 

2) the fixed capacity of our models that prohibits learning a large sequence of 

novel concepts. In preliminary experiments (see supplementary material), we 

saw that training with a constant learning rate (on 100M images from Flickr) 

does not lead to significant improvements in performance. We also observed 

that trivially expanding the architecture at regular intervals does not lead to 

noticeable improvements. However, we believe that further exploration in this 

direction is required to continually learning novel concepts in a self-supervised 

manner. 

8 Conclusion 

One of the grand goals of self-supervised learning is to build systems capable of 

continually learning from unlimited sources of unlabelled data. However, due 

to the need for benchmarking, existing SSL methods have primarily focused on 

curated datasets of limited size. Unfortunately, while the existing approaches 

work well in the dataset setup, we are still not close to deployable continual self- 

supervised methods. In this work, we advocate for a more realistic SSL setup 

that will facilitate deployment, while retaining the benefits of benchmarking. 

To this end, we identified three broad challenges of deployable SSL - training 

efficiency, correlated data, and lifelong learning, - and proposed potential so- 

lutions to address them. We believe however that further research is needed 

to develop deployable systems that deliver on the promise of self-supervised 

learning, and hope future efforts in SSL research focus on these challenges. 
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A Ethics and Negative Societal Impact 

Research on self-supervised learning has been making progress towards build- 

ing systems that can continually learn from data in our world without human 

supervision. In this work, we propose a problem setup that evaluates the 

challenges faced when such methods are truly deployed in-the-wild. As these 

systems start being deployed without supervision, there are numerous possi- 

bilities for biases to emerge based on the statistics of data consumed. These 

biases could potentially have a negative impact on our society. Therefore, it 

is important to exercise caution when deploying such systems and relying on 

them for downstream applications. Before deploying such systems it is also 

important to thoroughly study and implement approaches to mitigate such 

emergent biases. 

In our work, apart from working with existing datasets, we gather a collec- 

tion of 100M images by downloading images from Flickr that have the Creative 

Commons license. While this license permits usage in our application, we do 

not plan to redistribute the images since they have not been thoroughly scanned 

for privacy concerns. The models trained in this work also have not been ex- 

amined for potential societal biases or other spurious correlations that might 

have emerged from the data. While we plan to release the models trained here 

for research purposes, we would strongly advise against using them for any 

real-world applications. 

B Implementation details 

B.1 SimSiam 

The experiments conducted in this paper make extensive use of SimSiam [ 13 ], a 

contrastive learning algorithm for self-supervised visual representation learning. 

We closely follow the official SimSiam implementation available at https: 

//github.com/facebookresearch/simsiam . 

In all experiments, we used ResNet-18 with synchronized batch-norm as 

the backbone. All models were trained on 4 GPUs using stochastic gradient 

descent (SGD) with a batch size of 256 , learning rate of 0 . 05 with a cosine 

decay, momentum of 0 . 9 , and weight decay of 0 . 0001 . LIFO buffers are updated 

by always removing the oldest images. MinRed buffers are maintained by 
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Algorithm 1: Buffered SSL with MinRed buffer. PyTorch pseudo-code.

 

1 def train(f, SimSiam, stream, num_updates):

 

2 B = [] # Init empty buffer

 

3 for ims in stream: # Load batch from stream

 

4 Add2Buffer(B, ims)

 

5

 

6 # Hyper-sampling: Update num_updates times

 

7 for _ in range(num_updates):

 

8 # Sample batch from buffer

 

9 x = RandomSample(B)

 

10 x1, x2 = aug(x), aug(x)

 

11 z1, z2 = f(x1), f(x2)

 

12

 

13 # Track features

 

14 TrackRepresentations(B, x, (z1+z2)/2)

 

15

 

16 # Compute loss and update models

 

17 L = SimSiam(z1, z2)

 

18 L.backward() # Back-propagation

 

19 update(f, SimSiam) # SGD update

 

20

 

21 def Add2Buffer(B, ims):

 

22 n_excess = len(B) + len(ims) - maxlen(B)

 

23 if n_excess > 0: # If full, remove n_excess.

 

24 for _ in range(n_excess):

 

25 # Pairwise dist

 

26 d = pdist(B.feat, B.feat)

 

27

 

28 # Distance to nearest neig

 

29 d_nneig = d.min(dim=1)

 

30

 

31 # Remove sample with smallest d_nneig

 

32 i_redundant = d_nneig.argmin(dim=0)

 

33 B.remove(i_redundant)

 

34

 

35 # Add new images to buffer

 

36 for x in ims:

 

37 B.add(x)

 

38

 

39 def TrackRepresentations(B, x, z, alpha=0.5):

 

40 # EMA update

 

41 B.feat[x] = alpha*B.feat[x] + (1 - alpha)*z

 

removing the most redundant images. Pseudo-code for the Buffered SSL with 

MinRed buffers is provided in Algorithm 1. 

We follow the same evaluation protocol as in [ 13 , 26 ], and use linear probes 

on the learned features to recognize classes of three datasets. The linear probes 

on ImageNet and iNaturalist were trained using the entirety of the datasets. On 

ImageNet, we trained the linear classifier using SGD+LARS [ 83 ] for 10 epochs 

with a batch size of 1024 , learning rate of 3 . 0 with cosine decay, momentum of 

0 . 9 , and no weight decay. On iNaturalist, the classifier was trained for 20 epochs 
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Figure 8: Open set generalization. While training on the data stream used for assessing continual 

learning, we also evaluated the models on future data partitions, which contain images from images 

from categories not yet seen during training. By training models with MinRed buffers, we can learn 

representations the can better generalize to unseen categories. 

with learning rate of 12 . 0 . Contrarily to ImageNet and iNaturalist, evaluations 

conducted on the full ImageNet dataset ( 14 M images) only used a subset of 

the data (using only 50 images per class for training and 25 for evaluation). 

We trained the linear probe on this data using SGD+LARS for 30 epochs and a 

learning rate of 3 . 0 . 

B.2 Sampling and Splits for Lifelong Learning 

In Section 6 of the main text, we construct a dataset with non-stationary semantic 

distributions to evaluate lifelong learning i.e. learning without forgetting. Here 

we describe the process of construction of this dataset. 

First, we performed a depth-first search (DFS) on the Wordnet[ 45 ] hierarchy. 

We split the sequence of DFS nodes (or classes) uniformly into four groups. Each 

such group contains classes that are close to each other in the Wordnet hierarchy 

and hence, semantically similar. In order to create the sequence of samples for 

lifelong learning, we could sequentially sample images from one split after the 

other. However, for future approaches, such hard boundaries in the sequence 

as we move from one split to the other could be easy to trivially identify and 

leverage to minimize forgetting. To make the setup more realistic, we create 

a smooth transition between one split to the other. The smooth transition is 

created by mixing the last 10% of each split with the first 10% of the next split. 

More concretely, we linearly decrease the likelihood of sampling from the first 

split and linearly increase the likelihood of sampling from the second split. 

C Additional results 

C.1 Generalization towards unseen categories 

To assess the open set generalization ability of models trained with Minimum 

Redundancy (MinRed) buffers, we extended the continual learning experiment 

described in Section 6.2 and Figure 7 of the main paper, and further evaluate on 

future data partitions, i.e ., data partitions containing categories yet unseen in 
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Figure 9: Contents of 64K buffers as the data distribution shifts over the course of training. For 

Conventional SSL (which has no buffer), we count images in a sequence of training batches totaling 

the same 64K images. Buffered SSL with a Minimum Redundancy (MinRed) buffer retains a 

significant number of images from previous data distributions. This is in contrast to Buffered SSL 

with LIFO buffers or Conventional SSL which have no ability to retain images for long periods of 

time. 

the training sequence. The results are shown in Fig. 8. Training models with 

MinRed buffers also lead to better generalizable towards unseen categories. This 

is likely explained by the fact that MinRed buffers maintain higher semantic 

diversity in the training data, which encourages the model to learn more general 

representations, likely to generalize better to unseen categories. 

C.2 Buffer contents during lifelong learning 

To understand why MinRed buffers allow SimSiam to learn from non-stationary 

distributions with less forgetting (Section 6 of the paper), we analysed the 

contents of the buffer used to generate training samples. Figure 9 shows the 

number of images in the buffer from each of the Dp 1 

, . . . , Dp 4 

partitions, as 

training progresses from Dp 1 

to Dp 4. As can be seen, only MinRed buffers are 

capable of retaining images from prior distributions. Since these images can 

then be sampled for training, MinRed buffers enable continual training with 

less forgetting. 

C.3 Learning rate schedules for continual learning 

The cosine learning rate schedule is not applicable to continuous SSL, as it re- 

quires a pre-determined end. We tested several learning rate schedules. Results 

are shown in Figure 10. With a simple constant learning rate, models can still 

learn from a continuous (non-stationary) data stream, while still being able to 

achieve similar performances in the static case, when combined with a short 

learning rate decay before evaluation. 
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Figure 10: Downstream performance on ImageNet throughout self-supervised training with various 

learning rate schedules. “Cos (xM)” stands for cosine decay ending at iteration x /batch size. 

“Const+Decay (xM)” represents a learning rate schedule with a constant start (for about 80% of the 

total training time), followed by a short cosine decay for the remainder of training. 
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