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Figure 1. Results of our MonoPLFlowNet. With only two consecutive monocular images (left) as input, our MonoPLFlowNet estimates
both the depth (middle) and 3D scene flow (right) in real scale. Right shows a zoom-in real-scale scene flow of the two vehicles from side
view with the pseudo point cloud generating from the estimated depth map ((middle), where blue points are from frame #, red and green
points are blue points translated to frame 7+1 by ground truth and estimated 3D scene flow, respectively. The objective is to align green and
red points.

Abstract

Real-scale scene flow estimation has become increas-
ingly important for 3D computer vision. Some works suc-
cessfully estimate real-scale 3D scene flow with LiDAR.
However, these ubiquitous and expensive sensors are still
unlikely to be equipped widely for real application. Other
works use monocular images to estimate scene flow, but
their scene flow estimations are normalized with scale am-
biguity, where additional depth or point cloud ground truth
are required to recover the real scale. Even though they
perform well in 2D, these works do not provide accurate
and reliable 3D estimates. We present a deep learning
architecture on permutohedral lattice - MonoPLFlowNet.
Different from all previous works, our MonoPLFlowNet is
the first work where only two consecutive monocular im-
ages are used as input, while both depth and 3D scene flow
are estimated in real scale. Our real-scale scene flow es-
timation outperforms all state-of-the-art monocular-image
based works recovered to real scale by ground truth, and is
comparable to LiDAR approaches. As a by-product, our
real-scale depth estimation also outperforms other state-
of-the-art works. Code will be available at https://
github.com/BlarkLee/MonoPLF1lowNet.

1. Introduction

Scene flow are 3D vectors associating the corresponding
3D point-wise motion between consecutive frames, where
scene flow can be recognized as lifting up pixel-wise 2D

optical flow from the image plane to 3D space. Differ-
ent to coarsely high-level motion cues such as bounding-
box based tracking, 3D scene flow focuses on precisely
low-level point-wise motion cues. With such advantage,
scene flow can either serve for non-rigid motion as visual
odometry and ego motion estimation, or rigid motion as
multi-object tracking, which makes it increasingly impor-
tant in motion perception/segmentation and applications in
dynamic environments such as robotics, autonomous driv-
ing and human-computer interaction.

3D scene flow has been widely studied using LiDAR
point cloud [3, 15,27,34,40,44,46] from two consecutive
frames as input, where a few recent LiDAR works achieve
very accurate performances. However, LiDARs are still
too expensive to be equipped for real applications. Other
sensors are also being explored for 3D scene flow estima-
tion such as RGB-D cameras [16, 20, 29] and stereo cam-
eras [2,22,30,39,42]. However, each sensor configuration
also has its own limitation, such as RGB-D cameras are only
reliable in the indoor environment, while stereo cameras re-
quire calibration for stereo rigs.

Since Monocular camera is ubiquitous and cheap for all
real applications, it is a promising alternative to the com-
plicated and expensive sensors. There are many works for
monocular image-based scene flow estimation [8, 18, 19,28,

,48,50,52,54], where CNN models are designed to jointly
estimate monocular depth and optical/scene flow. However,
their estimations are all with scale ambiguity. This prob-
lem exists in all monocular works where they estimate nor-
malized depth and optical/scene flow. To recover to the real
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Figure 2. MonoPLFlowNet Architecture: An Hour-Glass like encoder-decoder based network. It shares the same encoder for two
monocular images as the only input, and jointly estimates the depth and 3D scene flow in real scale by decoding separately with a Depth
decoder (purple box) and a Sceneflow Decoder (red box). Architectures of the two decoders are shown in Figure 3 and 4, respectively.

scale, they require depth and scene flow ground truth, which
are possible to obtain for evaluation in labeled datasets but
impossible for a real application.

Our motivation for this work is to take the advantages
and overcome the limitations from both LiDAR-based (real-
scale, accurate but expensive) and image-based (cheap,
ubiquitous but scale-ambiguous) approaches. Our key con-
tributions are:

We build a deep learning architecture MonoPLFlowNet,
which is the first work using only two consecutive monoc-
ular images to estimate in real scale both the depth and 3D
scene flow.

Our 3D scene flow estimation outperforms all state-of-the-
art monocular image-based works even after recovering
their scale ambiguities with ground truth, and is comparable
to LiDAR-based approaches.

We introduce a novel method - ”Pyramid-Level 2D-3D fea-
tures alignment between Cartesian Coordinate and Permu-
tohedral Lattice Network”, which bridges the gap between
features in monocular images and 3D points in our appli-
cation, and inspires a new way to align 2D-3D information
for computer vision tasks which could benefit other appli-
cations.

As a byproduct, our linear-additive depth estimation from
MonoPLFlowNet also outperforms state-of-the-art works
on monocular depth estimation.

2. Related Works

Monocular image-based scene flow estimation: Monoc-
ular 3D scene flow estimation originates from 2D optical
flow estimation [9, 48]. To get real-scale 3D scene flow
from 2D optical flow, real-scale 3D coordinates are required
which could be derived from real-scale depth map. Re-
cently, following the success from SFM (Structure from
Motion) [25,47], many works jointly estimate monocular

depth and 2D optical flow [8, 28,37,50, 52, 54]. However,
as seen in most SFM models, the real scale decays in jointly
training and leads to scale ambiguity. Although [18, 19]
jointly estimate depth and 3D scene flow directly, they suf-
fer from scale ambiguity, which is the biggest issue for
monocular image-based approaches.

3D Point cloud based scene flow estimation: Following
PointNet [6] and PointNet++ [36], it became possible to
use CNN-based models to directly process point cloud for
different tasks including 3D scene flow estimation. Since
directly implementing on 3D points, there is no scale am-
biguity. The success of CNN-based 2D optical flow net-
works also boost 3D scene flow. FlowNet3D [27] builds
on PointNet++ and imitates the process used in 2D optical
FlowNet [9] to build a 3D correlation layer. PointPWC-
net [46] imitates another 2D optical flow network PWC-net
[41] to build 3D cost volume layers. The most successful
works are "Permutohedral Lattice family”, where BCL [21],
SplatNet [40], HPLFlowNet [15], PointFlowNet [3] all be-
long to the family. The lattice (more details will be pro-
vided in Section 3.1) is a very efficient representation for
processing of high-dimensional data [1], including 3D point
cloud. Point cloud based methods achieves better perfor-
mance than image-based methods. However, with LIDAR
scanning as the input, they are still too expensive for real
applications.

Our MonoPLFlowNet takes advantages and overcome
limitations from both image (cheap, ubiquitous but scale-
ambiguous) and LiDAR (real-scale, accurate but expen-
sive) based approaches by only using monocular images to
jointly estimate depth and 3D scene flow in real scale.

3. MonoPLFlowNet

Our MonoPLFlowNet is an hour-glass encoder-decoder
based model, which only takes two consecutive monocular
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Figure 3. Depth Decoder: Pyramid-Level Linearly-Additive Depth Estimation. Besides the accurate depth estimation, from a whole
architecture view, our depth decoder also serves as the feature/lattice position generator, which is why we design it in linear-additive way.

images as input, while both the depth and 3D scene flow
are estimated in real scale. Figure 2 shows our network
architecture. While sharing the same encoder, we use sepa-
rate decoders for depth and scene flow. With our designed
mechanism, we align the 2D-3D features to boost the per-
formance of each other. In this section, we present the the-
ory of permutohedral lattice, and then discuss how we de-
sign and align the two decoders.

3.1. Review of Permutohedral Lattice Filtering

High-Dimensional Gaussian Filtering: Signal’s value and
position are two important aspects of filtering. Eq. 1 shows
a general form of high-dimensional Gaussian filtering:
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where ezp=3#i—P)" X' #-P)" s a Gaussian distribu-
tion denoting the weight of the neighbor signal value v;
contributing to the target signal v;. Here / is the value vec-
tor of the signal, and p’is the position vector of the signal.
Equation 2, 3 and 4 denote Gaussian blur filter, gray-scale
bilateral filter and color bilateral filter, respectively, where
v; and p; are defined in Eq. 1. For these image filters, the
signals are pixels, the signal values are 3D homogeneous
color space, and signal positions are 2D, 3D and 5D, respec-
tively, and the filtering processing is on 2D image Cartesian
coordinate. The dimension of the position vector can be ex-
tended to d, which is called a d-dimensional Gaussian filter.
We refer the readers to [1,21] and our supplementary mate-
rials for more details.

Permutohedral Lattice Network: However, a high-
dimensional Gaussian filter can be also implemented on
features with n dimension rather than on pixels with 3D
color space. The filtering process can be implemented in a
more efficient space, the Permutohedral Lattice rather than
a traditional Cartesian 2D image plane or 3D space. The d-
dimensional permutohedral lattice is defined as the projec-
tion of the scaled Cartesian (d 4 1)-dimensional grid along

the vector I = [1,1...1] onto the hyperplane Hy, which is
the subspace of R4 in which coordinates sum to zero:
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Therefore it is also spanned by the projection of the stan-
dard basis for the original (d 4 1)-dimensional Cartesian
space to H;. In other words, we can project a feature at
Cartesian coordinate p..+ to Permutohedral Lattice coordi-
e Prac 15 Pias = Bapeart ®)

With features embedding on lattice, [ 1] derived a maneu-
ver pipeline “splatting-convolution-slicing” for feature pro-
cessing in lattice; [2 1] improved the pipeline to be learnable
BCL (Bilateral Convolutional Layers). Following CNN no-
tion, [15] improved BCL to different levels of receptive
fields.

To summarize, Permutohedral Lattice Network con-
volves the feature values v; based on feature positions p;.
While it is straightforward to derive v; and p; when feature
positions and lattice have equal dimension, eg. 3D Lidar
points input to 3D lattice [15,21,40] or 2D to 2D [1,45], it
is challenging when dimensions are different, as in the case
of our 2D image input to 3D lattice. The proposed Mono-
PLFlowNet is designed to overcome such problem.

3.2. Depth Decoder

We design our depth module as an encoder-decoder

based network as shown in Figure 3. Following the suc-
cess of BTS DepthNet [24], we use their same encoder as
a CNN-based feature extractor followed by the dilated con-
volution (ASPP) [7,49]. Our major contribution focuses on
the decoder from three aspects.
Level-Based Decoder: First, while keeping a pyramid-
level top-down reasoning, BTS designed “lpg” (local planar
guidance) to regress depth at each level. In our experiments,
we found that “Ipg” is a block where accuracy is sacrificed
for efficiency. Instead, we replace the “Ipg” with our “level-
based decoder” as shown in Fig. 3, and improve the decoder
to accommodate our sceneflow task.
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Figure 4. 3D Scene Flow Decoder: Pyramid-Level 2D-3D features alignment between Cartesian Coordinate and Permutohedral
Lattice Network. Horizontally it shows the feature embedding from Cartesian coordinate to permutohedral lattice. Vertically, it shows

how the features are upsampled and concatenated for the next level.

Pyramid-Level Linearly-Additive mechanism: BTS con-
catenates the estimated depth at each level and uses a fi-
nal convolution to regress the final depth in a non-linear
way, implying that the estimated depth at each level is not
in a fixed scale. Instead, we propose a ‘“Pyramid-Level
Linearly-Additive mechanism” as:

i (]- X dle'ul +2 X dleuZ +4 X dleu4+8 X dlevJS) (7)
such that the final estimation is a linear combination over
each level depth, where we force diey1, diev2, dicvas dievs
to be in 1,1, 1, & scale of the real-scale depth. In order
to achieve this, we also need to derive a pyramid-level loss
corresponding to the level of the decoder architecture to su-
pervise the depth at each level as Eq. 11.

Experiments show that with our improvement, our depth
decoder outperforms the baseline BTS as well as other state-
of-the-art works. More importantly, the objective is to de-
sign the depth decoder to generate feature/lattice for the
scene flow decoder, which is our major contribution. More

detail is provided in the next section.

dfinal =

3.3. Scene Flow Decoder

Our scene flow decoder is designed as a two-stream
pyramid-level model which decodes in parallel in two do-
mains - 2D Cartesian coordinate and 3D permutalhedral lat-
tice, as shown in Figure 4. As mentioned in Section 3.1,
feature values and positions are two key factors in filtering
processing. For the feature values, we use the features de-
coded by level-based decoder from depth module as shown
in Figure 3, the features as the input to scene decoder (32 di-
mensions) are before regressing to the corresponding level

depth (purple arrow), which means the input features to the
scene decoder are the high-level feature representation of
the corresponding level depth. While values are trivial, po-
sitions are not straightforward. As the challenge mentioned
in Section 3.1, the 2D feature position from our depth is
not enough to project the feature values to 3D permutohe-
dral lattice. We derive a novel strategy to overcome this
challenge by projecting the estimated depth estimation into
3D space to generate real-scale pseudo point cloud. Since
pseudo point cloud has real-scale 3D coordinates, we can
project the feature values from the 2D depth map to 3D
point cloud in Cartesian coordinate, and then project to the
corresponding position in 3D permutohedral lattice. A 2D
to 3D projection is defined as:

xT Z/fu 0 7Cu2’/fu u
Yyl = 0 Z/fv _Cvz/fv v (8)
z 0 0 z 1

where z is the estimated depth, (u, v) is the corresponding
pixel coordinate in the depth map, f,, f, are horizontal and
vertical camera focal lengths, (¢, ¢, ) are the coordinate of
camera principle point. (z,y,z) is the coordinate of the
projected 3D point.

So far we have successfully derived the projection in the
real scale, where the complete projection pipeline consist-
ing of 2D to 3D (Eq. 8) and 3D to lattice (Eq. 6) is shown
in Figure 4. Due to the linear property of the projection,
the proposed projection pipeline holds at different scales in
the overall system. Using this property, we prove a stronger
conclusion: scaling the feature depth from Cartesian coor-
dinate leads to a same scale to the corresponding feature



higher is better lower is better

Method Output | Scale s 555775 §<1.25 | AbsRel SqRel RMSE RMSE log
Make3D [35] | D vV | 0601 0820 0926 | 0280 3012 8734 0361
Eigenetal. [10] | D v | 0702 0898 0967 | 0203 1548 6307 0282
Livetal.[26] | D v | 0680 0898 0967 | 0201 1584 6471 0273
LRC(CS+K)[14]| D v | 0861 0949 0976 | 0.114 0898 4935  0.206
Kuznietsov etal. 23] | D v | 0862 0960 098 | 0.113 0741 4621  0.189
Ganetal.[12] | D v | 0890 0964 0985 | 0098 0666 3933  0.173
DORN[II]| D v | 0932 098 0994 | 0072 0307 2727  0.120
Yinetal.[51]| D v | 0938 0990 0998 | 0072 - 3258 0117
BTS (DenseNet-121)[24] | D v | 0951 0993 0998 | 0063 0256 2850  0.100
BTS (ResNext-101) [24] | D v | 0956 0993 0998 | 0059 0245 2756  0.096
GeoNet[52] | D+2DF | X | 0793 0931 0973 | 0.155 1296 5857 0233
DFNet[54] | D+2DF | X | 0818 0943 0978 | 0.146 1.182 5215 0213
CC[37] | D+2DF | X | 0826 0941 0975 | 0.140 1070 5326 0217
GLNet[8] | D+2DF | X | 0841 0948 0980 | 0.35 1070 5230 0210
EPC[50] | D+2DF | X | 0847 0926 0969 | 0127 1239 6247 0214
EPC++[28] | D+2DF | X | 0841 0946 0979 | 0.127 0936 5008  0.209
Mono-SF[I8] | D+3DF | X | 0851 0950 0978 | 0.125 0978 4877 0208
Ours (DenseNet-121) | D+3DF | v | 0960 0994 0999 | 0060 0230 2627  0.095

Table 1. Monocular depth results comparison on KITTI Eigen’s split. In the column Output, D denotes depth, 2DF and 3DF denote 2D
optical flow and 3D scene flow. In the column Scale, v'denotes in real scale, X denotes with scale ambiguity. DenseNet-121 as backbone

for efficiency.

position in permutohedral lattice. Eq. 9 summarizes the
mapping where (p,, py, p) is the permutohedral lattice co-
ordinate of the feature corresponding to its 2D Cartisian co-
ordinate in the depth map.
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By is defined in Eq. 5, A is the scale, a “prime” sign de-
notes scaling the original value with A. Comparing the final
result of Eq. 9 to Eq. 8, the only difference is to replace
z with Az, hence only scaling the depth in Cartesian coor-
dinate will lead to a same scale to the position in permuto-
hedral lattice. Using the proposed “Pyramid-Level 2D-3D
features alignment” mechanism, we can embed the features
from 2D Cartesian coordinate to 3D Permutohetral lattice,

and then implement splating-convolution-slicing and con-
catenate different level features directly in the permutohe-
dral lattice network. Please see the supplementary materials
for more explanation. For the basic operations in permuto-
hedral lattice, we directly refer to [15].

3.4. Loss

Depth Loss: Silog (scale-invariant log) loss is a widely-
used loss [10] for depth estimation supervision defined as:

- 1 A
Lyitog(d, d) = a\/ = ;(gm - ﬁ(; g)?  (10)

where g; = log d; —log d;, d and d are estimated and ground
truth depths, T is the number of valid pixels, A and « are
constants set to be 0.85 and 10. Since our depth decoder
decodes a fixed-scale depth at each level, we do not directly
supervise on final depth. Instead, we design a pyramid-level
silog loss corresponding to our depth decoder to supervise
the estimation from each level.

1
Ldepth:E(SXLl +4XL2+2XL4+1XL8) (11

where Licyer = Lsitog(dicvels iever/n). Higher weight is
assigned to low-level loss to stabilize the training process.

Scene Flow Loss: Following most LiDAR-based work,
we first use a traditional End Point Error (EPE3D) loss as
Lepe = |\s~f — $f||2, where sf and sf are estimated and
ground truth scene flows, respectively. To bring two sets of
point clouds together, some self-supervised works leverage




Method Train on | Scale higher is better lower is better
0<125 0<125 §<125| AbsRel SqRel RMSE RMSE log
Mono-SF [18] K X 0.259 0.483 0.648 0.943 19.250 14.676 0.667
Mono-SF-Multi [19] K X 0.273 0.492 0.650 0.931 19.072  14.566 0.666
Ours F v 0.715 0.934 0.980 0.188 1.142  4.400 0.235

Table 2. Monocular depth results comparison on Flyingthings3D dataset. In the column Train on, K denotes KITTI, F denotes
Flyingthings3D. In the column Scale, v'denotes in real scale, X denotes with scale ambiguity.

Method Trainon | Scale | EPE3D(m) ACC3DS ACC3DR Outlier3D | EPE2D(px) ACC2D
Mono-SF [18] K X 1.1288 0.0525 0.1017 0.9988 58.2761 0.2362
Mono-SF-Multi [19] K X 1.5864 0.0020 0.0050 0.9988 48.3099 0.3162
Ours F v 0.3915 0.5424 0.6911 0.8279 22.4226 0.6659

Table 3. Monocular 3D scene flow results comparison on Flyingthings3D dataset.(image based evaluation standard) In the column
Train on, K denotes KITTI, F denotes Flyingthings3D. In the column Scale, v'denotes in real scale, X denotes with scale ambiguity.

the Chamfer distance loss as:

_ : 2 : 2
Lenam(P,Q) = >_ min|lp — gll3+>_ minflp — gl
peP qeQ

(12)
where P and @ are two sets of point clouds that optimized
to be close to each other. While EPE loss supervises directly
on scene flow 3D vectors, we improved canonical Chamfer
loss to a forward-backward Chamfer distance loss supervis-
ing on our pseudo point cloud from depth estimates as:

Leham_total = Leham_f + Lehamob
Leham-f = Leham(Pf, Pa)
Leham-b = Lenam (Py, Pr)

I:’f =P+ S~ff, Py=Py+ 5~fb

13)

where P, and P are pseudo point clouds generated from
the estimated depth of two consecutive frames. sf, and

s~fb are estimated forward and backward scene flows.

4. Experiments

Datasets: We use Flyingthings3D [31] and KITTI [13]
dataset in this work for training and evaluation. Flyingth-
ings3D is a synthetic dataset with 19460 pairs of images
in its training split, and 3824 pairs of images in its eval-
uation split. We use it for training and evaluation of both
depth and scene flow estimation. For KITTI dataset, follow-
ing most previous works, for depth training and evaluation,
we use KITTI Eigen’s [10] split which has 23488 images
of 32 scenes for training and 697 images of 29 scenes for
evaluation. For scene flow evaluation, we use KITTI flow
2015 [32] split with 200 pairs of images labeled with flow
ground truth. We do not train scene flow on KITTIL.

4.1. Monocular Depth

We train the depth module in a fully-supervised manner
using the pyramid-level silog loss derived in Eq. 11. For

training simplicity, we first train the depth module free from
scene flow decoder. Our model is completely trained from
scratch.

KITTI: We first train on KITTI Eigen’s training split,
Table 1 shows the depth comparison on KITTI Eigen’s eval-
uation split. We classify the previous works into two cate-
gories, joint-estimate monocular depth and flow, and single-
estimate monocular depth alone. It is clearly from the table
that the single estimation outperforms the joint estimation
on average, and the joint estimation has scale ambiguity.
With a similar design to our strongest single-estimate base-
line BTS [24], our depth outperforms BTS with the same
backbone DenseNet-121 [17] as well as the best BTS with
ResNext-101 backbone. The joint-estimate works fail to es-
timate in real scale because they regress depth and scene
flow together in self-supervised manner, which sacrifice the
real depth. We design our model with separate decoders
in a fully-supervised manner, and succeed to jointly esti-
mate depth and scene flow in real scale, where our depth
achieves a big improvement to the strongest joint-estimate
baseline Mono-SF [18]. The monocular depth evaluation
metrics cannot show the difference of a normalized and real-
scale depth, but real-scale depth is required for real-scale
3D scene flow estimation.

Flyingthings3D: We use the same way to train another
version on Flyingthings3D from scratch, because we need
to use this version to train the scene flow decoder on Fly-
ingthings3D. Since Flyingthings3D is not a typical dataset
for depth training, very few previous works reported re-
sults. Because scene flow estimation is related to depth, we
also evaluated two strongest baselines on Flyingthings3D as
shown in Table 2. Then we use the trained depth module to
train the scene flow decoder.

4.2. Real-Scale 3D Scene Flow

Most image-based scene flow works are trained on
KITTI in a self-supervised manner, which leads to the scale



Method Trainon | Scale | EPE3D(m) ACC3DS ACC3DR Outlier3D | EPE2D(px) ACC2D
[18]depth + Mono-Exp [48] K X 2.7079 0.0676 0.1467 0.9982 181.0699 0.2777
Our depth + Mono-Exp [48] K X 1.6673 0.0838 0.1815 0.9953 78.7245 0.2837

Mono-SF [1§] K X 1.1288 0.0525 0.1017 0.9988 58.2761 0.2362
Mono-SF-Multi [19] K X 0.7828 0.1725 0.2548 0.9477 35.9015 0.4886
Ours F v 0.6970 0.2453 0.3692 0.8630 33.4750 0.4968

Table 4. Monocular 3D scene flow results comparison on KITTI flow 2015 dataset.(image based evaluation standard) In the column
Train on, K denotes KITTI, F denotes Flyingthings3D. In the column Scale, v'denotes in real scale, X denotes with scale ambiguity.

Method EPE3D(m) Scale ACC3DS ACC3DR Outlier3D | EPE2D(px) ACC2D
MonoPLFlowNet-lev1 0.4781 v 0.4587 0.6146 0.8935 26.3133 0.6092
MonoPLFlowNet-lev1-lev2 0.4439 v 0.4689 0.6333 0.8605 24.3198 0.6366
MonoPLFlowNet-full 0.4248 v 0.5099 0.6611 0.8595 23.7657 0.6456

Table 5. Ablation study on our MonoPLFlowNet by changing level of the scene decoder.(image based evaluation standard) lev1
denotes only using the last level, lev1-lev2 denotes using the last two levels, full denotes using all levels. For fair comparison, we show all

results after training epoch 22.

ambiguity. We train our scene flow decoder in a fully-
supervised manner with the EPE3D and forward-backward
loss proposed in Section 3.4, which is able to estimate real-
scale depth and scene flow. While real dataset like KITTI
lacks 3D scene flow label, we only train our depth decoder
on synthetic dataset Flyingthings3D.

Previous image-based scene flow works mostly use
dl,d2, f1,sf1 for evaluation, but these metrics are de-
signed for evaluating 2D optical flow or normalized scene
flow, which themselves have the scale ambiguity. Instead,
we use the metrics directly for evaluating real-scale 3D
scene flow [15,27,46], which we refer as LIDAR-based
evaluation standard (details in supplementary materials).
However, since this LiDAR standard is too strict to image-
based approaches, we slightly relax the LiDAR standard
and use an image-based evaluation standard, EPE (end
point error) 3D/2D are same to LiDAR standard:

Acc3DS: the percentage of points with EPE3D < 0.3m or
relative error < 0.1.

Acc3DR: the percentage of points with EPE3D < 0.4m or
relative error < 0.2.

Outliers3D: the percentage of points with EPE3D > 0.5m
or relative error > 0.3.

Acc2D: the percentage of points whose EPE2D < 20px or
relative error < 0.2.

Since we are the only monocular image-based approach
estimating in real scale, to evaluate other works with our
monocular approach, we need to recover other works to the
real scale using the depth and scene flow ground truth (de-
tails in supplementary materials).

Flyingthings3D: Table 4 shows the monocular 3D scene
flow comparison on Flyingthings3D. Even recovering [ 18,

] to real scale with ground truth, our result still outper-
forms the two strongest state-of-the-art baseline works by
an overwhelming advantage, more important we only need
two consecutive images without any ground truth.

KITTI: We also directly evaluate scene flow on KITTI
without any fine-tuning as shown in Table 4. The table
also includes state-of-the-art 2D approach Mono-Expansion
[48]. We first recover its direct output 2D optical flow to
3D scene flow, and then recover the scale. To recover 2D
to 3D, Mono-Expansion proposed a strategy using LiDAR
ground truth to expand 2D to 3D specifically for its own
usage, but it is not able to extend to all works. For compar-
ison, we recover 3D flow and scale in the same way with
ground truth. In the table, the proposed approach still out-
performs all state-of-the-art strong baseline works without
any fine-tuning on KITTI. Since Mono-Expansion does not
estimate depth, we use our depth and Mono-SF depth to
help recovering 3D scene flow. Note that our scene flow de-
coder does not use the depth directly, but share the features
and regress in parallel. In the table, by using our depth to
recover Mono-Exp, it greatly outperforms by using depth
from Mono-SF [18]. This comparison also shows the supe-
riority of our depth estimation over others.

Ablation Study: We perform the ablation study for our
scene flow decoder. The ablation study verifies the 2D-
3D features alignment process, discussed in Section 3.3.
As our MonoPLFlowNet architecture (Figure 2) shows, we
perform three-level 2D-3D features alignment in our full
model and decode in parallel, which are level 1, 2, 4. In
the ablation study, we train the model only with levell and
levell+level2, and compare to the full model trained to the
same epoch. The results indicate that the performances get
better with deeper levels involved, hence the concatenation
of features from different levels in the lattice boost the train-
ing, which proves our 2D-3D features alignment mecha-
nism.

4.3. Visual Results

We show our visual results of depth and real-scale scene
flow in Figure 5. 3D scene flow are visualized with the



Dataset Method Input | EPE3D(m) ACC3DS ACC3DR Outlier3D | EPE2D(px) ACC2D
LDOF [5] | RGBD 0.498 - - - - -
OSF [33] | RGBD 0.394 - - - - -
PRSM [43] | RGBD 0.327 - - - - -
PRSM [43] | Stereo 0.729 - - - - -
K Ours | Mono 0.6970 0.0035 0.0255 0.9907 33.4750 0.0330
ICP(rigid) [4] | LiDAR 0.5185 0.0669 0.1667 0.8712 27.6752 0.1056
FGR(rigid) [53] | LiDAR 0.4835 0.1331 0.2851 0.7761 18.7464 0.2876
CPD(non-rigid) [35] | LiDAR 0.4144 0.2058 0.4001 0.7146 27.0583 0.1980
FlowNet-C [9] | Depth 0.7887 0.0020 0.0149 - - -
FlowNet-C [9] | RGBD 0.7836 0.0025 0.0174 - - -
Ours | Mono 0.3915 0.0125 0.0816 0.9874 22.4226 0.0724
ICP(global) [4] | LiDAR 0.5019 0.0762 0.2198 - - -

F ICP(rigid) [4] | LiDAR 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913
FlowNet3D-EM [27] | LiDAR 0.5807 0.0264 0.1221 - - -
FlowNet3D-LM [27] | LiDAR 0.7876 0.0027 0.0183 - - -

FlowNet3D [27] | LiDAR 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692

Table 6. 3D scene flow results comparison with different input data form on KITTI flow 2015 and Flyingthings3D. (LiDAR based
evaluation standard) Since we also compare the LiDAR approaches here, we use the strict LIDAR-based evaluation standard. In the
column Dataset, K denotes KITTI, F denotes Flyingthings3D. All works in the table are in real scale. Since our work is the first image-
based work thoroughly evaluating 3D scene flow with 3D metrics, we lack of some 3D results from previous image-based works, but it is
already enough to see our Monocular-image based work is comparable to LIDAR approaches

Figure 5. Qualitative depth and real-scale 3D scene flow results of the proposed MonoPLFlowNet on KITTI and Flyingthins3D for
a single pair of two consecutive frames. For KITTI (column 1&2), 1st row: 1st frame of the RGB input image, recovered scene flow
of [48] by our depth. From 2nd to 4th row: depth and scene flow by Mono-sf [18], Mono-sf-multi [19] and ours. For Flyingthings3D
(column3&4&S5), from top to down: depth of the 1st frame, scene flow, zoom-in view scene flow by [18, 19] and ours, original input RGB
is shown in supplementary materials. Depth and scene flow of [18, 19] are recovered to the real scale before generating point cloud.

pseudo point cloud generating from the estimated depth
map, where blue points are from 1st frame, red and green
points are blue points translated to 2nd frame by ground
truth and estimated 3D scene flow, respectively. The goal of
the algorithm is to match the green points to the red points.
Different to LiDAR-based works that have same shape of
point cloud, the shapes of point cloud are different here be-
cause generating from different depth estimation. More vi-
sual results are in supplementary materials.

5. Conclusion

We present MonoPLFlowNet in this paper. It is the first
deep learning architecture that can estimate both depth and
3D scene flow in real scale, using only two consecutive
monocular images. Our depth and 3D scene flow estimation
outperforms all the-state-of-art baseline monocular based
works, and is comparable to LiDAR based works. In the
future, we will explore the usage of more real datasets with
specifically designed self-supervised loss to further improve
the performance.
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