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Abstract. Deep learning approaches achieve prominent success in 3D
semantic segmentation. However, collecting densely annotated real-world
3D datasets is extremely time-consuming and expensive. Training mod-
els on synthetic data and generalizing on real-world scenarios becomes an
appealing alternative, but unfortunately suffers from notorious domain
shifts. In this work, we propose a Data-Oriented Domain Adaptation
(DODA) framework to mitigate pattern and context gaps caused by dif-
ferent sensing mechanisms and layout placements across domains. Our
DODA encompasses virtual scan simulation to imitate real-world point
cloud patterns and tail-aware cuboid mixing to alleviate the interior
context gap with a cuboid-based intermediate domain. The first un-
supervised sim-to-real adaptation benchmark on 3D indoor semantic
segmentation is also built on 3D-FRONT, ScanNet and S3DIS along
with 8 popular Unsupervised Domain Adaptation (UDA) methods. Our
DODA surpasses existing UDA approaches by over 13% on both 3D-
FRONT → ScanNet and 3D-FRONT → S3DIS. Code is available at
https://github.com/CVMI-Lab/DODA.
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1 Introduction

3D semantic segmentation is a fundamental perception task receiving incredi-
ble attention from both industry and academia due to its wide applications in
robotics, augmented reality, and human-computer interaction, to name a few.
Data hungry deep learning approaches have attained remarkable success for 3D
semantic segmentation [47, 30, 56, 62, 22, 64]. Nevertheless, harvesting a large
amount of annotated data is expensive and time-consuming [3, 7].

An appealing avenue to overcome such data scarcity is to leverage simulation
data where both data and labels can be obtained for free. Simulated datasets
can be arbitrarily large, easily adapted to different label spaces and customized
for various usages [18, 54, 8, 34, 73, 26]. However, due to notorious domain gaps
in point patterns and context (see Fig. 1), models trained on simulated scenes
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Scan occlusionNo occlusion No noise Noise

(a) Point pattern gap between simulated scene (left) and
real-world scene (right).

(b) Context-level gap between simulated scene (left)
and real-world scene (right).

Simple and regular layout Complex and cluttered layout

Fig. 1. The domain gaps between simulated scenes from 3D-FRONT [8] and real-
world scenes from ScanNet [7]. (a): The point pattern gap. The simulated scene is
perfect without occlusions or noise, while the real-world scene inevitably contains scan
occlusion and noise patterns such as rough surfaces. (b): The context gap. While the
simulated scene applies simple layout with regularly placed objects, the real scene is
complex with cluttered interiors.

suffer drastic performance degradation when generalized to real-world scenarios.
This motivates us to study sim-to-real unsupervised domain adaptation (UDA),
leveraging labeled source data (simulation) and unlabeled target data (real) for
effectively adapting knowledge across domains.

Recent efforts on 3D domain adaptation for outdoor scene parsing have ob-
tained considerable progress [23, 61, 72, 29]. However, they often adopt LiDAR-
specific range image format, not applicable for indoor scenarios with scenes con-
structed by RGB-D sequences. Besides, such outdoor attempts could be sub-
optimal in addressing the indoor domain gaps raised from different scene con-
struction processes. Further, indoor scenes have more sophisticated interior con-
text than outdoor, which makes the context gap a more essential issue in indoor
settings. Here, we explore sim-to-real UDA in the 3D indoor scenario which is
challenging and largely under explored.

Challenges. Our empirical studies on sim-to-real adaptation demonstrate two
unique challenges in this setting: the point pattern gap owing to different sensing
mechanisms, and the context gap due to dissimilar semantic layouts. As shown in
Fig. 1 (a), simulated scenes tend to contain complete objects as well as smooth
surfaces, while real scenes include inevitable scan occlusions and noise patterns
during reconstructing point clouds from RGB-D videos captured by depth cam-
eras [7, 3]. Also, even professionally designed layouts in simulated scenes are
much simpler and more regular than real layouts as illustrated in Fig. 1 (b).

To tackle the above domain gaps, we develop a holistic two stage pipeline
DODA with a pretrain and a self-training stage, which is widely proved to be ef-
fective in UDA settings [50, 74, 65]. As the root of the challenges lies in “data”, we
thus design two data-oriented modules which are shown to dramatically reduce
domain gaps without incurring any computational costs during inference. Specif-
ically, we develop Virtual Scan Simulation (VSS) to mimic occlusion and noise
patterns that occur during the construction of real scenes. Such pattern imitation
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yields a more transferable model to real-world data. Afterwards, to adapt the
model to target domain, we design Tail-aware Cuboid Mixing (TACM) for boost-
ing self-training. While source supervision is utilized to stabilize gradients with
clean labels in self-training, it unfortunately introduces context bias. Thus, we
propose TACM to create an intermediate domain by splitting, permuting, mixing
and re-sampling source and target cuboids, which explicitly mitigates the con-
text gap through breaking and rectifying source bias with target pseudo-labeled
data, and simultaneously eases long-tail issue by oversampling tail cuboids.

To the best of our knowledge, we are the first to explore unsupervised domain
adaptation on 3D indoor semantic segmentation. To verify the effectiveness of
our DODA, we construct the first 3D indoor sim-to-real UDA benchmark on a
simulated dataset 3D-FRONT [8] and two widely used real-world scene under-
standing datasets ScanNet [7] and S3DIS [3] along with 8 popular UDA methods
with task-specific modifications as our baselines. Experimental results show that
DODA obtains 22% and 19% performance gains in terms of mIoU compared to
source only model on 3D-FRONT → ScanNet and 3D-FRONT → S3DIS respec-
tively. Even compared to existing UDA methods, over 13% improvement is still
achieved. It is also noteworthy that the proposed VSS can lift previous UDA
methods by a large margin (8% ∼ 14%) as a plug-and-play data augmentation,
and TACM further facilitates real-world cross-site adaptation tasks with 4% ∼
5% improvements.

2 Related Work

3D Indoor Semantic Segmentation focuses on obtaining point-wise cate-
gory predictions from point clouds, which is a fundamental while challenging
task due to the irregularity and sparsity of 3D point clouds. Some previous
works [42, 54] feed 3D grids constructed from point clouds into 3D convolutional
neural networks. Some approaches [16, 6] further employ sparse convolution [17]
to leverage the sparsity of 3D voxel representation to accelerate computation.
Another line of works [46, 47, 25, 62, 71] directly extract feature embeddings
from raw point clouds with hierarchical feature aggregation schemes. Recent
methods [56, 64] assign position-related kernel functions on local point areas
to perform dynamic convolutions. Additionally, graph-based works [53, 31, 60]
adopt graph convolutions to mimic point cloud structure for point representation
learning. Although the above methods achieve prominent performance on various
indoor scene datasets, they require large-scale human-annotated datasets which
we aim to address using simulation data. Our experimental investigation is built
upon the sparse-convolution-based U-Net [16, 6] due to its high performance.
Unsupervised Domain Adaptation aims at adapting models obtained from
annotated source data towards unlabeled target samples. The annotation effi-
ciency of UDA and existing data-hungry deep neural networks make it receive
great attention from the computer vision community. Some previous works [39,
40] attempt to learn domain-invariant representations by minimizing maximum
mean discrepancy [5]. Another line of research leverages adversarial training [14]
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to align distributions in feature [10, 51, 20], pixel [21, 20, 13] or output space [57]
across domains. Adversarial attacks [15] have also been utilized in [36, 67] to
train domain-invariant classifiers. Recently, Self-training has been investigated
in addressing this problem [50] which formulate UDA as a supervised learn-
ing problem guided by pseudo-labeled target data and achieves state-of-the-art
performance in semantic segmentation [74] and object detection [28, 49].

Lately, with the rising of 3D vision tasks, UDA has also attracted a lot
of attention in such 3D tasks as 3D object classification [48, 1], 3D outdoor
semantic segmentation [61, 23, 68, 45, 29] and 3D outdoor object detection [59,
66, 70, 41, 65]. Especially, Wu et al. [61] propose intensity rendering, geodesic
alignment and domain calibration modules to align sim-to-real gaps of outdoor
3D semantic segmentation datasets. Jaritz et al. [23] explore multi-modality
UDA by leveraging images and point clouds simultaneously. Nevertheless, no
previous work studies UDA on 3D indoor scenes. The unique point pattern
gap and the context gap also render 3D outdoor UDA approaches not readily
applicable to indoor scenarios. Hence, in this work, we make the first attempt on
UDA for 3D indoor semantic segmentation. Particularly, we focus on the most
practical and challenging scenario – simulation to real adaptation.
Data Augmentation for UDA has also been investigated to remedy data-level
gaps across domains. Data augmentation techniques have been widely employed
to construct an intermediate domain [49, 29, 13] to benefit optimization and
facilitate gradual domain adaptation. However, they mainly focus on image-like
input formats, which is not suitable for sparse and irregular raw 3D point clouds.
Different from existing works, we build a holistic pipeline with two data-oriented
modules on two stages to manipulate raw point clouds for mimicking target point
cloud patterns and creating a cuboid-based intermediate domain.

3 Method

3.1 Overview

In this work, we aim at adapting a 3D semantic scene parsing model trained
on a source domain Ds = {(P s

i , Y
s
i )}

Ns
i=1 of Ns samples to an unlabeled target

domain Dt = {P t
i }

Nt
i=1 of Nt samples. P and Y represent the point cloud and the

point-wise semantic labels respectively.
In this section, we present DODA, a data-oriented domain adaptation frame-

work to simultaneously close pattern and context gaps by imitating target pat-
terns as well as breaking source bias with the generated intermediate domain.
Specifically, as shown in Fig. 2, DODA begins with pretraining the 3D scene
parsing model F on labeled source data with our proposed virtual scan simula-
tion module for better generalization. VSS puts virtual cameras on the feasible
regions in source scenes to simulate occlusion patterns, and jitters source points
to imitate sensing and reconstruction noise in the real scenes. The pseudo labels
are then generated with the pretrained model. In the self-training stage, we de-
velop tail-aware cuboid mixing to build an intermediate domain between source
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Unlabeled target
domain 𝒟!

Virtual Scan
Simulation F

Intermediate domain 𝒟% CE Loss

CE Loss

Tail-aware
Cuboid Mixing
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Labeled source
domain 𝒟$
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…
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Source training Target training Target pseudo label generation
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Fig. 2. Our DODA framework consists of two data-oriented modules: Virtual Scan
Simulation (VSS) and Tail-aware Cuboid Mixing (TACM). VSS mimics real-world
data patterns and TACM constructs an intermediate domain through mixing source
and target cuboids. P denotes the point cloud; Y denotes the semantic labels and
Ŷ denotes the pseudo labels. The superscripts s, t and m stand for source, target
and intermediate domain, respectively. The blue line denotes source training flow; the
orange line denotes target training flow and the orange dotted line denotes target
pseudo label generation procedure. Best viewed in color.

and target, which is constructed by splitting and mixing cuboids from both do-
mains. Besides, cuboids including high percentage tail classes are over-sampled
to overcome the class imbalance issue during learning with pseudo labeled data.
Elaborations of our tailored VSS and TACM are presented in the following parts.

3.2 Virtual Scan Simulation

DODA starts from training a 3D scene parsing network on labeled source data,
to provide pseudo labels on the target domain in the next self-training stage.
Hence, a model with a good generalization ability is highly desirable. As ana-
lyzed in Sec. 1, different scene construction procedures cause point pattern gaps
across domains, significantly hindering the transferability of source-trained mod-
els. Specifically, we find that the missing of occlusion patterns and sensing or
reconstruction noise in simulation scenes raises huge negative transfer during
the adaptation, which cannot be readily addressed by previous UDA methods
(see Sec. 5). This is potentially caused by the fact that models trained on clean
source data are incapable of extracting useful features to handle real-world chal-
lenging scenarios with ubiquitous occlusions and noise. To this end, we propose
a plug-and-play data augmentation technique, namely virtual scan simulation,
to imitate camera scanning procedure for augmenting the simulation data.

VSS includes two parts: the occlusion simulation that puts virtual cameras in
feasible regions of simulated scenes to imitate occlusions in the scanning process,
and the noise simulation that randomly jitters point patterns to mimic sensing
or reconstruction errors, through which the pattern gaps are largely bridged.
Occlusion Simulation. Scenes in real-world datasets are reconstructed from
RGB-D frame sequences suffering from inevitable occlusions, while simulated
scenes contain complete objects without any hidden points. We attempt to mimic
occlusion patterns on the simulation data by simulating the real-world data
acquisition procedures. Specifically, we divide it into the following three steps:
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(a) Occlusion Simulation (b) Noise Simulation

(i) Simulate camera poses

(ii) Determine visible range, 𝜂 = #ixed

bird eye’s view

Visible range 𝑅!
Camera orientation

Instance

Camera locations

Random jitter

Original point

Perturbed point

Surface

ℎ

𝑣

𝛼!

𝛼"

𝑣
ℎ

Fig. 3. Virtual scan simulation. (a): We simulate occlusion patterns by simulating
camera poses and determining visible ranges. (b): We simulate noise by randomly
jittering points to generate realistic irregular point patterns such as rough surfaces.

a) Simulate camera poses. To put virtual cameras in a given simulation scene, we
need to determine camera poses including camera positions and camera orien-
tations. First, feasible camera positions where a handheld camera can be placed
are determined by checking free space in the simulated environment. We voxelize
and project P s to bird eye’s view and remove voxels containing instance or room
boundary. The centers of remaining free-space voxels are considered as feasible
x-y coordinates for virtual cameras, as shown in Fig. 3 (a) (i). For the z axis, we
randomly sample the camera height in the top half of the room.

Second, for each camera position v, we randomly generate a camera orienta-
tion using the direction from the camera position v to a corresponding randomly
sampled point of interest h on the wall, as shown in Fig. 3 (a) (i). This ensures
that simulated camera orientations are uniformly distributed among all potential
directions without being influenced by scene-specific layout bias.

b) Determine visible range. Given a virtual camera pose and a simulated 3D
scene, we are now able to determine the spatial range that the camera can cover,
i.e., Rv, which is determined by the camera field of view (FOV) (see Fig. 3 (a)
(ii)). To ease the modeling difficulties, we decompose FOV into the horizontal
viewing angle αh, the vertical viewing angle αv and the viewing mode η that
determine horizontal range, vertical range and the shape of viewing frustum,
respectively. For the viewing mode η, we approximate three versions from simple
to sophisticated, namely fixed, parallel and perspective, with details presented in
the supplementary materials. As illustrated in Fig. 3 (a) (ii), we show an example
of the visible range Rv with random αh and αv and η in the fixed mode.

c) Determine visible points. After obtaining the visible range Rv, we then de-
termine the visibility of each point within Rv. Specifically, we convert the point
cloud to the camera coordinate and extend [27] with spherical projection to fil-
ter out occluded points and obtain visible points. By taking the union of visible
points from all virtual cameras, we finally obtain the point set P s

v with occluded
points removed. Till now, we can generate occlusion patterns in simulation scenes
by mimicking real-world scanning process and adjust the intensity of occlusion by
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changing the number of camera positions nv and FOV configurations to ensure
that enough semantic context is covered for model learning.

Noise Simulation. Besides occlusion patterns, sensing and reconstruction er-
rors are unavoidable when generating 3D point clouds from sensor-captured
RGB-D videos, which unfortunately results in non-uniform distributed points
and rough surfaces in real-world datasets (See Fig. 1 (a)). To address this issue,
we equip our VSS with another noise simulation module, which injects pertur-
bations to each point as follows:

P̃ s = {p+∆p | p ∈ P s
v }, (1)

where ∆p denotes the point perturbation following a uniform distribution rang-

ing from −δp to δp, and P̃ s is the perturbed simulation point cloud. Though
simple, we argue that this module efficiently imitates the noise in terms of non-
uniform and irregular points patterns as illustrated in Fig. 3.

Model Pretraining on Source Data. By adopting VSS as a data augmen-
tation for simulated data, we train a model with cross-entropy loss as Eq. (2)
following settings in [24, 38].

minLpre =

Ns∑
i=1

CE(Ss
i , Y

s
i ), (2)

where CE(·, ·) is the cross-entropy loss and S is the predicted semantic scores
after performing softmax on logits.

3.3 Tail-aware Cuboid Mixing
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Fig. 4. An illustration of tail-aware
cuboid mixing, which contains cuboid
mixing and tail cuboid over-sampling.
Notice that for clarity, we take
(nx, ny, nz) = (2, 2, 1) as an example.

After obtaining a more transferable scene
parsing model with VSS augmentation,
we further adopt self-training [32, 55,
63, 74, 70], to adapt the model by di-
rectly utilizing target pseudo-labeled data
for supervision. Since target pseudo la-
bel is rather noisy, containing incorrect
pseudo labeled data and leading to erro-
neous supervisions [66], we also introduce
source supervision to harvest its clean an-
notations and improve the percentage of
correct labels. However, directly utilizing
source data unfortunately brings source
bias and large discrepancies in joint opti-
mization. Even though point pattern gaps
have already been alleviated with the pro-
posed VSS, the model still suffers from the context gap due to different scene
layouts. Fortunately, the availability of target domain data gives us the chance
to rectify such context gaps. To this end, we design Tail-aware Cuboid Mixing
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(TACM) to construct an intermediate domain Dm that combines source and tar-
get cuboid-level patterns (see Fig 4), which augments and rectifies source layouts
with target domain context. Besides, it also decreases the difficulty of simultane-
ously optimizing source and target domains with huge distribution discrepancies
by providing a bridge for adaptation. TACM further moderates the pseudo label
class imbalance issue by cuboid-level tail class oversampling. Details on pseudo
labeling, cuboid mixing and tail cuboid oversampling are as follows.
Pseudo Label Generation. To employ self-training after pretraining, we first
need to generate pseudo labels Ŷ t for target scenes P t. Similar to previous
paradigms [74, 63, 66, 24], we obtain pseudo labels via the following equation:

Ŷ t
i,j =

{
1 , if max(St

i ) > T, j = argmaxSt
i ,

0 , otherwise,
(3)

where Ŷ t
i = [Ŷ t

i,1, · · · , Ŷ t
i,c], c is the number of classes and T is the confidence

threshold to filter out uncertain predictions.
Cuboid Mixing. Here, given labeled source data and pseudo-labeled target
data, we carry out the cuboid mixing to construct a new intermediate domain
Dm as shown in Fig. 2 and Fig. 4. For each target scene, we randomly sample a
source scene to perform cuboid mixing. We first partition two scenes into several
cuboids with varying sizes as the smallest units to mix cuboid as Eq. (4):

P = {γijk}, i ∈ {1, ..., nx}, j ∈ {1, ..., ny}, k ∈ {1, ..., nz},
γijk = {p | p in [xi−1, yj−1, zk−1, xi, yj , zk]}, (4)

where γijk denotes a single cuboid; nx, ny and nz stand for the number of
partitions in x, y and z axis, respectively; and each cuboid γijk is constrained
in a six-tuple bounding box [xi−1, yj−1, zk−1, xi, yj , zk] defined by the partition
positions xi, yj , zk for corresponding dimensions, respectively. These partition
positions are first initialized as equal-divisions and then injected with random-
ness to enhance diversities as below:

xi =

{
i
nx

max px + (1− i
nx

)min px, if i ∈ {0, nx},
i
nx

max px + (1− i
nx

)min px +∆ϕ, otherwise,
(5)

where ∆ϕ is the random perturbation following uniform distribution ranging
from −δϕ to δϕ. The same formulation is also adopted for yj and zk. After
partitioning, the source and target cuboids are first spatially permuted with a
probability ρs and then randomly mixed with another probability ρm, as depicted
in Fig. 4 and Fig. 2.

Though ConDA [29] shares some similarities with our cuboid mixing by mix-
ing source and target, it aims to preserve cross-domain context consistency while
ours attempts to mitigate context gaps. Besides, ConDA operates on 2D range
images, inapplicable to reconstructed indoor scenes obtained by fusing depth
images. Our cuboid mixing leverages the freedom of the raw 3D representation,
i.e. point cloud, and thus is generalizable to arbitrary 3D scenarios.
Tail Cuboid Over-sampling. Besides embedding target context to source
data, our cuboid mixing technique also allows adjusting the category distri-
butions by designing cuboid sampling strategies. Here, as an add-on advan-
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tage, we leverage this nice property to alleviate the biased pseudo label prob-
lem [74, 19, 2, 37] in self-training: tail categories only occupy a small percentage
of pseudo labeled data. Specifically, we sample cuboids with tail categories more
frequently, namely tail cuboid over-sampling, detailed as follows.

We calculate per-class pseudo label ratio r ∈ [0, 1]c and define nr least com-
mon categories as tail categories. We then define tail cuboid whose pseudo label
ratio is higher than the average value r on at least one of nr tail categories. We
construct a tail cuboid queue Q with size Nq to store tail cuboids. Formally,
γt
q[w] denotes the wth tail cuboid in Q, as shown in Fig. 4. Notice that through

training, Q is dynamically updated with First In, First Out (FIFO) rule since
cuboids are randomly split in each iteration as Eq. (4). In each training itera-
tion, we ensure that at least u tail cuboids are in each mixed scene by sampling
cuboids from Q and replacing existing cuboids if needed. With such a simple
over-sampling strategy, we make the cuboid mixing process tail-aware, and re-
lieve the class imbalance issue in the self-training. Experimental results in Sec. 6
further demonstrate the effectiveness of our tail cuboid over-sampling strategy.
Self-training with Target and Source data. In the self-training stage, for
data augmentation, VSS is first adopted to augment the source domain data
to reduce the pattern gap and then TACM mixes source and target scenes to
construct a tail-aware intermediate domain Dm = {Pm} with labels Ŷ m mixed
by source ground-truth and target pseudo labels. To alleviate the noisy supervi-
sions from incorrect target pseudo labels, we minimize dense cross-entropy loss
on source data P̃ s and intermediate domain data Pm as below:

minLst =

Nt∑
i=1

CE(Sm
i , Ŷ m

i ) + λ

Ns∑
i=1

CE(Ss
i , Y

s
i ), (6)

where λ denotes the trade-off factor between losses.

4 Benchmark Setup

4.1 Datasets

3D-FRONT [8] is a large-scale dataset of synthetic 3D indoor scenes, which con-
tains 18,968 rooms with 13,151 CAD 3D furniture objects from 3D-FUTURE [9].
The layouts of rooms are created by professional designers and distinctively span
31 scene categories and 34 object semantic super-classes. We randomly select
4995 rooms as training samples and 500 rooms as validation samples after fil-
tering out noisy rooms. Notice that we obtain source point clouds by uniformly
sampling points from original mesh with CloudCompare [12] at 1250 surface
density (number of points per square units). Comparison between 3D-FRONT
and other simulation datasets are detailed in the nsupplemental materials.
ScanNet [7] is a popular real-world indoor 3D scene understanding dataset,
consisting 1,613 real 3D scans with dense semantic annotations (i.e., 1,201 scans
for training, 3,12 scans for validation and 100 scans for testing). It provides
semantic annotations for 20 categories.
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S3DIS [3] is also a well-known real-world indoor 3D point cloud dataset for
semantic segmentation. It contains 271 scenes across six areas along with 13
categories with point-wise annotations. Similar to previous works [33, 47], we
use the fifth area as the validation split and other areas as the training split.
Label Mapping. Due to different category taxonomy of datasets, we condense
11 categories for 3D-FRONT → ScanNet and 3D-FRONT → S3DIS settings,
individually. Besides, we condense 8 categories for cross-site settings between
S3DIS and ScanNet. Please refer to the Suppl. for the detailed taxonomy.

4.2 UDA Baselines

As shown in Table 1 and 2, we reproduce 7 popular 2D UDA methods and 1 3D
outdoor method as UDA baselines, encompassing MCD [52], AdaptSegNet [57],
CBST [74], MinEnt [58], AdvEnt [58], Noisy Student [63], APO-DA [67] and
SqueezeSegV2 [61]. These UDA baselines cover most existing streams such as ad-
versarial alignment, discrepancy minimization, self-training and entropy guided
adaptation. To perform these image-based methods on our setting, we carry out
some task-specific modifications, which are detailed in supplemental materials.

5 Experiments

To validate our method, we benchmark DODA and other popular UDA meth-
ods with extensive experiments on 3D-FRONT [8], ScanNet [7] and S3DIS [3].
Moreover, we explore a more challenging setting, from simulated 3D-FRONT [8]
to RGBD realistic dataset NYU-V2 [43], presented in the supplementary mate-
rials. To verify the generalizability of VSS and TACM, we further integrate VSS
to previous UDA methods and adopt TACM in the real-world cross-site UDA
setting. Note that since textures for some background classes are not provided
in 3D-FRONT dataset, we only focus on adaptation using 3D point positions.
The implementation details including network and training details are provided
in the Suppl.
Comparison to Other UDA Methods. As shown in Table 1 and Table 2,
compared to source only, DODA largely lifts the adaptation performance in
terms of mIoU by around 21% and 19% on 3D-FRONT → ScanNet and 3D-
FRONT → S3DIS, respectively. DODA also shows its superiority over other
popular UDA methods, obtaining 14% ∼ 22% performance gain on 3D-FRONT
→ ScanNet and 13% ∼ 19% gain on 3D-FRONT → S3DIS. Even only equipping
source only with VSS module, our DODA (only VSS) still outperforms UDA
baselines by around 4% ∼ 10%, indicating that the pattern gap caused by dif-
ferent sensing mechanisms significantly harms adaptation results while previous
methods have not readily addressed it. Comparing DODA with DODA (w/o
TACM), we observe that TACM mainly contributes to the performance of in-
stances such as bed and bookshelf on ScanNet, since cuboid mixing forces model
to focus more on local semantic clues and object shapes itself inside cuboids.
It is noteworthy that though DODA yields general improvement around almost
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all categories adaptation in both pretrain stage and self-training stage, challeng-
ing classes such as bed on ScanNet and sofa on S3DIS attain more conspicuous
performance lift, demonstrating the predominance of DODA in tackling trouble-
some categories. However, the effectiveness of all UDA methods for column and
beam on S3DIS are not obvious due to their large disparities in data patterns
across domains and low appearing frequencies in source domain. To illustrate the
reproducibility of our DODA, all results are repeated three times and reported
as average performance along with standard variance.

Table 1. Adaptation results of 3D-FRONT → ScanNet in terms of mIoU. We indicate
the best adaptation result in bold. † denotes pretrain generalization results with VSS

Method mIoU wall floor cab. bed chair sofa table door wind. bksf. desk

Source Only 29.60 60.72 82.42 04.44 12.02 61.76 22.31 38.52 05.72 05.12 19.72 12.84

MCD [52] 32.27 62.86 88.70 03.81 38.50 57.51 21.48 41.67 05.78 01.29 18.81 15.69
AdaptSegNet [57] 34.51 61.81 83.90 03.64 36.06 55.05 34.26 44.21 06.59 05.54 31.87 16.64

CBST [74] 37.42 60.37 81.39 12.18 30.00 68.86 36.22 49.93 07.05 05.82 43.59 16.25
MinEnt [58] 34.61 63.35 85.54 04.66 26.05 61.98 33.05 48.38 05.20 03.15 35.84 13.49
AdvEnt [58] 32.81 64.31 79.21 04.39 35.01 61.05 24.36 41.64 05.97 01.60 29.07 14.32

Noisy student [63] 34.67 62.63 86.27 01.45 17.13 69.98 37.58 47.87 06.01 01.66 35.79 15.06
APO-DA [67] 31.73 62.84 85.43 02.77 15.08 64.24 34.41 46.41 03.94 03.59 18.88 11.41

SqueezeSegV2 [61] 29.77 61.85 72.74 02.50 16.89 58.79 16.81 38.19 05.08 03.24 35.68 15.72

DODA (only VSS)† 40.52±0.80 67.36 90.24 15.98 39.98 63.11 46.38 48.05 07.63 13.98 33.17 19.86
DODA (w/o TACM) 48.13±0.25 72.22 93.43 24.46 56.30 70.40 53.33 56.57 09.44 19.97 47.05 26.25

DODA 51.42±0.90 72.71 93.86 27.61 64.31 71.64 55.30 58.43 08.21 24.95 56.49 32.06

Oracle 75.19 83.39 95.11 69.62 81.15 88.95 85.11 71.63 47.67 62.74 82.63 59.05

Table 2. Adaptation results of 3D-FRONT → S3DIS in terms of mIoU. We indicate
the best adaptation result in bold. † denotes pretrain generalization results with VSS

Method mIoU wall floor chair sofa table door wind. bkcase. ceil. beam col.

Source Only 36.72 67.95 88.68 57.69 04.15 38.96 06.99 00.14 44.90 94.42 00.00 00.00

MCD [52] 36.62 64.53 92.16 54.76 13.31 46.67 8.54 00.08 28.86 93.89 00.00 00.00
AdaptSegNet [57] 38.14 68.14 93.17 55.14 05.31 43.14 14.67 00.33 45.75 93.88 00.00 00.00

CBST [74] 42.47 71.60 92.07 68.09 03.28 60.45 17.13 00.18 58.45 95.87 00.00 00.00
MinEnt [58] 37.08 66.15 87.92 52.30 06.27 25.79 15.70 04.44 55.72 93.58 00.00 00.00
AdvEnt [58] 37.98 66.94 91.84 57.96 02.39 46.18 15.14 00.54 44.31 92.50 00.00 00.00

Noisy student [63] 39.44 68.84 91.78 65.53 06.65 48.67 02.27 00.00 53.67 96.46 00.00 00.00
APO-DA [67] 38.23 68.63 89.66 58.84 03.51 40.66 13.73 02.61 47.88 94.97 00.04 00.00

SqueezeSegV2 [61] 36.50 65.01 89.95 54.29 06.79 45.75 10.23 01.70 32.93 94.81 00.00 00.00

DODA (only VSS) † 46.85±0.78 70.96 96.12 68.70 25.47 58.47 17.87 27.65 54.39 95.66 00.00 00.00
DODA (w/o TACM) 53.86±0.49 75.75 95.14 76.12 60.11 64.07 25.24 31.75 68.49 95.82 00.00 00.00

DODA 55.54±0.91 76.23 97.17 76.89 63.55 69.04 25.76 38.22 68.18 95.85 00.00 00.00

Oracle 62.29 82.82 96.95 78.16 40.37 78.56 56.91 47.90 77.10 96.29 00.41 29.69

VSS Plug-and-play Results to Other UDA Methods. Since VSS works
as a data augmentation in our DODA, we argue that it can serve as a plug-and-
play module to mimic occlusion and noise patterns on simulation data, and is
orthogonal to existing UDA strategies. As demonstrated in Table 3, equipped
with VSS, current popular UDA approaches consistently surpass their original
performance by around 8% ∼ 13%. It also verifies that previous 2D-based meth-
ods fail to close the point pattern gap in 3D indoor scene adaptations, while our
VSS can be incorporated into various pipelines to boost performance.
TACM Results in Cross-site Adaptation. Serving as a general module
to alleviate domain shifts across domains, we show that TACM can consistently
mitigate domain discrepancies on even real-to-real adaptation settings. For cross-
site adaptation, scenes collected from different sites or room types also suffer a
considerable data distribution gap. As shown in Table 4, the domain gaps in
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real-to-real adaptation tasks are also large when comparing the source only and
oracle results. When adopting TACM in the self-training pipelines, they obtain
5.64% and 3.66% relative performance boost separately in ScanNet → S3DIS
and S3DIS → ScanNet. These results verify that TACM is general in relieving
data gaps, especially the context gap on various 3D scene UDA tasks. We provide
the cross-site benchmark with more UDA methods in the Suppl.

Table 3. UDA results equipped with
VSS on 3D-FRONT → ScanNet

Method
VSS

Improv.
w/o w/

MCD [52] 32.37 40.32 +7.95
AdaptSegNet [57] 34.51 45.75 +11.24

CBST [74] 36.30 47.70 +11.40
MinEnt [58] 34.61 43.26 +8.65
AdvEnt [58] 32.81 42.94 +10.13

Noisy Student [63] 34.67 48.30 +13.63
APO-DA [67] 31.73 43.98 +12.25

SqueezeSegV2 [61] 29.77 40.60 +10.83

Table 4. Cross-site adaptation results with
TACM

Task Method mIoU

ScanNet→ S3DIS

Source Only 54.09
CBST [74] 60.13

CBST+TACM 65.52
Oracle 72.51

S3DIS → ScanNet

Source Only 33.48
Noisy Student [63] 44.81

Noisy Student+TACM 48.47
Oracle 80.06

6 Ablation Study

In this section, we conduct extensive ablation experiments to investigate the
individual components of our DODA. All experiments are conducted on 3D-
FRONT → ScanNet for simplicity. Default settings are marked in bold.

Component Analysis. Here, we investigate the effectiveness of each compo-
nent and module in our DODA. As shown in Table 5, occlusion simulation brings
the largest performance gain (around 9.7%), indicating that model trained on
complete scenes is hard to adapt to scenes with occluded patterns. Noise sim-
ulation further supplements VSS to imitate sensing and reconstruction noise,
obtaining about 1.3% boosts. Two sub-modules jointly mimic realistic scenes,
largely alleviating the point distribution gap and leading to a more generalizable
source only model. In the self-training stage, VSS also surpasses the baseline by
around 13% due to its efficacy in reducing the point pattern gap and facili-
tating generating high-quality pseudo labels. Cuboid mixing combines cuboid
patterns from source and target domains for moderating context-level bias, fur-
ther boosting the performance by around 2.4%. Moreover, cuboid-level tail-class
over-sampling yields 0.9% improvement with greater gains on tail classes. For
instance, desk on ScanNet achieves 6% gain (see Suppl.).

VSS: Visible Range. Here, we study the effect of visible range of VSS, which
is jointly determined by the horizontal angle αh, vertical angle αv, viewing mode
η and the number of cameras nv. As shown in Table 6, fewer cameras nv = 2 and
smaller viewing angle αv = 45◦ draw around 2% performance degradation with
a smaller visible range. And decreasing αh to 90◦ can also achieve similar perfor-
mance with αh = 180◦ with more cameras nv = 8, demonstrating that enough
semantic coverage is a vital factor. Besides, as for the three viewing modes η, the
simplest fixed mode achieves the highest performance in comparison to parallel
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Table 5. Component Analysis for DODA on 3D-FRONT → ScanNet

Baseline
Virtual scan simulation Tail-aware cuboid mixing

mIoU
Occlusion sim. Noise sim. Cuboid mix. Tail samp.

Source Only 29.60
Source Only ✓ 39.25 (+9.65)
Source Only ✓ ✓ 40.52 (+1.27)

Noisy Student 34.67
Noisy Student ✓ ✓ 48.13 (+13.46)
Noisy Student ✓ ✓ ✓ 50.55 (+2.42)
Noisy Student ✓ ✓ ✓ ✓ 51.42 (+0.87)

and perspective modes. Even though parallel and perspective are more simi-
lar to reality practice, they cannot cover sufficient range with limited cameras,
since real-world scenes are reconstructed through hundreds or thousands of view
frames. This again demonstrates that large spatial coverage is essential. To trade
off between the effectiveness and efficiency of on-the-fly VSS, we use fixed mode
with 4 camera positions by default here.

Table 6. Ablation study of visible range de-
sign on 3D-FRONT → ScanNet

αh αv η nv mIoU

180◦ 90◦ fixed 2 38.80
180◦ 90◦ fixed 4 40.52
90◦ 90◦ fixed 8 40.30

180◦ 90◦ parallel 4 39.08
180◦ 90◦ perspective 4 39.04
180◦ 45◦ perspective 4 36.64

Table 7. Ablation study of cuboid
partitions on 3D-FRONT → ScanNet

(nx, ny, nz) # cuboid mIoU

(1, 1, 1) 1 48.10

(2, 1, 1) 2 50.00
(2, 2, 1) 4 50.55
(3, 2, 1) 6 50.57
(3, 3, 1) 9 50.02

(1, 1, 2) 2 49.49

(2, 1, 2) 4 49.48

TACM: Cuboid Partition. We study various cuboid partition manners in
Table 7. Notice that random rotation along z axis is performed before cuboid
partition, so the partition on x or y axes can be treated as identical. While
horizontal partitioning yields consistent performance beyond 50% mIoU, verti-
cal partitioning does not show robust improvements, suggesting the mixing of
vertical spatial context is not necessary. Simultaneous partitioning on x and y
axes also improves performance (i.e. (2,2,1) and (2,3,1)), while too small cuboid
size (i.e. (3,3,1)) results in insufficient context cues in each cuboid with a slight
decrease in mIoU.

TACM: Data-mixing Method. We compare TACM with other popular data-
mixing methods in Table 8. Experimental results show the superiority of TACM
since it outperforms Mix3D [44], CutMix [69] and Copy-Paste [11] by around
2.2% to 2.9%. TACM effectively alleviates the context gap while preserving lo-
cal context clues. Mix3D, however, results in large overlapping areas, which is
unnatural and causes semantic confusions. CutMix and Copy-Paste only disrupt
local areas without enough perturbations of the broader context (see Suppl.).
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TACM: Tail Cuboid Over-sampling with Class-balanced Loss. Tail
cuboid over-sampling brings significant gains on tail classes as discussed in Sec. 6.
As demonstrated in Table 9, the class-balanced lovasz loss [4] also boosts perfor-
mance by considering each category more equally. We highlight that our TACM
can also incorporate with other class-balancing methods during optimization
since it eases long tail issue on the data-level.

Table 8. Ablation study of data-mixing
methods on 3D-FRONT → ScanNet

Method mIoU

Mix3D [44] 48.62
CutMix [69] 49.19

Copy-Paste [11] 48.51

TACM 51.42

Table 9. Investigation of pseudo label class
imbalance issue on 3D-FRONT → ScanNet

Method mIoU

Noisy Student 48.13

TACM 51.42
CM + lovasz loss [4] 51.68

TACM + lovasz loss [4] 52.50

7 Limitations and Open Problems

Although our model largely closes the domain gaps across simulation and real-
world datasets, we still suffer from the inherent limitations of the simulation
data. For some categories such as beam and column, the simulator fails to gen-
erate realistic shape patterns, resulting in huge negative transfer. Besides, room
layouts need to be developed by experts, which may limit the diversity and com-
plexity of the created scenes. Therefore, in order to make simulation data benefit
real-world applications, there are still several open problems: how to handle the
failure modes of the simulator, how to unify the adaptation and simulation stage
in one pipeline, and how to automate the simulation process, to name a few.

8 Conclusions

We have presented DODA, a data-oriented domain adaptation method with vir-
tual scan simulation and tail-aware cuboid mixing for 3D indoor sim-to-real un-
supervised domain adaptation. Virtual scan simulation generates a more trans-
ferable model by mitigating the real-and-simulation point pattern gap. Tail-
aware cuboid mixing rectifies context biases through creating a tail-aware in-
termediate domain and facilitating self-training to effectively leverage pseudo
labeled target data, further reducing domain gaps. Our extensive experiments
not only show the prominent performance of our DODA in two sim-to-real UDA
tasks, but also illustrate the potential ability of TACM to solve general 3D UDA
scene parsing tasks. More importantly, we have built the first benchmark for 3D
indoor scene unsupervised domain adaptation, including sim to real adaptation
and cross-site real-world adaptation. The benchmark suit will be publicly avail-
able. We hope our work could inspire further investigations on this problem.
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Outline

This supplementary document is arranged as follows:

• Sec. S1 elaborates the visible range design in occlusion simulation of VSS;
• Sec. S2 illustrates visualization and analysis of TACM and other data-mixing
methods;

• Sec. S3 presents the implementation details of benchmark setup for sim-to-
real settings and cross-site settings;

• Sec. S4 presents the per-class results of tail cuboid over-sampling in TACM;
• Sec. S5 benchmarks DODA with other popular UDA methods on cross-site
settings;

• Sec. S6 investigates DODA performance on 3D-FRONT → NYU-Depth V2,
which focuses on the adaptation from simulation 3D to real RGBD;

• Sec. S7 analyzes the pseudo-label quality with VSS and TACM.
• Sec. S8 presents the qualitative results of S3DIS and ScanNet on sim-to-real
settings.

S1 Visible Range Design

In this section, we elaborate the visible range design. Given the camera position
v and the point of interest h, the maximum visible range Rv is determined by
FOV configurations encompassing the horizontal viewing angle αh, the vertical
viewing angle αv and the viewing mode η. Specifically, the horizontal visible
range Rv[xy] is determined by αh as Eq. (7):

Rv[xy] =

{
p | (pxy − vxy)

T (hxy − vxy)

||pxy − vxy||2||hxy − vxy||2
> cos

αh

2

}
, (7)

where the subscript xy stands for the coordinate vector projected onto the X-Y
plane. As for the vertical visible range Rv[z], it depends on αv and η as shown in
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Fig. S5. An illustration of visible range with different viewing modes η. Note that for
three modes, the definition of αh is the same thus we only show it in the fixed mode.

Fig. S5. Specifically, for the simplest fixed mode (η = fixed), it selects the visible
range lower than the horizontal plane passing through camera v if the camera
look downwards (see Fig. S5 (a)); otherwise range above the horizontal plane
through v will be selected. In this regard, αv is fixed at 90◦. More flexibly, the
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parallel mode (η =parallel) decides the upper and lower bound of vertical visible
range as the intersections of marginal rays and the line through h perpendicular
to the ground (See Fig. S5 (b)). The perspective mode (η =perspective) further
constrains the visible range into a rectangular pyramid bounded by the camera
marginal rays (see Fig. S5 (c)), which is the most sophisticated and realistic cam-
era projection process. Formally, the vertical range R[v] with different viewing
modes can be expressed as Eq. (8).

Rv[z] =


{p | pz > vz} if hz > vz, otherwise {p | pz < vz} , η = fixed,{
p | ||vxy − hxy|| tan (θ − αv

2 ) < (pz − vz) < ||vxy − hxy|| tan (θ + αv

2 )
}
, η = parallel,{

p | ||vxy − pxy|| tan (θ − αv

2 ) < (pz − vz) < ||vxy − pxy|| tan (θ + αv

2 )
}
, η = perspective,

(8)
where θ is the camera pitch angle defined as arcsin( vz−hz

||v−h||2 ) and || · || denotes the
L2 distance. Finally we obtain the visible range Rv as the intersection of Rv[xy]
and Rv[z].

S2 Visualization Comparison and Analysis between
TACM and Other Data-mixing Methods

Even though we already present experimental results in Table 8 in the main
paper, to better demonstrate the priority of our TACM among other data-mixing
methods, we also show some visualization examples here. As shown in Fig S6,
when scenes are mixed in Mix3D [44], it leads to ambiguity and loss of semantic
cues since the neighboring relationship in local areas has been disrupted by
mixed points from two domains. As for Copy-paste [11] and CutMix [69], they
perturb a local area with randomly sampled patches or instances, which break
the local context while introducing no disruptions of the broader context. In
contrast, our TACM mixes scenes with the cuboid as the smallest unit, which
preserves the local context while also bringing diversity to the global context by
different cuboid combinations.

S3 Benchmark Setup

S3.1 Comparison of Large-scale Simulation Datasets.

In our sim-to-real adaptation benchmark, we select 3D-FRONT [8] as the source
domain which contains 18,968 professionally designed rooms with 13,151 CAD
3D furniture objects from 3D-FUTURE [9]. Regarding other large-scale synthetic
datasets, SUNCG [54] is not publicly available. Structured3D [73] does not pro-
vide interior 3D furniture objects that populate the scenes, which cannot be used
as a source dataset without instance classes and layouts. OpenRoom [35] only
contains 2.5K CAD models as the objects, which constrains its diversity. Hence,
3D-FRONT is a favorable choice with adequate scenes as well as professional
layouts.
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TACM Mix3D Copy-pasteCutMix

Fig. S6. An illustration of TACM examples along with other data-mixing methods.
The yellow points are from source scenes and the blue points are from target scenes.
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S3.2 Label Mapping.

Due to the different label spaces of datasets, we need to condense common cat-
egories for each adaptation task. We manually determine the category mapping
relations according to the class names and representative shapes for each class
in different datasets. The selected common classes and mapping relations for
3D-FRONT → ScanNet, 3D-FRONT → S3DIS, 3D-FRONT → NYU-Depth V2
and ScanNet ⇆ S3DIS are shown in Table S10, S11, S12 and S13, respectively.

S3.3 Implementation Details

Network Details. We validate DODA on the sparse-convolution-based U-Net
backbone [16, 6], which is a popular and high-performance network on 3D seg-
mentation tasks. The voxel size for point cloud voxelization is set to 2cm.
Training Details. In the pretrain stage, we train source data for 11k iterations
with 32 batch size on 8 GPUs. SGD optimizer is employed with 0.9 momentum
and 0.0001 weight decay. The learning rate is initialized as 0.005 without decay.
For pseudo label generation, we set the pseudo label confidence threshold T to 0.7
for ScanNet and to per-class 30% for S3DIS, to achieve the highest performance.
In the self-training stage, we fine-tune the pertrain model for 3.8k iterations on
ScanNet and 0.6k iterations on S3DIS. The initial learning rate is set as 0.005
and decayed following the polynomial policy with 0.9 power. The same batch
size and optimizer are utilized as in the pretrain stage. The loss trade-off factor λ
is set as 0.5. During the two stages, commonly used augmentations are applied,
in terms of rotation along vertical axis, flip, elastic distortion, jittering and point
shuffling. All experiments are conducted on 8 NVIDIA GTX 2080 Ti GPUs.

For the hyper-parameters of VSS, the number of cameras nv is set to 4 by
default. We set the αh as 180◦, αv as 90◦ and η as fixed for FOV configuration.
The point jittering intensity δp is set as 0.01. For cuboid mixing in TACM,
the permutation probability ρs and domain mixing probability ρm are both set
as 0.5. The number of partitions (nx, ny, nz) is set to (2,2,1) with partition
perturbations δϕ as 0.1. Thus a total of 4 cuboids are partitioned for each scene.
As for tail cuboid over-sampling, we typically set the tail cuboid queue size Nq

as 256 and the number of tail classes nr as 2. The least number of tail cuboids
per scene u is set as 2.

S3.4 UDA Baselines.

We reproduce 7 popular 2D UDAmethods and 1 3D outdoor UDA method as our
baselines, encompassing MCD [52], AdaptSegNet [57], CBST [74], MinEnt [58],
AdvEnt [58], Noisy Student [63] APO-DA [67] and SqueezeSegV2 [61]. Similar
to DODA, for each baseline, we adopt a sparse-convolution-based U-Net back-
bone [16, 6] and a linear fully-connected point-wise classification head as the
overall segmentation network. Besides, some modifications are made for adapt-
ing to the 3D vision task as below. For MCD, the U-Net is used as the gener-
ator and the point-wise classification head is used as two-branch classifiers. For
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Table S10. Label mapping for 3D-FRONT → ScanNet.

Class ScanNet 3D-FRONT

wall wall

wallInner; wallOuter; baseboard; wallTop;
customizedBackgroundModel; wallbottom;
customizedFeatureWall;
extrusionCustomizedBackgroundModel

floor floor floor

cabinet cabinet
children cabinet; wardrobe; sideboard/side cabinet/
console table; wine cabinet; wardrobe; TV stand;
drawer chest/corner cabinet

bed bed king-size bed; bunk bed; bed frame; single bed; kids bed

chair chair
dining chair; lounge chair/cafe chair/office chair;
dressing chair; classic Chinese chair; barstool

sofa sofa
three-seat/multi-seat sofa; armchair; loveseat sofa;
L-shapped sofa; lazy sofa; chaise longue sofa

table table
coffee table; round end table; dressing table;
dining table

door door door; pocket

window window window; baywindow

bookshelf bookshelf bookcase/jewelry armoire

desk desk desk

Table S11. Label mapping for 3D-FRONT → S3DIS.

Class S3DIS 3D-FRONT

wall wall

wallInner; wallOuter; baseboard; wallTop;
customizedBackgroundModel; wallBottom;
customizedFeatureWall;
extrusionCustomizedBackgroundModel

floor floor floor

chair chair
dining chair; lounge chair/cafe chair/office chair;
dressing chair; classic Chinese chair; barstool

sofa sofa
three-seat/multi-seat sofa; armchair; loveseat sofa;
L-shapped sofa; lazy sofa; chaise longue sofa

table table
coffee table; round end table; dressing table;
dining table; desk

door door door; pocket

window window window; baywindow

bookcase bookshelf bookcase/jewelry armoire

ceiling ceiling
customizedCeiling; smartCustomizedCeiling; ceiling;
extrusionCustomizedCeilingModel

beam beam beam

column column column
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Table S12. Label mapping for 3D-FRONT → NYU-Depth V2.

Class NYU-Depth V2 3D-FRONT

wall wall

wallInner; wallOuter; baseboard; wallTop;
customizedBackgroundModel; wallBottom;
customizedFeatureWall;
extrusionCustomizedBackgroundModel

floor floor floor

cabinet cabinet
children cabinet; wardrobe; sideboard/side cabinet/
console table; wine cabinet; wardrobe; TV stand;
drawer chest/corner cabinet

bed bed
king-size bed; bunk bed; bed frame; single bed;
kids bed

chair chair
dining chair; lounge chair/cafe chair/office chair;
dressing chair; classic Chinese chair; barstool

sofa sofa
three-seat/multi-seat sofa; armchair; loveseat sofa;
L-shapped sofa; lazy sofa; chaise longue sofa

table table
coffee table; round end table; dressing table;
dining table

door door door; pocket

window window window; baywindow

bookshelf bookshelf bookcase/jewelry armoire

desk desk desk

ceiling ceiling
customizedCeiling; smartCustomizedCeiling;
ceiling; extrusionCustomizedCeilingModel

Table S13. Label mapping for ScanNet → S3DIS and S3DIS → ScanNet.

Class ScanNet S3DIS

wall wall wall

floor floor floor

chair chair chair

sofa sofa sofa

table table table

door door door

window window window

bookshelf bookshelf bookcase
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AdaptSegNet, we employ its single-level adversarial training performed on the
output space. Since the output of the segmentation network is the point-wise
predictions, we implement the discriminator as a PointNet-like neural network
with 3-layer shared MLP and point random downsampling. For MinEnt, we per-
form point-wise entropy minimization on target data. For AdvEnt, the same
discriminator is utilized as in AdaptSegNet to discriminate outputs from dif-
ferent domains. For APO-DA, we also use the UNet as the generator and only
attack the linear classification head to generate point-wise adversarial features.
As for the self-training pipeline including CBST and Noisy Student, no other
modifications are needed. For the 3D baseline SqueezeSegV2, without official im-
plementations, we self-implement the geodesic alignment and domain calibration
modules for our indoor UDA task. The intensity rendering module is discarded
since it is specified for outdoor data.

S4 Per-class Results of Tail Cuboid Over-sampling

We present per-class results of Tail Cuboid Over-Sampling (TCOS) on 3D-
FRONT → ScanNet in Table S14 to demonstrate that the performance gain
mainly comes from boosting tail categories. From target pseudo label statistics,
the tail classes for this setting are bookshelf and desk with sampling ratios around
25% and 75%, respectively. For desk, the significant improvements around 6%
verifies the effectiveness of our method in addressing the long-tail issue in pseudo
labels.

Table S14. Supplementary adaptation results of 3D-FRONT → ScanNet in terms of
mIoU (%). We indicate the best adaptation results in bold. † denotes DODA results
without tail cuboid over-sampling.

Method mIoU wall floor cab. bed chair sofa table door wind. bksf. desk

DODA w/o TCOS† 50.55 72.63 93.98 28.11 65.88 71.43 53.17 57.40 08.53 21.76 57.10 26.09
DODA 51.42 72.71 93.86 27.61 64.31 71.64 55.30 58.43 08.21 24.95 56.49 32.06

S5 Experimental Results on Cross-site Adaptation Tasks

In real-to-real cross-site adaptation tasks, scenes collected from different sites or
room types suffer considerable domain discrepancies. To verify the effectiveness
of TACM in bridging the real-world domain gaps, we compare DODA (only
TACM) with other popular UDA methods on ScanNet → S3DIS and S3DIS →
ScanNet in Table S15 and Table S16, respectively. Results show that DODA
(only TACM) outperforms other methods by a large margin around 6% ∼ 16%
on ScanNet → S3DIS and 4% ∼ 18% on S3DIS → ScanNet. It verifies that our
TACM can serve as a general module to eliminate source context bias through
target cuboid-level contextual patterns complement.

Besides, to evaluate unsupervised domain adaptation methods, we argue that
S3DIS is unsuitable as a source dataset since the per-class results of DODA
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on real-to-real S3DIS → ScanNet are even worse than its counterpart on the
sim-to-real 3D-FRONT → ScanNet setting (see Table 1 of the main paper).
Although real-to-real adaptation theoretically shows smaller domain gaps than
sim-to-real settings, S3DIS is rather simple with a small sample size and limited
diversity as its scenes are collected only in three buildings of mainly office and
educational use, thus resulting in poor performance of adaptation. It illustrates
the importance of carefully selecting real-world datasets as the source domain.
Simulated datasets, on the other hand, can be a consistently appealing choice as
a source domain with arbitrarily large size, diverse samples and free annotations.

Table S15. Adaptation results of ScanNet→ S3DIS in terms of mIoU (%). We indicate
the best adaptation result in bold. † denotes the self-training results with TACM based
on CBST.

Method mIoU wall floor chair sofa table door wind. bkcase.

Source Only 54.09 64.38 94.39 76.15 25.46 70.55 28.98 28.52 44.31

MCD [52] 49.83 61.38 95.47 73.51 32.04 75.24 36.95 08.01 16.02
AdaptSegNet [57] 50.28 67.75 94.47 69.13 24.77 67.71 36.32 13.54 28.57

CBST [74] 60.13 68.66 96.02 84.61 55.04 63.80 33.47 35.61 43.84
MinEnt [58] 55.31 71.31 94.70 68.10 39.86 68.23 35.98 22.03 42.24
AdvEnt [58] 49.86 68.83 93.87 67.37 20.77 68.11 32.67 13.74 33.50

Noisy student [63] 58.82 66.76 95.84 83.56 52.05 64.39 36.36 37.51 34.08
APO-DA [67] 53.47 68.70 95.62 76.69 43.01 70.53 26.22 11.63 35.37

DODA (only TACM)† 66.52 73.81 95.94 85.82 70.71 64.64 42.93 48.25 42.09

Oracle 72.51 84.89 97.63 83.72 55.26 81.47 53.94 44.61 78.55

Table S16. Adaptation results of S3DIS→ ScanNet in terms of mIoU (%). We indicate
the best adaptation result in bold. † denotes the self-training results with TACM based
on Noisy Student.

Method mIoU wall floor chair sofa table door wind. bksf.

Source Only 33.43 37.87 84.01 55.26 18.32 36.15 11.43 08.58 15.81

MCD [52] 30.65 39.50 92.76 43.74 00.00 40.57 09.67 06.03 12.88
AdaptSegNet [57] 36.14 58.48 91.61 35.47 21.35 44.23 07.18 09.17 21.62

CBST [74] 43.08 45.43 90.11 67.53 35.48 56.51 16.94 09.65 22.97
MinEnt [58] 39.40 58.11 90.31 51.18 24.86 44.20 08.10 10.27 28.19
AdvEnt [58] 38.09 58.83 90.24 41.73 28.96 40.68 10.58 08.11 25.59

Noisy student + [63] 44.81 55.61 92.75 65.72 37.77 57.77 12.54 15.25 21.09
APO-DA [67] 38.67 63.85 90.18 49.86 22.34 41.89 06.44 04.64 30.15

DODA (only TACM) 48.47 65.03 94.25 69.23 43.13 58.79 03.58 13.86 29.91

Oracle 80.06 86.78 96.02 89.98 84.24 82.15 51.19 64.99 85.16

S6 Experimental Results on Sim 3D → Real RGBD task

S6.1 Datasets.

NYU-Depth V2 [43] is a popular RGBD dataset for semantic segmentation. It
contains 1,449 densely annotated RGBD images, i.e. 795 training samples and
654 validation samples. Each image has a resolution of 640×480, which can be
back-projected to a 3D point cloud containing 3077,200 points. It provides 40
semantic categories.
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S6.2 Main Results.

In the main paper, our experiments focus on the sim-to-real adaptation with tar-
get scenes reconstructed by RGBD sequences. However, in real-world scenarios,
the real scene can be a single RGBD image captured by the depth camera with-
out reconstructions. Therefore, we also investigate the performance of DODA in
such a more challenging setting, i.e. sim 3D → real RGBD. As demonstrated
in Table S12, DODA significantly outperforms source only by around 14.3% and
improves CBST by around 8.5%, largely reducing the cross-modal gaps between
3D-FRONT and NYU-Depth V2. Even only equipping source only with VSS,
our DODA (only VSS) also shows its superiority, obtaining 6.3% and 0.6% gains
compared to source only and CBST separately, which demonstrates the effec-
tiveness of VSS in alleviating the point pattern gaps between simulation 3D
and real RGBD. Compared to DODA w/o TACM, TACM further enhances the
performance by around 3.4%, largely bridging the context gaps.

Table S17. Adaptation results of 3D-FRONT [8] → NYU-Depth V2 in terms of mIoU
(%). We indicate the best adaptation result in bold. † denotes our pretrain general-
ization results only with VSS.

Method mIoU

Source Only 17.80
CBST [74] 23.58

DODA (only VSS)† 24.14
DODA w/o TACM 28.74

DODA 32.12

Oracle 52.88

S7 Analysis of Pseudo label quality

Self-training relies on both pseudo label accuracy and covering ratio (Eq. (9))
for diversity. As shown in Table S18, DODA (only VSS) generates pseudo labels
with around 15.6% higher mIoU and 7.7% larger label covering ratio compared to
source only, which benefits the follow-up self-training stage. Besides, TACM also
improves the pseudo label quality after the first self-training round by about 3.6%
mIoU and 0.5% covering ratio, which is supposed to further boost the iterative
self-training if applied.

covering ratio =
# pseudo-labeled points

# all points
× 100% (9)

S8 Visualization

We provide some qualitative results of DODA on sim-to-real adaptation tasks
of 3D-FRONT → ScanNet and 3D-FRONT → S3DIS as illustrated in Fig. S7.
Compared to self-training baselines, our DODA can segment instances better
and generate more accurate and smooth predictions.
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Table S18. Results of pseudo label quality with threshold T = 0.7.

Method
pseudo label

mIoU covering ratio (%)

Source Only 35.16 59.85
DODA (only VSS) 50.73 67.54

DODA (w/o TACM) 53.24 81.51
DODA 56.85 82.05
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Ground-Truth Self-Training DODAInput

Fig. S7. Qualitative results of 3D-FRONT → ScanNet (top) and 3D-FRONT →
S3DIS (bottom). Note that the third column is the prediction of self-training baselines,
i.e. Noisy Student for ScanNet and CBST for S3DIS. The red bounding boxes indicate
the specific areas where our DODA significantly outperforms self-training baselines.
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