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Abstract. For monocular depth estimation, acquiring ground truths for
real data is not easy, and thus domain adaptation methods are commonly
adopted using the supervised synthetic data. However, this may still in-
cur a large domain gap due to the lack of supervision from the real data.
In this paper, we develop a domain adaptation framework via generating
reliable pseudo ground truths of depth from real data to provide direct su-
pervisions. Specifically, we propose two mechanisms for pseudo-labeling:
1) 2D-based pseudo-labels via measuring the consistency of depth pre-
dictions when images are with the same content but different styles;
2) 3D-aware pseudo-labels via a point cloud completion network that
learns to complete the depth values in the 3D space, thus providing
more structural information in a scene to refine and generate more re-
liable pseudo-labels. In experiments, we show that our pseudo-labeling
methods improve depth estimation in various settings, including the us-
age of stereo pairs during training. Furthermore, the proposed method
performs favorably against several state-of-the-art unsupervised domain
adaptation approaches in real-world datasets. Our code and models are
available at https://github.com/ccc870206/3D-PL.

Keywords: domain adaptation, monocular depth estimation, pseudo-
labeling

1 Introduction

Monocular depth estimation is an ill-posed problem that aims to estimate depth
from a single image. Numerous supervised deep learning methods [3,9,12,23,30,
52] have made great progress in recent years. However, they need a large amount
of data with ground truth depth, while acquiring such depth labels is highly ex-
pensive and time-consuming because it requires depth sensors such as LiDAR [15]
or Kinect [55]. Therefore, several unsupervised methods [14,16,17,33,46,54] have
been proposed, where these approaches estimate disparity from videos or binoc-
ular stereo images without any ground truth depth. Unfortunately, since there
is no strong supervision provided, unsupervised methods may not do well under
situations such as occlusion or blurring in object motion. To solve this prob-
lem, recent works use synthetic datasets since the synthetic image-depth pairs
are easier to obtain and have more accurate dense depth information than real-
world depth maps. However, there still exists domain shift between synthetic
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(a) Overview of our proposed method for
domain adaptation.

Pseudo Ground Truth
3D-PL

Ground Truth

Target Domain
Input Image

Source Domain

Adapt

3D-PL

Initial Depth Prediction Consistent Mask Pseudo-Label

Pseudo-Label3D Point Cloud

2D-based Pseudo-Label

3D-aware Pseudo-Label

Input Image

(b) Basic concept behind our 3D-
aware Pseudo-Labeling (3D-PL).

Fig. 1: (a) We propose a 3D-aware pseudo-labeling (3D-PL) technique to fa-
cilitate source-to-target domain adaptation for monocular depth estimation
via pseudo-labeling on the target domain. (b) Our 3D-PL technique consists
of 2D-based and 3D-aware pseudo-labels, where the former selects the pixels
with highly-confident depth prediction (colorized by light blue in the consistent
mask), while the latter performs 3D point cloud completion that provides refined
pseudo-labels projected from 3D.

and real datasets, and thus many works use domain adaptation [6,25,31,56,58]
to overcome this issue.

In the scenario of domain adaptation, two major techniques are commonly
adopted to reduce the domain gap for depth estimation: 1) using adversarial
loss [6,25,58] for feature-level distribution alignment, or 2) leveraging style trans-
fer between synthetic/real data to generate real-like images as pixel-level adap-
tation [56, 58]. On the other hand, self-learning via pseudo-labeling the target
real data is another powerful technique for domain adaptation [29,47,60], yet less
explored in the depth estimation task. One reason is that, unlike tasks such as
semantic segmentation that has the probabilistic output for classification to pro-
duce pseudo-labels, depth estimation is a regression task which requires specific
designs for pseudo-label generation. In this paper, we propose novel pseudo-
labeling methods in depth estimation for domain adaptation (see Fig. 1a).

To this end, we propose two mechanisms, 2D-based and 3D-aware methods,
for generating pseudo depth labels (see Fig. 1b). For the 2D type, we consider
the consistency of depth predictions when the model sees two images with the
same content but different styles, i.e., the depth prediction can be more reliable
for pixels with higher consistency. Specifically, we apply style transfer [20] to
the target real image and generate its synthetic-stylized version, and then find
their highly-consistent areas in depth predictions as pseudo-labels. However, this
design may not be sufficient as it produces pseudo-labels only in certain confident
pixels but ignore many other areas. Also, it does not take the fact that depth
prediction is a 3D task into account.

To leverage the confident information obtained in our 2D-based pseudo-
labeling process, we further propose to find the neighboring relationships in the
3D space via point cloud completion, so that our model is able to even select the
pseudo-labels in areas that are not that confident, thus being complementary to
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2D-based pseudo-labels. Specifically, we first project 2D pseudo-labels to point
clouds in the 3D space, and then utilize a 3D completion model to generate
neighboring point clouds. Due to the help of more confident and accurate 2D
pseudo-labels, it also facilitates 3D completion to synthesize better point clouds.
Next, we project the completed point clouds back to depth values in the 2D im-
age plane as our 3D-aware pseudo-labels. Since the 3D completion model learns
the whole structural information in 3D space, it can produce reliable depth val-
ues that correct the original 2D pseudo-labels or expand extra pseudo-labels
outside of the 2D ones. We also note that, although pseudo-labeling for depth
has been considered in the prior work [31], different from this work that needs
a pre-trained panoptic segmentation model and can only generate pseudo-labels
for object instances, our method does not have this limitation as we use the point
cloud completion model trained on the source domain to infer reliable 3D-aware
pseudo-labels on the target image.

We conduct extensive experiments by using the virtual KITTI dataset [13]
as the source domain and the KITTI dataset [15] as the real target domain. We
show that both of our 2D-based and 3D-aware pseudo-labeling strategies are
complementary to each other and improve the depth estimation performance. In
addition, following the stereo setting in GASDA [56] where the stereo pairs are
provided during training, our method can further improve the baselines and per-
form favorably against state-of-the-art approaches. Moreover, we directly evalu-
ate our model on other unseen datasets, Make3D [43], and show good general-
ization ability against existing methods. Here are our main contributions:

– We propose a framework for domain adaptive monocular depth estimation
via pseudo-labeling, consisting of 2D-based and 3D-aware strategies that are
complementary to each other.

– We utilize the 2D consistency of depth predictions to obtain initial pseudo-
labels, and then propose a 3D-aware method that adopts point cloud com-
pletion in the structural 3D space to refine and expand pseudo-labels.

– We show that both of our 2D-based and 3D-aware methods have advantages
against existing methods on several datasets, and when having stereo pairs
during training, the performance can be further improved.

2 Related Work

Monocular Depth Estimation. Monocular depth estimation is to understand
3D depth information from a single 2D image. With the recent renaissance of
deep learning techniques, supervised learning methods [3, 9, 12, 23, 30, 52] have
been proposed. Eigen et al. [9] first use a two-scale CNN-based network to di-
rectly regress on the depth, while Liu et al. [30] utilize continuous CRF to im-
prove depth estimation. Furthermore, some methods propose different designs
to extend the CNN-based network, such as changing the regression loss to clas-
sification [3,12], adding geometric constraints [52], and predicting with semantic
segmentation [23,48].
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Despite having promising results, the cost of collecting image-depth pairs for
supervised learning is expensive. Thus, several unsupervised [14, 16, 17, 33, 46,
54] or semi-supervised [1, 18, 22, 26] methods have been proposed to estimate
disparity from the stereo pairs or videos. Garg et al. [14] warp the right image to
reconstruct its corresponding left one (in a stereo pair) through the depth-aware
geometry constraints, and take photometric error as the reconstruction penalty.
Godard et al. [16] predict the left and right disparity separately, and enforce
the left-right consistency to enhance the quality of predicted results. There are
several follow-up methods to further improve the performance through semi-
supervised manner [1, 26] and video self-supervision [17,33].

Domain Adaptation for Depth Estimation. Another way to tackle the
difficulty of data collection for depth estimation is to leverage the domain adap-
tation techniques [6, 25, 31, 38, 56, 58], where the synthetic data can provide full
supervisions as the source domain and the real-world unlabeled data is the target
domain. Since depth estimation is a regression task, existing methods usually
rely on style transfer/image translation for pixel-level adaptation [2], adversar-
ial learning for feature-level adaptation [25], or their combinations [56, 58]. For
instance, Atapour et al. [2] transform the style of testing data from real to
synthetic, and use it as the input to their depth prediction model that is only
trained on the synthetic data. AdaDepth [25] aligns the distribution between the
source and target domain at the latent feature space and the prediction level.
T2net [58] further combines these two techniques, where they adopt both the
synthetic-to-real translation network and the task network with feature align-
ment. They show that, training on the real stylized images brings promising
improvement, but aligning features is not effective in the outdoor dataset.

Other follow-up methods [6, 56] take the bidirectional translation (real-to-
synthetic and synthetic-to-real) and use the depth consistency loss on the pre-
diction between the real and real-to-synthetic images. Moreover, some methods
employ additional information to give constraints on the real image. GASDA [56]
utilizes stereo pairs and encourages the geometry consistency to align stereo im-
ages. With a similar setting and geometry constraint to GASDA, SharinGAN [38]
maps both synthetic and real images to a shared image domain for depth es-
timation. Moreover, DESC [31] adopts instance segmentation to apply pseudo-
labeling using instance height and semantic segmentation to encourage the pre-
diction consistency between two domains. Compared to these prior works, our
proposed method provides direct supervisions on the real data in a simple and
efficient pseudo-labeling way without any extra information.

Pseudo-Labeling for Depth Estimation. In general, pseudo-labeling ex-
plores the knowledge learned from labeled data to infer pseudo ground truths
for unlabeled data, which is commonly used in classification [4, 19, 28, 42, 45]
and scene understanding [7, 29, 36, 37, 44, 57, 60, 61] problems. Only few depth
estimation methods [31, 51] adopt the concept of pseudo-labeling. DESC [31]
designs a model to predict the instance height and converts the instance height
to depth values as the pseudo-label for the depth prediction of the real image.
Yang et al. [51] generate the pseudo-label from multi-view images and design
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(a) Our overall 3D-PL framework for pseudo-labeling.
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(b) 3D-aware pseudo-label generation via 3D completion.

Fig. 2: (a) Illustration of our proposed 3D-PL framework together with the train-
ing objectives. F is the depth prediction network, with input of the synthetic
image xs, the real image xr, and the synthetic-stylized image xr→s. In 3D-PL,
we obtain 2D-based pseudo-labels ŷcons through finding the region with consis-
tent depth (light blue color in Mconsist) across the predictions of xr and xr→s

(see Section 3.2), while 3D-aware pseudo-labels ŷcomp are obtained via the 3D
completion process. Here we denote solid lines as the computation flow where the
gradients can be back-propagated, while the dashed lines indicate that pseudo-
labels are generated offline based on the preliminary model in Section 3.1. (b)
We first project the 2D-based pseudo-labels ŷcons to the 3D point cloud p̂cons,
followed by uniformly sub-sampling p̂cons to sparse p̂sparse. Then, the comple-
tion network Gcom densifies p̂sparse to obtain p̃dense, in which we further project
p̃dense back to 2D and produce 3D-aware pseudo-labels ŷcomp (see Section 3.2).

a few ways to refine pseudo-labels, including fusing point clouds from multi-
views. These methods succeed in producing pseudo-labels, but they require to
have the instance information [31] or multi-view images [51]. Moreover, as [51]
is a multi-stereo task, it is easier to build a complete point cloud from multi
views and render the depth map as pseudo-labels. Their task also focuses on
the main object instead of the overall scene. In our method, we design the point
cloud completion method to generate reliable 3D-aware pseudo-labels based on
a single image that contains a real-world outdoor scene.

3 Proposed Method

Our goal in this paper is to adapt the depth prediction model F to the unla-
beled real image xr as the target domain, where the synthetic image-depth pair
(xs, ys) in the source domain is provided for supervision. Without domain adap-
tation, the depth prediction model F can be well trained on the synthetic data
(xs, ys), but it cannot directly perform well on the real image xr because of the
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domain shift. Thus, we propose our pseudo-labeling method to provide direct
supervisions on target image xr, which reduces the domain gap effectively.

Fig. 2 illustrates the overall pipeline of our method. To utilize our pseudo-
labeling techniques, we first use the synthetic data to train a preliminary depth
prediction model F , and then adopt this pretrained model to infer pseudo-labels
on real data for self-training. For pseudo-label generation, we propose 2D-based
and 3D-aware schemes, where we name them as consistency label and completion
label, respectively. We detail our model designs in the following sections.

3.1 Preliminary Model Objectives

Here, we describe the preliminary objectives during our model pre-training by
using the synthetic image-depth pairs (xs, ys) and the real image xr, including
depth estimation loss and smoothness loss. Please note that, this is a common
step before pseudo-labeling, in order to account for initially noisy predictions.
Depth Estimation Loss. As synthetic image-depth pairs (xs, ys) can provide
the supervision, we directly minimize the L1 distance between the predicted
depth ỹs = F (xs) of the synthetic image xs and the ground truth depth ys.

Ls
task(F ) = ∥ỹs − ys∥1. (1)

In addition to the synthetic images xs, we follow the similar style translation
strategy as [58] to generate real-stylized images xs→r, in which xs→r maintains
the content of xs but has the style from a randomly chosen real image xr. Note
that, to keep the simplicity of our framework, we adopt the real-time style trans-
fer AdaIN [20] (pretrained model provided by [20]) instead of training another
translation network like [58].

Ls→r
task(F ) = ∥ỹs→r − ys∥1. (2)

Smoothness Loss. For the target image xr, we adopt the smoothness loss
as [16,58] to encourage the local depth prediction ỹr being smooth and consistent.
Since depth values are often discontinuous on the boundaries of objects, we weigh
this loss with the edge-aware term:

Lsm(F ) = e−∇xr∥∇ỹr∥1, (3)

where ∇ is is the first derivative along spatial directions.

3.2 Pseudo-Label Generation

With the preliminary loss functions introduced in Section 3.1 that pre-train the
model, we then perform our pseudo-labeling process with two schemes. First,
2D-based consistency label aims to find the highly confident pixels from depth
predictions as pseudo-labels. Second, 3D-aware completion label utilizes a 3D
completion model Gcom to refine some prior pseudo-labels and further extend
the range of pseudo-labels (see Fig. 2).
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2D-based Consistency Label A typical way to discover reliable pseudo-labels
is to find confident ones, e.g., utilizing the softmax output from tasks like se-
mantic segmentation [29]. However, due to the nature of the regression task in
depth estimation, it is not trivial to obtain such 2D-based pseudo-labels from
the network output. Therefore, we design a simple yet effective way to construct
the confidence map via feeding the model two target images with the same con-
tent but different styles. Since pixels in two images have correspondence, our
motivation is that, pixels that are more confident should have more consistent
depth values across two predictions (i.e., finding pixels that are more domain
invariant through the consistency of predictions from real images with different
styles).

To achieve this, we first obtain the synthetic-stylized image xr→s for the real
image xr, which combines the content of xr and the style of a synthetic image
xs, via AdaIN [20]. Then, we obtain depth predictions of these two images,
ỹr = F (xr), ỹr→s = F (xr→s), and calculate their difference. If the difference at
one pixel is less then a threshold τ , we consider this pixel as a more confident
prediction to form the pseudo-label ŷcons. The procedure is written as:

Mconsist = |ỹr − ỹr→s| < τ,

ŷcons = Mconsist ⊗ ỹr, (4)

where Mconsist is the binary mask for consistency, which records where pixels
are consistent. τ is the threshold, set as 0.5 in meter, and ⊗ is the element-wise
product to filter the prediction ỹr of the target image.

3D-aware Completion Label Since depth estimation is a 3D problem, we
expand the prior 2D-based pseudo-label ŷcons to obtain more pseudo-labels in
the 3D space, so that the pseudo-labeling process can benefit from the learned
3D structure. To this end, based on the 2D consistency label ŷcons, we propose
a 3D completion process to reason neighboring relationships in 3D. As shown in
Fig. 2b, the 3D completion process adopts the point cloud completion technique
to learn from the 3D structure and generate neighboring points.

First, we project the 2D-based pseudo-label ŷcons to point clouds p̂cons =
project2D→3D(ŷcons) in the 3D space. In the projection procedure, we recon-
struct each point (xi, yi, zi) from the image pixel (ui, vi) with its depth value di
based on the standard pinhole camera model (more details and discussions are
provided in the supplementary material). Next, we uniformly sample points from
p̂cons to have sparse point clouds p̂sparse = sample(p̂cons), followed by taking
p̂sparse as the input to the 3D completion model Gcom for synthesizing the miss-
ing points. Those generated points from the 3D completion model Gcom compose
new dense point clouds p̃dense = Gcom(p̂sparse), and then we project each point
(x̃i, ỹi, z̃i) back to the original 2D plane as (ũi, ṽi) with updated depth value
d̃i = z̃i.

Therefore, our 3D-aware pseudo-label ŷcomp (i.e., completion label) is formed

by the updated depth value d̃i. Note that, as there could exist some projected
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Ground truthInput image 

Fig. 3: Examples for our pseudo-labels. The third and fourth columns are pseudo-
labels for 2D-based ŷcons and 3D-aware ŷcomp. The final column represents the
complementary pseudo-labels produced by ŷcomp. Note that ground truth yr is
the reference but not used in our model training.

points falling outside the image plane and not all the pixels on the image plane
are covered by the projected points, we construct a mask Mvalid which records
the pixels on the completion label ŷcomp where the projection succeeds, i.e.,
having valid (ũi, ṽi).

ŷcomp = Mvalid ⊗ project3D→2D(p̃dense). (5)

In Fig. 3, we show that the 3D-aware completion label ŷcomp expands the pseudo-
labels from the 2D-based consistency label ŷcons, i.e., visualizations in ŷcomp −
ŷcons are additional pseudo-labels from the 3D completion process (please refer
to Section 4.3 for further analyzing the effectiveness of 3D-aware pseudo-labels).
3D Completion Model.We pre-train the 3D completion modelGcom using the
synthetic ground truth depth ys in advance and keep it fixed during our comple-
tion process. We project the entire ys to 3D point clouds p̂s = project2D→3D(ys)
and then perform the same process (i.e., sampling and completion) as in Fig.
2b to obtain the generated dense point clouds p̃sdense. Since p̂s is the ground
truth point clouds of p̃sdense, we can directly minimize Chamfer Distance (CD)
[11] between these two point clouds to train the 3D completion model Gcom,
Lcd(Gcom) = CD(p̂s, p̃sdense).

3.3 Overall Training Pipeline and Objectives

There are two training stages in our proposed method: the first stage is to train
a preliminary depth model F , and the second stage is to apply the proposed
pseudo-labeling techniques through this preliminary model. The loss in the first
stage consists of the ones introduced in Section 3.1:

Lbase = λtask(Ls
task + Ls→r

task) + λsmLsm, (6)

where λtask and λsm are set as 100 and 0.1 respectively, following the similar
settings in [58]. Note that in our implementation, for every synthetic image xs,
we augment three corresponding real-stylized images xs→r, where their styles
are obtained from three real images randomly drawn from the training set.
Training with Pseudo-labels. In the second stage, we use our generated 2D-
based and 3D-aware pseudo-labels in Eq. (4) and Eq. (5) to provide direct super-
visions on the target image xr. Since the completion label ŷcomp is aware of the
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3D structural information and can refine the prior 2D-based pseudo-labels ŷcons,
we choose the completion label ŷcomp as the main reference if a pixel has both
consistency label ŷcons and completion label ŷcomp. The 2D and 3D pseudo-label
loss functions are respectively defined as:

Lcons
pseudo(F ) = ∥M ′

valid ⊗ (Mconsist ⊗ ỹr − ŷcons)∥1, (7)

Lcomp
pseudo(F ) = ∥Mvalid ⊗ ỹr − ŷcomp∥1, (8)

where M ′
valid = (1 − Mvalid) is the inverse mask of Mvalid. In addition to the

two pseudo-labeling objectives, we also include the supervised synthetic data to
maintain the training stability. The total objective of the second stage is:

Ltotal = α(λconsLcons
pseudo + λcompLcomp

pseudo)

+(1− α)λs
taskLs

task + λsmLsm,
(9)

where α set as 0.7 is the proportion ratio between the supervised loss of the
synthetic and real image. λs

task, λcons, λcomp, and λsm are set as 100, 1, 0.1, and
0.1, respectively. Here we do not include the Ls→r

task loss as in Eq. (6) to make the
model training more focused on the real-domain data.
Stereo Setting. The training strategy mentioned above is under the condi-
tion that we can only access the monocular single image of the real data xr.
In addition, if the stereo pairs are available during training as the setting in
GASDA [56], we can further include the geometry consistency loss Ltgc in [56]
to our proposed method (more details are in the supplementary material):

Lstereo = Ltotal + λtgcLtgc, (10)

where Ltotal is the loss in Eq. (9), and λtgc is set as 50 following [56].

4 Experimental Results

In summary, we conduct experiments for the synthetic-to-real benchmark when
only single images or stereo pairs are available during training. Then we show
ablation studies to demonstrate the effectiveness of the proposed pseudo-labeling
methods. Moreover, we provide discussion to validate the effectiveness of our 3D-
aware pseudo-labeling method. Finally, we directly evaluate our models on two
real-world datasets to show the generalization ability. More results and analysis
are provided in the supplementary material.
Datasets and Evaluation Metrics. We adopt Virtual KITTI (vKITTI) [13]
and real KITTI [15] as our source and target datasets respectively. vKITTI
contains 21, 260 synthetic image-depth pairs of the urban scene under different
weather conditions. Since the maximum depth ground truth values are different
in vKITTI and KITTI, we clip the maximum value to 80m as [58]. For evaluating
the generalization ability, we use the KITTI Stereo [34] and Make3D [43] datasets
following the prior work [56]. We use the same depth evaluation metrics as [56,
58], including four types of errors and three types of accuracy metrics.
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Table 1: Quantitative results on KITTI in the single-image setting, where we denote
the best results in bold. For the training data, “K”, “CS”, and “S” indicate KITTI [15],
CityScapes [8], and virtual-KITTI [13] datasets respectively. We highlight the rows in
gray for those methods using the domain adaptation (DA) techniques.

Method Supervised Dataset Cap
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [9] Yes K 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [30] Yes K 80m 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Zhou et al. [59] No K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [59] No K+CS 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960

All synthetic No S 80m 0.253 2.303 6.953 0.328 0.635 0.856 0.937

All real No K 80m 0.158 1.151 5.285 0.238 0.811 0.934 0.970

AdaDepth [25] No K+S(DA) 80m 0.214 1.932 7.157 0.295 0.665 0.882 0.950

T2Net [58] No K+S(DA) 80m 0.182 1.611 6.216 0.265 0.749 0.898 0.959

3D-PL (Ours) No K+S(DA) 80m 0.169 1.371 6.037 0.256 0.759 0.904 0.961

Garg et al. [14] No K 50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962

All synthetic No S 50m 0.244 1.771 5.354 0.313 0.647 0.866 0.943

All real No K 50m 0.151 0.856 4.043 0.227 0.824 0.940 0.973

AdaDepth [25] No K+S(DA) 50m 0.203 1.734 6.251 0.284 0.687 0.899 0.958

T2Net [58] No K+S(DA) 50m 0.168 1.199 4.674 0.243 0.772 0.912 0.966

3D-PL (Ours) No K+S(DA) 50m 0.162 1.049 4.463 0.239 0.776 0.916 0.968

Input image  Ground truth T2Net [51] 3D-PL

Fig. 4: Qualitative results on KITTI in the single-image setting. We show that
our 3D-PL produces more accurate results for the tree and grass (upper row)
and better shapes in the car (bottom row), compared to the T2Net [58] method.

Implementation Details. Our depth prediction model F adopts the same
U-net [41] structure as [58]. Following [50], the 3D completion model Gcom is
modified from PCN [53] with PointNet [39]. We implement our model based on
the Pytorch framework with NVIDIA Geforce GTX 2080 Ti GPU. All networks
are trained with the Adam optimizer. The depth prediction model F and 3D
completion model Gcom are trained from scratch with learning rate 10−4 and
linear decay after 10 epochs. We train F for 20 epochs in the first stage and 10
epochs in the second stage, and pre-train Gcom for 20 epochs. The style transfer
network AdaIN is pre-trained without any finetuning.

4.1 Synthetic-to-Real Benchmark

We follow [58] to use 22, 600 KITTI images from 32 scenes as the real training
data, and evaluate the performance on the eigen test split [9] of 697 images
from other 29 scenes. Following [56], we evaluate the depth prediction results
with the ground truth depth less than 80m or 50m. There are two real-data
training settings in domain adaptation for monocular depth estimation: 1) only
single real images are available and we cannot access binocular or semantic
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Table 2: Quantitative results on KITTI with having stereo pairs during training.

Method Cap
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Synthetic + Stereo 80m 0.151 1.176 5.496 0.237 0.787 0.926 0.972

T2Net [58] + Stereo 80m 0.154 1.115 5.504 0.233 0.800 0.929 0.971

GASDA [56] (Stereo) 80m 0.149 1.003 4.995 0.227 0.824 0.941 0.973

DESC [31] + Stereo 80m 0.122 0.946 5.019 0.217 0.843 0.942 0.974

SharinGAN [38] (Stereo) 80m 0.116 0.939 5.068 0.203 0.850 0.948 0.978

3D-PL + Stereo 80m 0.113 0.903 4.902 0.201 0.859 0.952 0.979

Synthetic + Stereo 50m 0.145 0.909 4.204 0.224 0.800 0.934 0.975

T2Net [58] + Stereo 50m 0.148 0.828 4.123 0.219 0.815 0.938 0.975

GASDA [56] (Stereo) 50m 0.143 0.756 3.846 0.217 0.836 0.946 0.976

DESC [31] + Stereo 50m 0.116 0.725 3.880 0.206 0.855 0.948 0.976

SharinGAN [38] (Stereo) 50m 0.109 0.673 3.770 0.190 0.864 0.954 0.981

3D-PL + Stereo 50m 0.106 0.641 3.643 0.189 0.872 0.958 0.982

information as [58]; 2) stereo pairs are available during training, so that geometry
consistency can be leveraged as [56]. Our pseudo-labeling method does not have
an assumption of the data requirement, and hence we conduct experiments in
these two different data settings as mentioned in Section 3.3.

Single-image Setting. In this setting, we can only access monocular real im-
ages in the whole training process, as the overall objective in Eq. (9). Table
1 shows the quantitative results, where the domain adaptation methods are
highlighted in gray. “All synthetic/All real” are only trained on synthetic/real
image-depth pairs, which can be viewed as the lower/upper bound. Our 3D-PL
method outperforms T2Net (state-of-the-art) in every metric, especially 13%
and 15% improvement in the “Sq Rel” error of 50m and 80m. Fig. 4 shows the
qualitative results, where we compare our 3D-PL with T2Net [58]. In the upper
row, 3D-PL produces more accurate results for the tree and grass, while T2Net
predicts too far and close respectively. In the lower row, our result has a better
shape in the right car and more precise depth for the left two cars.

Stereo-pair Setting. If stereo pairs are available, we can utilize the geometry
constraints to have self-supervised stereo supervisions as [56] using the objective
in Eq. (10). Table 2 shows that our 3D-PL achieves the best performance among
state-of-the-art methods. In particular, without utilizing any other clues from
real-world semantic annotation, 3D-PL outperforms DESC [31] with 12% lower
“Sq Rel” error in the stereo scenario. This shows that our pseudo-labeling is able
to generate more reliable pseudo-labels over the single-image setting.

Fig. 5 shows qualitative results, where we compare our 3D-PL with DESC [31]
+ Stereo and SharinGAN [38]. 3D-PL produces better results on the overall
structure (e.g., tree, wall, and car in the top row). For challenging situations such
as closer objects standing alone and hiding in a complicated farther background
(e.g., road sign in the middle row, tree in the bottom row), other methods tend
to produce similar depth values as the background, while 3D-PL predicts better
object shape and distinguish the object from the background even if it is very
thin. (e.g., traffic light in the bottom row). This shows the benefits of our 3D-
aware pseudo-labeling design, which reasons the 3D structural information.
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Table 3: Ablation study on KITTI in the single-image setting.

Method
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

Only synthetic 0.244 1.771 5.354 0.313

+ŷcons (all pixels) 0.166 1.125 4.557 0.244

+ŷcons (confident) 0.163 1.095 4.555 0.243

+ŷcomp(confident) 0.164 1.054 4.473 0.239

3D-PL (ŷcomp all pixels) 0.161 1.070 4.504 0.240

3D-PL (ŷcomp confident) 0.162 1.049 4.463 0.239

Input image  Ground truth DESC [29] SharinGAN[33] 3D-PL+Stereo

Fig. 5: Qualitative results on KITTI with having stereo pairs during training.
We show that our 3D-PL produces better results on the overall structure (e.g.,
tree, wall, and car in the top row), closer objects (e.g., road sign in the middle
row, tree in the bottom row), and shapes (e.g., traffic light in the bottom row),
compared to DESC [31] and SharinGAN [38].

4.2 Ablation Study

We demonstrate the contributions of our model designs in Table 3 using the
“50m Cap” and single-image settings, where “Only synthetic” trains only on
the supervised synthetic image-depth pairs.

Importance of Pseudo-labels. First, we show that either using the 2D-based
or 3D-aware pseudo-labels improve the performance, i.e., “+ŷcons (confident)”
and “ +ŷcomp (confident)”. Then, our final model in “3D-PL (ŷcomp confident)”
further improves depth estimation, and shows the complementary properties of
using both 2D-based and 3D-aware pseudo-labels.

Importance of Consistency Mask. We show the importance of having the
consistency mask in Eq. (4) as the confidence measure. For the 2D-based pseudo-
label, we compare the result of using the consistency mask “+ŷcons (confident)”
and the one using the entire depth prediction as the pseudo-label, “+ŷcons (all
pixels)”. With the consistency mask, it has 3% lower in the “Sq Rel” error.
Moreover, this consistency mask also improves 3D-aware pseudo-labeling when
we project depth values to point clouds for 3D completion. When inputting all
the pixels for this process, i.e., “3D-PL (ŷcomp all pixels)”, this may include
less accurate depth values for performing 3D completion, which results in less
reliable pseudo-labels compared to our final model using the confident pixels,
i.e., “3D-PL (ŷcomp confident)”.
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Table 4: Statistics of pixel proportion in our 2D/3D pseudo-labels. “R” and “E” indicate
“refined” and “extended”.

Method 2D Proportion 3D Proportion

2D only (+ŷcons) 48.91% 0%

3D-PL 5.28% 43.63% (R) + 3.9% (E)

Table 5: Results of using either the 2D-based ŷcons or the 3D-aware ŷcomp pseudo-label
as the reference, when there is a duplication on both pseudo-labels.

Main Reference
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

Completion Label ŷcomp 0.162 1.049 4.463 0.239

Consistency Label ŷcons 0.164 1.095 4.529 0.243

4.3 Effectiveness of 3D-aware Pseudo-labels

To show the impact of 3D-aware pseudo-labels, we compute the proportions of
pixels chosen as 2D/3D pseudo-labels in each image and take the average as the
final statistics. The effectiveness of 3D-aware pseudo-labels is in two-fold: refine
and extend from 2D-based pseudo-labels. In Table 4, the initial proportion
of confident 2D-based pseudo-labels “2D only (+ŷcons)” is 48.91% among image
pixels. As stated in Section 3.3, 3D-PL improves original 2D labels, which results
in 43.63% refined and 3.9% extended labels. The rightmost subfigure of Fig. 3
visualizes extended labels ŷcomp − ŷcons, in which it shows that the improved
performance is contributed by the larger proportion of 3D-aware pseudo-labels.
Ability of pseudo-label refinement. Since the 2D-based and 3D-aware pseudo-
labels may have the duplication on the same pixel, we conduct experiments to
use either ŷcons or ŷcomp as the reference when such cases happen. In Table
5, choosing ŷcomp as the main reference has the better performance, which in-
dicates that updating the pseudo-label of a pixel from original ŷcons to ŷcomp

brings the positive effect. This validates that ŷcomp can refine the prior 2D-based
pseudo-labels since it is aware of the 3D structural information.

4.4 Generalization to Real-world Datasets

KITTI Stereo.We evaluate our model on 200 images of KITTI stereo 2015 [34],
which is a small subset of KITTI images but has different ways of collecting
groundtruth of depth information. Since the ground truth of KITTI stereo has
been optimized for the moving objects, it is denser than LiDAR, especially for the
vehicles. Note that, this benefits DESC [31] in this evaluation as their method
relies on the instance information from the pre-trained segmentation model.
Table 6 shows the quantitative results, where our 3D-PL in both single-image
and stereo settings performs competitively against existing methods.
Make3D Dataset. Moreover, we directly evaluate the model on the Make3D
dataset [43] without any finetuning. We choose 134 test images with central im-
age crop and clamp the depth value to 70m, following [16]. Here, since Make3D
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Table 6: Quantitative results on KITTI stereo 2015 benchmark [34]. “S⋄” denotes
synthetic data that [2] captures from GTA [40]. “Supervised” represents whether the
method is trained on KITTI stereo.

Method Supervised Dataset
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [16] No K 0.124 1.388 6.125 0.217 0.841 0.936 0.975

Godard et al. [16] No K+CS 0.104 1.070 5.417 0.188 0.875 0.956 0.983

Atapour et al. [2] No K+S⋄(DA) 0.101 1.048 5.308 0.184 0.903 0.988 0.992

T2Net [58] No K+S(DA) 0.155 1.731 6.510 0.237 0.800 0.921 0.969

3D-PL No K+S(DA) 0.147 1.352 6.157 0.233 0.800 0.918 0.967

GASDA [56] (Stereo) No K+S(DA) 0.106 0.987 5.215 0.176 0.885 0.963 0.986

DESC [31] + Stereo No K+S(DA) 0.085 0.781 4.490 0.158 0.909 0.967 0.986

SharinGAN [38] (Stereo) No K+S(DA) 0.092 0.904 4.614 0.159 0.906 0.969 0.987

3D-PL + Stereo No K+S(DA) 0.085 0.830 4.489 0.149 0.915 0.971 0.988

Table 7: Quantitative results on Make3D [43]. “Supervised” represents whether the
method is trained on Make3D.

Method Supervised
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE

Karsch et al. [24] Yes 0.398 4.723 7.801

Laina et al. [27] Yes 0.198 1.665 5.461

AdaDepth [25] Yes 0.452 5.71 9.559

Godard et al. [16] No 0.505 10.172 10.936

AdaDepth [25] No 0.647 12.341 11.567

T2Net [58] No 0.508 6.589 8.935

Atapour et al. [2] No 0.423 9.343 9.002

GASDA [56] No 0.403 6.709 10.424

DESC [31] No 0.393 4.604 8.126

SharinGAN [38] No 0.377 4.900 8.388

S2R-DepthNet [5] No 0.490 10.681 10.892

3D-PL No 0.352 3.539 7.967

is a different domain from the KITTI training data, we apply the single-image
model to reduce the strong domain-related constraints such as the stereo su-
pervisions. In Table 7, 3D-PL achieves the best performance compared to other
approaches. It is also worth mentioning that 3D-PL outperforms the domain
generalization method [5] and supervised method [24] by 66% and 25% in “Sq
Rel”, showing the promising generalization capability.

5 Conclusions

In this paper, we introduce a domain adaptation method for monocular depth
estimation. We propose 2D-based and 3D-aware pseudo-labeling mechanisms,
which utilize knowledge from synthetic domain as well as 3D structural informa-
tion to generate reliable pseudo depth labels for real data. Extensive experiments
show that our pseudo-labeling strategies are able to improve depth estimation in
various settings against several state-of-the-art domain adaptation approaches,
as well as achieving good performance in unseen datasets for generalization.
Acknowledgement. This project is supported by MOST (Ministry of Science
and Technology, Taiwan) 111-2636-E-A49-003 and 111-2628-E-A49-018-MY4.
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Supplemental Materials

6 Stereo Setting

In this section, we provide the details for objective and the overall training
pipeline in the stereo-pair setting as introduced in Section 3.3 of the main paper.

6.1 Objectives

When stereo pairs are available, we utilize the geometry constraints to have self-
supervised stereo supervisions as GASDA [56] using the geometry consistency
loss. The stereo pairs contain the left image xr, which is also used in the single-
image setting, and the corresponding right image. Here we denote the left and
right real images as xleft, xright (we ignore the notation r in the real image
like xleft

r for simplicity) and their depth prediction ỹleft = F (xleft), ỹright =
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F (xright). The geometry consistency loss in GASDA [56] is a reconstruction
penalty between the real left image xleft and the warped left image x̃left.

Lleft
tgc (F ) = η

1− SSIM(xleft, x̃left)

2
+ µ||xleft − x̃left||, (11)

where η and µ are set as 0.85 and 0.15 respectively following [56]. The warped
left image x̃left is obtained from the disparity a and the right image xright with
bilinear sampling [21] following [16]:

x̃left = xright − a, (12)

Since we know the camera parameters when collecting the stereo images, we can
convert the depth prediction ỹleft of left image to the disparity a through:

a =
b · f
ỹleft

, (13)

where b is the baseline distance between the two cameras and f is the focal
length, both parameters are known in the stereo-pair setting. In addition to
reconstructing x̃left from the right image xright, we also warp ỹright and xleft

to get x̃right in our experiments using a similar process and loss Lright
tgc . Finally,

our geometry consistency loss is Ltgc = Lleft
tgc + Lright

tgc .

6.2 Overall Training Pipeline

In our stereo-pair setting, there are also two training stages for training a pre-
liminary depth model F and applying the proposed pseudo-labeling techniques
through this preliminary model.

Training a preliminary depth model F . In the stereo-pair setting, we follow
the single-image setting to use Eq.(6) in the main paper and train a preliminary
depth model F for 20 epochs and further train another 10 epochs with adding
Ltgc:

Lstereo
base = λtaskLs

task + λsmLsm + λtgcLtgc, (14)

where λtask, λsm, and λtgc are set as 100, 0.1, and 50 respectively. Here we do
not include the Ls→r

task loss to make the model training more focused on the real-
domain data. In the second stage, the overall loss is defined as Eq.(10) in the
main paper.

7 Sensitivity Analysis

In this section, we analyze the impact of different parameters, such as threshold
or the weights in the loss. All experiments are performed in the single-image
setting.
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7.1 Threshold τ

Table 8 shows our results under different threshold τ as defined in Eq.(4) of
the main paper, which controls the range of pseudo-label. The higher threshold
means more pseudo-labels are chosen but may not be accurate, while the lower
one can obtain more precise pseudo-labels but the amount is less. As shown in
Table 8, our method performs robustly under a reasonable range of τ (e.g., 0.3
to 1 meter).

Threshold
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

τ = 0.1 0.161 1.048 4.497 0.239

τ = 0.3 0.162 1.045 4.476 0.239

τ = 0.5 0.162 1.049 4.463 0.239

τ = 1 0.161 1.053 4.463 0.239

τ = 2 0.161 1.060 4.468 0.239

τ = 3 0.162 1.066 4.473 0.239

Table 8: Our results of different thresholds τ . The unit of τ is meter. Underline denotes
our final setting.

7.2 Proportion of Pseudo-label Loss α

Table 9 shows the experiments of using different weight proportion between the
pseudo-label loss on real data and the task loss on synthetic data, where α is
defined in Eq.(9) of the main paper. With increasing the weight of pseudo-label
loss, e.g., α = 0.3 to 0.7, the performance is gradually improved, which shows
the benefits of our proposed pseudo-labeling strategy. However, the performance
drops when α becomes too large, which indicates the importance of having the
accurate supervisions from the synthetic data to stabilize model training.

α 1− α
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

0.3 0.7 0.161 1.051 4.520 0.241

0.5 0.5 0.161 1.053 4.490 0.240

0.7 0.3 0.162 1.049 4.463 0.239

0.9 0.1 0.164 1.043 4.508 0.240

1 0 0.191 1.175 4.472 0.253

Table 9: Our results of using different proportions α between the pseudo-label loss (α)
and the task loss (1− α). Underline denotes our final setting.
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7.3 Weighted Terms λcons and λcomp

Table 10 shows the results of different values of weighted terms (λcons, λcomp)
between 2D-based and 3D-aware pseudo-label loss(Lcons

pseudo, L
comp
pseudo), defined in

Eq.(9) of the main paper. As shown in Table 10, our method performs robustly
under a reasonable range of λcons and λcomp if they do not become too large. We
also note that, since the 2D position projected from 3D has a little scale shift to
the original 2D pixel on the image plane, there exists scale difference between
Lcons
pseudo(≈ 10−3) and Lcomp

pseudo(≈ 10−2). Thus, we use 10 times λcons than λcomp

as our final setting.

λcons λcomp
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

0.1 0.01 0.162 1.062 4.711 0.247

0.1 0.1 0.163 1.045 4.483 0.240

1 0.1 0.162 1.049 4.463 0.239

1 1 0.169 1.097 4.463 0.243

10 1 0.168 1.102 4.485 0.243

10 10 0.171 1.138 4.504 0.244

Table 10: Our results of using different values of weighted term (λcons, λcomp) between
2D and 3D pseudo-label loss. Underline denotes our final setting.

8 More Experiments

In this section, we provide experiments for showing the effectiveness of 3D com-
pletion model Gcom, the comparison with 2D depth completion model, the design
choices of the depth estimation loss Ltask, and the model complexity.

8.1 Effectiveness of Gcom

We verify whether the 3D completion model Gcom is well trained. To this end,
we simply take one sequence “0018” out of Virtual KITTI dataset as the testing
set while the remaining is the training set, and then use the same training pro-
cedure stated in the main paper to train our 3D completion model Gcom. During
evaluation, we first project the 2D ground truth depth ys in testing set to 3D
point clouds and uniformly sample them to have sparse point cloud p̂ssparse, and
then we take p̂ssparse as the input of Gcom to obtain the result of completion
p̃sdense. Finally, we project p̃sdense to the 2D depth map ỹsdense and measure the
depth accuracy with its original ground truth ys. Table 11 shows that Gcom has
the ability to produce precise and reasonable 3D completion results.

We also provide details for network architecture and sampling strategy of our
completion model Gcom.
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Method
Accuracy Metrics (higher, better)

δ < 1.25 δ < 1.252 δ < 1.253

3D completion model Gcom 0.976 0.991 0.995

Table 11: Performance of the completion model Gcom trained on the synthetic dataset.

Network Architecture of Gcom. 3D completion model Gcom is modified from
PCN [53]. We follows [50] to adjust the PCN network, including the encoder
and the decoder. The encoder of our completion model Gcom is simplified to one
PointNet [39] layer. Our decoder only uses the second stage of point generation
in PCN, and we take our sparse point cloud as the “Coarse Output” in PCN.
The whole network architecture will be made available to the public.
Sampling Strategy. We “uniformly” sample 3D point cloud into 30720 (25%
of pixel number in an image) sparse points as the input to the 3D completion
model Gcom. The 3D point cloud before sampling is projected from 2D depth
map through the projection mechanism introduced in Section 9.1. During the
pre-training process of Gcom, we sample the point cloud projected from synthetic
ground truth depth ys to sparse point cloud p̂ssparse. In 3D-aware pseudo-labeling
generation, we project 2D pseudo-labels to 3D as point clouds p̂cons and sample
p̂cons to sparse point cloud p̂sparse.

8.2 Comparison with 2D Depth Completion Model

Since there exists 2D depth completion methods which are also able to complete
depth values directly on 2D depth-maps/image [10, 32, 35], we compare our 3D
point cloud completion model Gcom with a 2D depth completion model [10] to
validate the necessity of our 3D-aware approach. We apply a recent 2D depth
completion model [10] to the sparse depth map sampled from our confident area
with two types of training setting. One is pre-trained model provided by the
author, and the other one is the model trained from scratch on vKITTI [13]
with the same setting as our completion model Gcom.

Note that our 3D completion model Gcom is only trained on vKITTI [13]
and the 2D depth completion model provided by the author is pre-trained on
KITTI [15], so the 2D depth completion model accesses more information from
the real domain. We replace our 3D completion model Gcom with the 2D depth
completion model [10] to generate pseudo-labels for training depth prediction
model F . As shown in Table 12, even “+ 2D depth completion [10](pre-trained
by authors)” is pre-trained on KITTI supervisedly (i.e., using the ground truth
depths for training), our proposed 3D-aware approach (i.e., “+ 3D-aware com-
pletion label ŷcons”) provides better performance in all metrics. In addition, we
re-train the 2D depth completion model [10] with the same training setting as
ours (i.e., trained on vKITTI), and our proposed 3D-aware approach reaches
29% lower error on the “Sq Rel” metric. This shows that our 3D completion
model Gcom, which explicitly considers the 3D structural information, is able to
produce more reliable pseudo-labels than the 2D depth completion models.



3D-PL: Domain Adaptive Depth Estimation with Pseudo-Labeling 23

Method Abs Rel Sq Rel RMSE RMSE log

+ 2D depth completion [10] (pre-trained by authors) 0.164 1.068 4.746 0.247

+ 2D depth completion [10] (trained on vKITTI) 0.186 1.476 6.125 0.310

+ 3D-aware completion label ŷcons (Ours) 0.164 1.054 4.473 0.239

Table 12: Training depth prediction model F by using the pseudo-labels generated from
different completion models. Note that “+ 2D depth completion [10] (pre-trained by
authors)” is pre-trained on KITTI [15], in which the 2D depth completion model [10]
has the supervision on depth directly from the real domain, while our model is trained
on vKITTI.

8.3 Design Choices of Depth Estimation Loss Ltask

As stated in Section 7.2, when training with pseudo-labels, it is important to
have accurate supervisions on the depth estimation loss Ltask to stabilize model
training. In Eq.(9) of the main paper, we retain Ls

task as the depth estimation
to make the model training more focused on the real-domain data. While there
exists another option Ls→r

task for the depth estimation loss, as Ls→r
task considers

real-stylized images, images produced by style transfer may not align with their
original depth ground truths well. Table 13 shows the experiments of adopting
different options for the depth estimation loss in Eq.(9) of the main paper, which
demonstrates that using Ls

task instead of Ls→r
task has lower errors.

Method Abs Rel Sq Rel RMSE RMSE log

using both Ls
task and Ls→r

task 0.160 1.074 4.611 0.246

using Ls→r
task only 0.161 1.090 4.635 0.247

using Ls
task only 0.162 1.049 4.463 0.239

Table 13: Different options for the depth estimation loss Ltask in Eq.(9) of the main
paper.

8.4 Model Complexity

We analyze the model complexity by computing the number of parameters and
the training/testing time for our models. We have depth prediction model F
and the completion model Gcom. The completion model Gcom only contains
1.324M parameters, which is much smaller than the depth model F (54.565M).
The training time for depth model F and completion model Gcom are 80 and
21 hours. During testing, only the depth model F is required, where it does
not introduce additional overheads compared to normal model inference (0.014
seconds for a 192×640 image as used in [56,58]).



24 Yen et al.

8.5 Application on 3D Object Detection

To show the effectiveness of our depth result, we apply the final depth prediction
to the 3D object detection task. We adopt Pseudo-LiDAR [49] to convert our
generated depth map to pseudo LiDAR, and take the pseudo LiDAR as the input
to the 3D object detection model. We show example results in Figure 6 compared
to the ground truths. We also follow [49] to evaluate the result on the validation
set of KITTI object detection benchmark for the “car” category. With the IoU
threshold at 0.7, the average precision for the 3D object box detection (AP3D)
is 15.8%, 12.3%, and 11.2% for easy, moderate, and hard cases, respectively.

Input image Ground truth 3D-PL + Pseudo-LiDAR [13]

Fig. 6: 3D object detection results using 3D-PL.

9 Details for 2D/3D Projection

We provide the implementation details for the projection procedure between 2D
and 3D, including the projection mechanism and some discussions.

9.1 Projection Mechanism

Projection from 2D to 3D. We aim to reconstruct each point (xi, yi, zi) in
the 3D space from the 2D image pixel (ui, vi) with its depth value di based on
the standard pinhole camera model. We assume the size of image is H ×W and
the pixel positions on the original image plane are {(ui, vi)}H×W

i=1 , where each
pixel (ui, vi) has the corresponding depth value di. Then, we project the point
from 2D to 3D through project2D→3D to obtain 3D point (xi, yi, zi) in the 3D
point cloud ŷcons:

xi =
d∗i (ui − ox)

f
, yi =

d∗i (vi − oy)

f
, zi = d∗i , (15)
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where f is the focal length, ox and oy are the 2D position of camera center,
d∗i = di + ε, ε is a shift to convert relative depth value di to the absolute depth
value from the camera center. Please note that, a single image has infinite pos-
sible 3D reconstruction depending on different camera parameters. Since our
objective of the 3D completion model is to learn the structure and the depth
relationship in the 3D space, we do not need to restore exactly the same set-
ting as the image being captured in the real world. On the other hand, as we
cannot know the camera parameters of the real data, we hence set up reason-
able projection parameters on our own and use the same setting in training the
3D completion model and finding 3D-aware pseudo-labels. In experiments, we
adopt the same focal length f as virtual KITTI [13] and set ε as 40. Normally,
ε is set equal to the focal length f , but such setting would lead to large values
for xi and yi coordinates as indicated in Eq. (15). We therefore in experiments
adopt the normalized depth values and fix the focal length to seek for a suitable
shift ε, which gives a reasonable scale of 3D coordinates and still maintains the
relationship between depth values.
Projection from 3D to 2D. After the 3D completion process, we obtain
p̃dense = (x̃i, ỹi, z̃i), and then we project each point back to the original 2D
plane as (ũi, ṽi) with the updated depth value d̃i = z̃i − ε (we ignore the ε for
simplicity in the main paper) by the inverse operation of Eq. (15):

ũi =
x̃i · f
z̃i

+ ox, ṽi =
ỹi · f
z̃i

+ oy, d̃i = z̃i − ε, (16)

where (ũi, ṽi) are rounded to integers. Since all the 3D points are generated
through the completion model, the position (ũi, ṽi) projected from point cloud
may be duplicated (i.e., two projected points happen to overlap in the 2D plane)
or out of the original image plane (i.e., (ũi, ṽi) < 0 or (ũi, ṽi) > (H,W )). For
duplicated points, we choose the minimum depth value among all duplicated
points as the final depth. For those positions out of the original image plane, we
view them as failing projection and do not take them as the pseudo-label ŷcomp.

9.2 Discussions of 2D/3D Pseudo-label

We discuss whether ŷcomp is complementary to the original pseudo label ŷcons.
We observe that in Figure 3 of the main paper, for some regions that look similar,
the values of the same pixel between ŷcons and ŷcomp are very close but have a
little scale shift (< 10−1). For the areas that appear different (e.g., bottom-left
area), ŷcomp has nearer depth values than original ŷcons, in which nearer depth
values are more reasonable for the object and grass in the bottom-left corner
of the image. It shows that the completion model refers to the 3D structural
information to produce better results.

10 Limitations

Figure 7 shows one example of the limitation in our 3D-PL with the stereo-pair
setting. Since 3D-PL focuses on the structural information, it can perform well
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Input image xr Ground truth yr 3D-PL + Stereo

Fig. 7: 3D-PL produces better results in overall structure and shape of objects,
but may lose some details for the objects with complicated textures such as grass
and plants.

Input image xr Ground truth yr T2Net [58] 3D-PL

Fig. 8: More qualitative results on KITTI [15] in the single-image setting.

on the overall structure, e.g., the shape of cars and the hard objects such as road
signs or traffic lights. However, for the object that has complicated textures like
grass, 3D-PL produces smoother results but loses the details of the plant.

11 More qualitative results

We provide more qualitative results for different settings. Figure 8 and Fig-
ure 9 are results for KITTI [15] in the single-image and stereo-pair settings,
respectively. Figure 10 and Figure 11 are results for KITTI stereo 2015 [34] in
single-image and stereo-pair settings, respectively. Figure 12 presents results for
make3D [43] in the single-image setting.
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Input image xr Ground truth yr DESC [31] SharinGAN [38] 3D-PL+Stereo

Fig. 9: More qualitative results on KITTI [15] with having stereo pairs during
training.

Input image xr Ground truth yr T2Net [58] 3D-PL

Fig. 10: More qualitative results on KITTI stereo 2015 [34] in the single-image
setting.
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Input image xr Ground truth yr DESC [31] SharinGAN [38] 3D-PL+Stereo

Fig. 11: More qualitative results on KITTI stereo 2015 [34] with having stereo
pairs during training.

Input image xr Ground truth yr T2Net [58] 3D-PL

Fig. 12: More qualitative results on Make3D [43] in the single-image setting.
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