
Class-Incremental Learning with Cross-Space
Clustering and Controlled Transfer

Arjun Ashok1,2 , K J Joseph1 , and Vineeth N Balasubramanian1

1 Indian Institute of Technology Hyderabad
2 PSG College Of Technology, Coimbatore

arjun.ashok.psg@gmail.com, {cs17m18p100001, vineethnb}@iith.ac.in
https://cscct.github.io

Abstract. In class-incremental learning, the model is expected to learn
new classes continually while maintaining knowledge on previous classes.
The challenge here lies in preserving the model’s ability to effectively
represent prior classes in the feature space, while adapting it to repre-
sent incoming new classes. We propose two distillation-based objectives
for class incremental learning that leverage the structure of the feature
space to maintain accuracy on previous classes, as well as enable learning
the new classes. In our first objective, termed cross-space clustering
(CSC), we propose to use the feature space structure of the previous
model to characterize directions of optimization that maximally pre-
serve the class: directions that all instances of a specific class should
collectively optimize towards, and those directions that they should col-
lectively optimize away from. Apart from minimizing forgetting, such a
class-level constraint indirectly encourages the model to reliably cluster
all instances of a class in the current feature space, and further gives
rise to a sense of “herd-immunity”, allowing all samples of a class to
jointly combat the model from forgetting the class. Our second objective
termed controlled transfer (CT) tackles incremental learning from an
important and understudied perspective of inter-class transfer. CT ex-
plicitly approximates and conditions the current model on the semantic
similarities between incrementally arriving classes and prior classes. This
allows the model to learn the incoming classes in such a way that it maxi-
mizes positive forward transfer from similar prior classes, thus increasing
plasticity, and minimizes negative backward transfer on dissimilar prior
classes, whereby strengthening stability. We perform extensive experi-
ments on two benchmark datasets, adding our method (CSCCT) on top
of three prominent class-incremental learning methods. We observe con-
sistent performance improvement on a variety of experimental settings.

Keywords: Incremental Learning, Continual Learning, Knowledge Dis-
tillation, Transfer Learning.

1 Introduction

Incremental learning is a paradigm of machine learning where learning objectives
are introduced to a model incrementally in the form of phases or tasks, and the

ar
X

iv
:2

20
8.

03
76

7v
3

 [
cs

.C
V

]
 1

6
A

ug
 2

02
2

https://orcid.org/0000-0002-2752-2509
https://orcid.org/0000-0003-1168-1609
https://orcid.org/0000-0003-2656-0375
https://cscct.github.io

2 A. Ashok et al.

model must dynamically learn new tasks while maintaining knowledge on pre-
viously seen tasks. The differences of this setup from a static training scenario
is that the model is not allowed to retrain from scratch on encountering new
tasks, and no task information is available upfront. A fundamental challenge in
incremental learning is in the stability-plasticity trade-off [37], where stability
relates to maintaining accuracy on the previous tasks, while plasticity relates
to learning the current task effectively. In their naive form, deep learning mod-
els are too plastic; the model changes significantly during training, and incurs
catastrophic forgetting [16] of old tasks when exposed to new ones.

Class-incremental learning (CIL) [42, 36] is a specific sub-paradigm of incre-
mental learning where tasks are composed of new classes and we seek to learn a
unified model that can represent and classify all classes seen so far equally well.
The main challenge in class-incremental learning lies in how knowledge over the
long stream of classes can be consolidated at every phase. Regularization-based
methods [25, 4, 58, 9] quantify and preserve important parameters correspond-
ing to prior tasks. Another set of approaches [34, 10, 14, 50] focus on modifying
the learning algorithm to ensure that gradient updates do not conflict with the
previous tasks. In dynamic architecture methods [55, 52, 31, 1, 41], the network
architecture is modified by expansion or masking when encountering new tasks
during learning. Replay-based methods [42, 19, 13, 51, 6, 7, 33, 8, 30, 2, 47, 46, 54]
store a subset of each previous task in a separate memory, and replay the
tasks when learning a new one, to directly preserve the knowledge on those
tasks. A wide variety of such replay methods have been developed recently, and
have attained promising results in the CIL setting. A number of these methods
[42, 19, 13, 7, 2, 47, 8, 30] use variants of knowledge distillation [18], where
the model and its predictions corresponding to the previous task are utilized
to prevent the current task’s model from diverging too much from its previous
state.

Our work herein falls under distillation-based methods. Prior work has ad-
vocated for utilizing distillation to directly constrain an example’s position or
angle using its position in the previous feature space [19], to preserve pooled con-
volutional outputs of an instance [13], or to maintain the distribution of logits
that the model’s classifier outputs on the data [2, 42]. We argue that preserving
the features or predictions of a model on independent individual instances are
only useful to a certain extent, and do not characterize and preserve properties
of a class captured globally by the model as a whole. Class-level semantics may
be more important to be preserved in the class-incremental learning setting,
to holistically prevent individual classes from being forgotten. To this end, we
develop an objective termed Cross-Space Clustering (CSC) that character-
izes entire regions in the feature space that classes should stay away from, and
those that a class should belong to, and distills this information to the model.
Our objective indirectly establishes multiple goals at once: (i) it encourages the
model to cluster all instances of a given class; (ii) ensures that these clusters are
well-separated; and (iii) regularizes to preserve class cluster positions as a sin-
gle entity in the feature space. This provides for a class-consolidated distillation

Class-Incremental Learning with CSCCT 3

objective, prodding instances of a given class to “unite” and thus prevent the
class from being forgotten.

Next, as part of our second objective, we tackle the class-incremental-learning
problem from a different perspective. While all prior distillation objectives seek
better ways to preserve properties of the learned representations in the feature
space [42, 19, 13, 7, 2, 47, 8, 30], we believe that controlling inter-class transfer
is also critical for class-incremental learning. This comes from the observation
that forgetting often results from negative backward transfer from new classes to
previous classes, and plasticity is ensured when there is positive forward transfer
from prior classes to new ones [34]. To this end, we develop an objective called
Controlled Transfer (CT) that controls and regularizes transfer of features
between classes at a fine-grained level. We formulate an objective that approxi-
mates the relative similarity between an incoming class and all previous classes,
and conditions the current task’s model on these estimated similarities. This
encourages new classes to be situated optimally in the feature space, ensuring
maximal positive transfer and minimal negative transfer.

A unique characteristic of our objectives is their ability to extend and en-
hance existing distillation-based CIL methodologies, without any change to their
methodologies. We verify this by adding our objectives to three prominent
and state-of-the art CIL methods that employ distillation in their formulation:
iCARL [42], LUCIR [19] and PODNet [13]. We conduct thorough experimen-
tal evaluations on benchmark incremental versions of large-scale datasets like
CIFAR-100 and ImageNet subset. We perform a comprehensive evaluation of our
method, considering a wide variety of experimental settings. We show that our
method consistently improves incremental learning performance across datasets
and methods, at no additional cost. We further analyze and present ablation
studies on our method, highlighting the contribution of each of our components.

2 Related Work

2.1 Incremental Learning

In an incremental setting, a model is required to consistently learn new tasks,
without compromising performance on old tasks. Incremental learning method-
ologies can be split into five major categories, each of which we review below.

Regularization-based methods focus on quantifying the importance of
each parameter in the network, to prevent the network from excessively chang-
ing the important parameters pertaining to a task. These methods include EWC
[25], SI [58], MAS [4] and RWalk [9]. A recent method ELI [22], introduces an
energy based implicit regularizer which helps to alleviate forgetting.

Algorithm-based methods seek to avoid forgetting from the perspective
of the network training algorithm. They modify gradients such that updates to
weights do not not deteriorate performance on previously seen tasks. Methods
such as GEM [34], A-GEM [10], OGD [14] and NSCL [50] fall under this category.
Meta-learning based methods [21, 26] are also useful while learning continually.

4 A. Ashok et al.

Architecture-based methods modify the network architecture dynamically
to fit more tasks, by expanding the model by adding more weights [55, 52],
or masking and allocating subnetworks to specific tasks [45], or by gating the
parameters dynamically using a task identifier [1].

Exemplar-based methods (also called replay-based or rehearsal methods)
assume that a small subset of every class can be stored in a memory at every
phase. They replay the seen classes later along with the incoming new classes,
directly preventing them from being forgetten. One set of works focus on reducing
the recency bias due to the new classes being in majority at every phase [51,
6, 19, 7]. Another set of works focus on optimizing which samples to choose as
exemplars to better represent the class distributions [33, 5].

Distillation-based methods use the model learned until the previous task
as a teacher and provide extra supervision to the model learning the current
tasks (the student). Since the data of the previous tasks are inaccessible, these
methods typically enforce distillation objectives on the current data [32, 12],
data from an exemplar memory [19, 13, 42, 7, 2, 27, 23], external data [30] or
synthetic data [59]. Since our method falls under this category, we extend our
discussion on related methods below.

Early works in this category distill logit scores [32, 42] or attention maps [12]
of the previous model. iCARL [42] proposes to enforce distillation on new tasks
as well exemplars from old tasks, along with herding selection of exemplars and
nearest-mean-of-exemplars (NME) based classification. GD [30] calibrates the
confidence of the model’s outputs using external unlabelled data, and propose
to distill the calibrated outputs instead. LUCIR [19] introduces a less-forget
constraint that encourages the orientation of a sample in the current feature
space to be similar to its orientation in the old feature space. Apart from that,
LUCIR proposes to use cosine-similarity based classifiers and a margin ranking
loss that mines hard negatives from the new classes to better separate the old
class, additionally avoiding ambiguities between old and new classes. PODNet
[13] preserves an example’s representation throughout the model with a spatial
distillation loss. SS-IL [2] show that general KD preserves the recency bias in
the distillation, and propose to use task-wise KD. Co2L [8] introduces a con-
trastive learning based self-supervised distillation loss that preserves the exact
feature relations of a sample with its augmentations and other samples from the
dataset. GeoDL [47] introduces a term that enhances knowledge distillation by
performing KD across low-dimensions path between the subspaces of the two
models, considering the gradual shift between models.

The main difference of our cross-space clustering objective from these works
is that we do not optimize to preserve the properties of individual examples,
and instead preserve the previously learned semantics or properties of each class
in a holistic manner. Our formulation takes into account the global position of
a class in the feature space, and optimizes all samples of the class towards the
same region, making the model indifferent to instance-level semantics. Further,
classes are supervised with specific “negative” regions all over the feature space,
also intrinsically giving rise to better separation between class clusters.

Class-Incremental Learning with CSCCT 5

Our controlled transfer objective, on the other hand, attempts to regularize
transfer between tasks. MER [43], an algorithm-based method is related to our
high-level objective. MER works in the online continual learning setup, combin-
ing meta-learning [15, 38] with replay. Their method optimizes such that the
model receives weight updates are restricted to those directions that agree with
the gradients of prior tasks. Our objective proposes to utilize the structure of the
feature space of the previous model to align the current feature space, in order
to maximize transfer. Our novelty here lies in how we explicitly approximate
inter-class semantic similarities in a continual task stream, and utilize them to
appropriately position new tasks representations, regularizing transfer.

2.2 Knowledge Distillation

Hinton et al. [18] introduced knowledge distillation (KD) in their work as a
way to transfer knowledge from an ensemble of teacher networks to a smaller
student network. They show that there is dark knowledge in the logits of a
trained network that can give more structure about the data, and use them
as soft targets to train the student. Since then, a number of other works have
explored variants of KD. Attention Transfer [57] focused on the attention maps
of the network instead of the logits, while FitNets [44] also deal with intermediate
activation maps of a network. Several other papers have enforced criteria based
on multi-layer representations of a network [53, 20, 24, 3, 28].

Among these, our controlled transfer objective shares similarities with a few
works that propose to exploit the mutual relation between data samples for
distillation. Tung and Mori [49] propose a distillation objective that enforces an
L2 loss in the student that constraints the similarities between activation maps
of two examples to be consistent with those of the teacher. Relational KD [39]
additionally propose to preserve the angle formed by the three examples in the
feature space by means of a triplet distillation objective. Extending this direction,
Correlation Congruence [40] models relations between examples through higher-
order kernels, to enforce the same objectives with better relation estimates.

The difference of our controlled transfer objective from these works lies in
the high-level objective in the context of the incremental learning setting, as well
as the low-level formulation in terms of the loss objective. All the above works
propose to use sample relations in the feature space to provide additional super-
vision to a student model by regularizing the feature relations of the student.
The main challenge in incremental learning is how we can reduce the effect that
a new class has on the representation space, to minimize forgetting.

Our objective also exploits sample relations in the feature space, however our
novelty lies in how we estimate a measure of relative similarity between an unseen
class and each previously seen class, and utilize them to control where the new
samples are located in the embedding space, in relation to the old samples. Our
specific formulation indirectly promotes forward transfer of features from prior
classes similar to the new class, and simultaneously prevents negative backward
transfer of features from the new class to dissimilar previous classes .

6 A. Ashok et al.

3 Method

We briefly introduce the problem setting in Sec. 3.1. Next, we explain in detail
our learning objectives in Sec. 3.2 and Sec. 3.3 respectively, and discuss the
overall objective function in Sec. 3.4.

3.1 Problem Setting

In the incremental learning paradigm, a set of tasks Tt = {τ1, τ2, · · · , τt} is
introduced to the model over time, where Tt represents the tasks that the model
has seen until time step t. τt denotes the task introduced at time step t, which is
composed of images and labels sampled from its corresponding data distribution:
τt = (xτt

i , yτti) ∼ pτtdata. Each task τt contains instances from a disjoint set of
classes. FTt denotes the model at time step t . Without loss of generality, FTt can
be expressed as a composition of two functions: FTt(x) = (FTt

ϕ ◦FTt

θ)(x), where

FTt

ϕ represents a feature extractor, and FTt

θ denotes a classifier. The challenge
in incremental learning is to learn a model that can represent and classify all
seen classes equally well, at any point in the task stream.

While training the model FTt on the task τt, the model does not have access
to all the data from previous tasks. Exemplar-based methods [42, 5, 51, 33, 6]
sample a very small subset of each task data et ∈ τt at the end of every task τt
and store it in a memory buffer Mt = {e1, e2, · · · , et}, which contains a subset
of data from all tasks seen until time t. When learning a new task at time
step t, the task’s data τt is combined with samples from the memory containing
exemplars of each previous task Mt−1. Therefore, the dataset that the model
has at time step t is Dt = τt ∪Mt−1. In distillation-based methods, we assume
access to the previous model FTt−1 which has learned the stream of tasks Tt−1.
The model FTt−1 is frozen and not updated, and is instead used to guide the
learning of the current model FTt . Effectively utilising the previous model is key
to balancing stability and plasticity. Excess constraints tied to the model can
prevent the current task from being learned, and poor constraints can lead to
easy forgetting of previous tasks.

3.2 Cross-Space Clustering

Our cross-space clustering (CSC) objective alleviates forgetting by distilling
class-level semantics and inducing tight clusters in the feature space. CSC lever-
ages points across the entire feature space of the previous model FTt−1 , to iden-
tify regions that a class is optimized to stay within, and other harmful regions
that it is prevented from drifting towards. We illustrate our cross-space clustering
objective in Fig. 1.

Class-Incremental Learning with CSCCT 7

Note: Each color represents a different class from the previous tasks.

Fig. 1. We illustrate our cross-space clustering (CSC) objective. We show instances

from 3 classes from the stream Tt−1, and their positions in FTt−1

ϕ and FTt
ϕ respectively.

Classes are well represented in FTt−1

ϕ , however their representations are dispersed in

the FTt
ϕ . Here we illustrate the constraint imposed on an instance of the violet class,

based on the cluster position of its own class (indicated by the green arrows) and the
positions of every other class (indicated by the red arrows). Note how the exact same
constraint is applied on all instances of a class (illustrated here with 2 instances of the
violet class). Best viewed in color.

Consider that the model FTt is trained on mini-batches B = {xi, yi}ki=1

sampled from Dt. Our cross-space clustering objective enforces the following
loss on the model:

LCross−Cluster =
1

k2

k∑
i=1

k∑
j=1

(
1− cos(FTt

ϕ (xi),FTt−1

ϕ (xj))
)
∗ ind(yi == yj) (1)

where ind is an indicator function that returns 1 when its inputs are equal and
-1 otherwise3 , and cos(a, b) denotes the cosine similarity between two vectors a
and b.

Physical Interpretation: For pairs of samples xi and xj , FTt(xi) is en-
forced to minimize cosine distance with FTt−1(xj) when they are of the same
class (yi == yj), and maximize cosine distance with FTt−1(xj) when they are of
different classes (yi! = yj). We expand upon the objective and its implications
separately below.

Explanation: Consider that there are l examples of class n in the considered
batch of size k, and hence k − l samples belonging to classes other than n.

Sample xi from class n is allowed to see the previous feature positions of all
of the l samples of the same class in B, and is regularized to be equally close
to all these positions. Since multiple positions are used in the previous feature
space and equal constraints are applied, points only see an approximation of its

3 Note how this is different from a typical indicator function that returns 0 when the
inputs are not equal.

8 A. Ashok et al.

class (cluster) in the previous feature space, and do not see individual feature
positions. This inherently removes the dependency of the distillation on the
specific position of the sample within its class, and instead optimizes the sample
to move towards a point that can preserve the class as a whole.

Next, every sample xi belonging to a class n in the batch is given the exact
same constraints with no difference. In our case, all samples belonging to a class
are optimized towards the mean of the class’s embeddings in the previous space.
This leads to all of them being optimized jointly to a single stark region belong-
ing to their class. Repeating this process for several iterations implicitly leads to
model to implicitly cluster all samples of a class in the current feature space FTt

in the specific characterized regions. With respect to clustering, an important
point is that our loss is cross-space in the sense, it does not encourage clustering
of features of a class using features from the same model [8], that would nei-
ther exploits prior knowledge about the inter-class distances, nor imposes any
constraints on the location of the classes. Our formulation instead encourages
a model to keep all these clusters at specific points provided by the previous
feature space, thereby directly distilling and preserving the cluster positions in
the feature space as well. Hence, our objective uses approximate cluster positions
from FTt−1 to in-turn cluster samples at specific positions in FTt . Since all sam-
ples are optimized towards the same region, all points of the class are optimized
to unite and jointly protect and preserve the class. Such a formulation gives rise
to a sense of herd-immunity of classes from forgetting, which better preserves
the classes as the model drifts.

Finally, with very few exemplars stored per-class in the memory, our objective
proposes to maximally utilize the memory4 as well as the current task, leveraging
them to identify negative regions that an instance is maintained to lie away from.
Through multiple iterations of optimization, xi belonging to class n is enforced
to stay equally away from the positions of all other k − l examples from the
entire previous space. This indirectly tightens the cluster of class n in FTt along
multiple directions in the feature space.

Differences from prior work: Prior distillation-based methods [19, 13, 47]
only apply sample-to-sample cross-space constraints, to preserve the representa-
tional properties of the previous space. The core difference of our method from
all others lies in how it applies class-to-region constraints. Here, class denotes
how all samples of a class are jointly optimized with the same constraints, and
region denotes how the samples are optimized towards and away from specific
regions instead of towards individual points.

3.3 Controlled Transfer

Catastrophic forgetting has been previously characterized to arise due to a vari-
ety of reasons - the inability to access enough data of previous tasks [51, 19, 6],

4 A batch of sufficient size typically contains at least one sample from each previous
class, serving as a rough approximation of the memory

Class-Incremental Learning with CSCCT 9

Previous feature space
structure captures intrinsic

similarities between an unseen
class and prior classes

Without CT

With CT

Without Controlled Transfer
New classes can drift to dissimilar
previous classes, causing negative

transfer

With Controlled Transfer
New classes are appropriately

positioned to transfer maximally
from similar classes, and have

minimal effect on dissimilar classes

LEGEND: Instance from
Task

Instances from various
classes of Task

No relation
captured

Limited
similarity

Low
similarity

High
similarity

Fig. 2. We illustrate our controlled transfer objective. We show the positions of
instances from five random classes taken from previous tasks τx;x < t, and one unseen

incoming class from the current task τt, in FTt−1

ϕ and FTt
ϕ respectively. With our

objective, the new task instances are regularized to position themselves appropriately,
to prevent negative transfer to dissimilar classes, and to encourage positive transfer
from similar classes (best viewed in color)

change in important parameters [25, 58, 4], representation drift [32, 13, 8], con-
flicting gradients [34, 10, 14, 50] and insufficient capacity of models [55, 52, 1].
However, all these works ignore the semantic similarities between tasks and their
relation to forgetting. We argue that knowing the degree of semantic similarity
between two classes can, in fact, be very useful in incremental learning: When a
previous class is dissimilar to the class currently being learned, the model must
learn to treat the previous class distinctively and minimally impact it, so that
the semantic specialities of that class are not erased. Conversely, when there is
a previous class which is similar to the class currently being learned, the model
must maximally transfer features from that class, to learn the current class in
the best possible way. With these goals, we propose an incremental learning
objective that explicitly quantifies inter-class similarities, and controls transfer
between classes in every phase. Fig. 2 illustrates our controlled transfer objective.

Notation: We first describe the general notation that we use to denote the
similarity between samples in a space. Consider two samples xi and xj from
a dataset Dk, and a model FTk . We denote the similarity between xi and xj

computed on the feature space of FTk as zTk
xi,xj

= cos(FTk

ϕ (xi),FTk

ϕ (xj)) where
cos(a, b) denotes cosine similarity between two vectors a and b. We denote the
the normalized distribution of similarities that an individual sample xi has with
every sample in Dk, in the feature space of FTk as

HTk

xi,Dk,T
=

{
(zTk

xi,xj
/T)∑|Dk|

g=1 (z
Tk
xi,xg/T)

}|Dk|

j=1

(2)

10 A. Ashok et al.

where T is the temperature that is used to control the entropy of the distri-
bution. HTk

xi,Dk,T
is a row matrix, where the value in each column j of the matrix

denotes the normalized similarity between xi and xj , relative to every sample in
the dataset Dk.

Formulation: We first aim to estimate the similarities between a new class
Cnew ∈ τt and every previously seen class Cold ∈ τk ∈ Tt−1. Cold is well repre-
sented the model FTt−1 ; the new class Cnew has not yet been learned by any
model. It is not possible to use the drifting feature space of FTt to represent
Cnew; even representing Cnew once it has been learned by FTt would heavily bias
the representations towards Cnew due to the well-known recency bias [51, 2].
Our formulation instead proposes to utilize the dark knowledge that the previ-
ous model possesses about an unseen class: if the representations of an unseen
class Cnew lie relatively close to the class representations of a previous class in
FTt−1 , it indicates that the two classes share semantic similarities. On the other
hand, if the representations of an unseen class Cnew lie relatively far from a pre-
vious class in FTt−1 , it indicates that the two classes do not have any semantic
features in common. Note how the similarities for Cnew given by FTt−1 are unbi-
ased as the model has never seen Cnew, and hence can be used as approximations
to the semantic similarities. We propose to use these approximate similarities
captured by FTt−1 in our objective explained below.

Consider a mini-batch of BTt
n of size s that contains samples {(xTt

i , yTt
i)}

randomly sampled from Dt. This mini-batch BTt
n is composed of p samples from

the current task denoted by P = (xτt
i , yτti)

p
i=1, and q samples taken from the

memory, denoted by Q = (xτk
i , yτki)

q
i=1, where k < t. In an effort to control

the transfer between a new and an old sample, our objective regularizes the
normalized similarity (closeness) that a sample from the current task (xτt

i , yτti) ∈
τt has with every sample from any previous class (xτk

i , yτki), where k < t. This is
enforced by minimizing the KL Divergence of the similarity distribution of xτt

i ∈
P over Q, in the current space FTt

ϕ , with the similarity distribution computed

in the previous space FTt−1

ϕ , as follows

LTransfer =
1

p

p∑
i=1

KL(Hτt
xi,Q,T ||H

τt−1

xi,Q,T) (3)

This loss modifies the position of the current classes in the current feature
space FTt

ϕ such that they have high similarity with (lie close to) prior classes
that are very similar. This encourages positive forward transfer of features to
the current classes from selected previous classes that are similar, as both their
embeddings are optimized to have high similarity in the current space. This helps
the model learn the current task better by leveraging transferred features, and
lessens the impact that the new task has on the representation space. Conversely,
as the embeddings are optimized to have low similarity with (lie far from) those
previous classes that are dissimilar to it, it discourages (negative) backward
transfer from the current classes to those dissimilar classes. Consequently, the
features of these specific classes are further shielded from being erased, leading to

Class-Incremental Learning with CSCCT 11

Table 1. The table shows results on CIFAR100 when our method is added to three
top-performing approaches [42, 19, 13]. The red subscript highlights the relative im-
provement. B denotes the number of classes in the first task. C denotes the number of
classes in every subsequent task.

Dataset CIFAR100

Settings B = 50 B = C

Methods C = 1 C = 2 C = 5 C = 1 C = 2 C = 5

iCaRL [42] 43.39 48.31 54.42 30.92 36.80 44.19
iCaRL + CSCCT 46.15+2.76 51.62+3.31 56.75+2.33 34.02+3.1 39.60+2.8 46.45+2.26

LUCIR [19] 50.26 55.38 59.40 25.40 31.93 42.28
LUCIR + CSCCT 52.95+2.69 56.49+1.13 62.01+2.61 28.12+2.72 34.96+3.03 44.03+1.55

PODNet [13] 56.88 59.98 62.66 33.58 36.68 45.27
PODNet + CSCCT 58.80+1.92 61.10+1.12 63.72+1.06 36.23+2.65 39.3+2.62 47.8+2.53

the semantics of those classes being preserved more in the current space, which
directly results in lesser forgetting of those classes.

3.4 Final Objective Function

The independent nature of our objectives make them suitable to be applied
on top of any existing method to improve its performance. Our final objective
combines LCross−Cluster (1) and LTransfer (3) with appropriate coefficients:

LCSCCT = Lmethod + α ∗ LCross−Cluster + β ∗ LTransfer (4)

where Lmethod denotes the objective function of the base method used, and
α and β are loss coefficients for each of our objectives respectively. We term our
method CSCCT, indicating Cross-Space Clustering and Controlled Transfer.

4 Experiments and Results

We conduct extensive experiments adding our method to three prominent meth-
ods in class-incremental learning [42, 19, 13].

Protocols: Prior work has experimented with two CIL protocols: a) training
with half the total number of classes in the first task, and equal number of
classes in each subsequent task [19, 13, 51], and b) training with the same
number of classes in each task, including the first [42, 2, 7]. The first setting
has the advantage of gaining access to strong features in the first task, while the
second tests an extreme continual learning setting; both these are plausible in
a real-world incremental classification scenario. We experiment with both these
protocols to demonstrate the applicability of our method. On CIFAR100, classes
are grouped into 1, 2 and 5 classes per task. On ImageNet-Subset, the classes
are split into 2, 5 and 10 classes per task. Hence, we experiment on both long
streams of small tasks, as well as short streams of large tasks.

Datasets and Evaluation Metric: Following prior works [19, 13, 42, 7],
we test on the incremental versions of CIFAR-100 [29] and ImageNet-Subset
[42]. CIFAR100 contains 100 classes, with 500 images per class, and each of

12 A. Ashok et al.

Table 2. The table shows results on ImageNet-Subset when our method is added to
three top-performing approaches [42, 19, 13]. The red subscript highlights the relative
improvement. B denotes the number of classes in the first task. C denotes the number
of classes in every subsequent task.

Dataset ImageNet-Subset

Settings B = 50 B = C

Methods C = 2 C = 5 C = 10 C = 2 C = 5 C = 10

iCaRL [42] 55.81 57.34 65.97 40.75 55.92 60.93
iCaRL + CSCCT 57.01+1.2 58.37+1.03 66.82+0.8 42.46+1.71 57.45+1.53 62.60+1.67

LUCIR [19] 60.44 66.55 70.18 36.84 46.40 56.78
LUCIR + CSCCT 61.52+1.08 67.91+1.36 71.33+1.15 37.86+1.02 47.55+1.15 58.07+1.29

PODNet [13] 67.27 73.01 75.32 44.94 58.23 66.24
PODNet + CSCCT 68.91+1.64 74.35+1.34 76.41+1.09 46.06+1.12 59.43+1.2 67.49+1.25

dimension 32×32. ImageNet-Subset is a subset of the ImageNet-1k dataset [11],
and contains 100 classes, with over 1300 images per class. Each image is of size
224 × 224. All our results denote average incremental accuracy . We follow the
original papers in their inference methodology: On LUCIR [19] and PODNet
[13], classification is performed as usual using the trained classifier, while on
iCARL [42], classification is based on nearest-mean-of-exemplars.

5 Implementation Details

Following prior work [19, 13], we use a ResNet-32 and ResNet-18 on CIFAR100
and ImageNet-Subset respectively. On CIFAR100, we use a batch size of 128
and train for 160 epochs, with an initial learning rate of 4e−1 that is decayed
by 0.1 at the 80th and 120th epochs respectively. On ImageNet-Subset, we use
a batch size of 64 and train for 90 epochs, with an initial learning rate of 2e−2

that is decayed by 0.1 at the 30th and 60th epochs respectively. We use herding
selection [42] for exemplar sampling, and an exemplar memory size of 20.

5.1 Quantitative Results

We add our method to three state-of-the-art class-incremental learning method-
ologies: iCARL [42], LUCIR [19] and PODNet [13]. Table 1 showcases results on
CIFAR100, and Table 2 showcases results on ImageNet-Subset. We see a con-
sistent improvement across all settings and methods when CSCCT is added to
them. Specifically, on CIFAR100, adding CSCCT to iCARL [42], LUCIR [19]
and PODNet [13] provides strong relative improvement of 2.76%, 2.28% and
1.99% respectively averaged across all settings, while on the much more high-
dimensional ImageNet-Subset, adding our method to the respective baselines
provides consistent relative improvements of 1.32%, 1.17% and 1.35%.

Evaluating iCARL [42], LUCIR [19] and PODNet [13] on the equal class
protocol show that LUCIR [19] suffers from a severe performance degradation
due to its inherent reliance on a large initial task, while iCARL [42] and PODNet
[13] do not. On CIFAR100, simply adding our method to iCARL [42] gives it

Class-Incremental Learning with CSCCT 13

1 2 5
Classes Per Task

30

35

40

45

50

55

Av
er

ag
e

Ac
cu

ra
cy

 o
n

Pr
ev

io
us

 T
as

ks LUCIR
LUCIR+CSC
LUCIR+CT
LUCIR+CSC+CT

1 2 5
Classes Per Task

50

55

60

65

70

75

Av
er

ag
e

Ac
cu

ra
cy

 o
n

Cu
rre

nt
 T

as
k LUCIR

LUCIR+CSC
LUCIR+CT
LUCIR+CSC+CT

Fig. 3. Average accuracy on previous tasks (APT) and average accuracy on the current
task (ACT), plotted across various settings on the CIFAR-100 dataset

strong boosts of 2.2%−3.1% in this setting, bringing it much closer to the state-
of-the-art PODNet [13]. Overall, our method improves performance consistently
across both settings, showing that our formulation does not rely on a large initial
task to learn strong representations.

6 Ablation Study and Analysis

6.1 Effect of Each Component on Average Incremental Accuracy

Table 3. Ablating each objective on CIFAR100.
Maroon denotes 2nd best result.

Settings B = 50 B = C

Methods C = 1 C = 2 C = 5 C = 1 C = 2 C = 5

LUCIR [19] 50.26 55.38 59.4 25.4 31.93 42.28
LUCIR + CSC 52.04 55.95 60.45 27.16 32.89 42.98
LUCIR + CT 51.5 55.87 61.97 26.53 33.98 43.69
LUCIR + CSCCT 52.95 56.49 62.01 28.12 34.96 44.03

In Table 3, we ablate each
component of our objective.
Each of our objectives can
improve accuracy indepen-
dently. In particular, CSC is
more effective when the num-
ber of classes per task is ex-
tremely low, while CT stands
out in the improvement it
offers when there are more
classes per task. Overall, com-
bining our objectives achieves the best performance across all settings.

6.2 Effect of Each Component on Stability/Plasticity

To further investigate how each component is useful specifically in the incremen-
tal learning setup, we look into how each component improves the stability and
plasticity of the model under various settings. The left plot of Fig. 3 shows the
average accuracy on previous tasks (denotes as APT). This serves as an indicator
of the stability of the model. Mathematically, APT can be expressed as

APT =

∑T
t=2

(∑t−1
k=1 Acc(FTt ,τk)

t−1

)
T − 1

(5)

14 A. Ashok et al.

Fig. 4. T-SNE [35] visualizations of the base 50 classes of CIFAR100 in the embedding
space, after all 100 classes have been learned (Left: LUCIR [19], Right: LUCIR+CSC)

where Acc(FTt , τk) denotes accuracy of model FTt on the test set of task k.
The right plot of Fig. 3 shows the average accuracy on the current task

(denoted as ACT). This serves as an indicator of the plasticity of the model.
ACT is expressed as

ACT =

∑T
t=1 Acc(FTt , τt)

T
(6)

Across all considered settings, both of our objectives increase stability as
well as plasticity of the base model. However, one can see that the effect of
the CSC objective is much more pronounced on the stability of the model.
This aligns with intuition that the CSC helps in preserving previous classes
better in the representation space. At the same time, the CT objective impacts
the plasticity consistently more than the CSC objective, as it mainly aims at
appropriately positioning the current task samples to maximize transfer.

6.3 Embedding Space Visualization

In Fig. 4, we present T-SNE [35] visualizations of the embedding space, without
and with our Cross-Space Clustering (CSC) objective (1). The 50 classes learned
in the initial task are plotted in the embedding spaces of both models, once all
the 100 classes have been learned. It is seen that the CSC objective results in
better clusters of prior classes in the feature space, compared to the baseline.
The number of overlapping classes are reduced to a significant extent, as our
objective ensures that the clusters are well-separated.

7 Conclusion

We introduced two complementary distillation-based objectives for class incre-
mental learning. Our first objective called cross-space clustering positions classes
appropriately in the embedding space and enables classes to counteract forget-
ting jointly. Our second objective called controlled transfer controls the positive
and negative transfer between classes by estimating and utilizing inter-class rela-
tionships. We perform extensive experiments across a wide range of experimental
settings to showcase the effectiveness of our objectives.

Class-Incremental Learning with CSCCT 15

Acknowledgements: We are grateful to the Department of Science and Tech-
nology, India, as well as Intel India for the financial support of this project
through the IMPRINT program (IMP/2019/000250) as well as the DST ICPS
Data Science Cluster program. KJJ thanks TCS for their PhD Fellowship. We
also thank the anonymous reviewers and Area Chairs for their valuable feedback
in improving the presentation of this paper.

References

1. Abati, D., Tomczak, J.M., Blankevoort, T., Calderara, S., Cucchiara, R., Bejnordi,
B.E.: Conditional channel gated networks for task-aware continual learning. CVPR
(2020) 2, 4, 9

2. Ahn, H., Kwak, J., Lim, S.F., Bang, H., Kim, H., Moon, T.: Ss-il: Separated soft-
max for incremental learning. ICCV (2021) 2, 3, 4, 10, 11

3. Ahn, S., Hu, S.X., Damianou, A.C., Lawrence, N.D., Dai, Z.: Variational informa-
tion distillation for knowledge transfer. CVPR (2019) 5

4. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: ECCV (2018) 2, 3, 9

5. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for
online continual learning. In: NeurIPS (2019) 4, 6

6. Belouadah, E., Popescu, A.D.: Il2m: Class incremental learning with dual memory.
ICCV (2019) 2, 4, 6, 8

7. Castro, F.M., Maŕın-Jiménez, M.J., Mata, N.G., Schmid, C., Karteek, A.: End-to-
end incremental learning. ECCV (2018) 2, 3, 4, 11

8. Cha, H., Lee, J., Shin, J.: Co2l: Contrastive continual learning. ICCV (2021) 2, 3,
4, 8, 9

9. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for in-
cremental learning: Understanding forgetting and intransigence. In: ECCV (2018)
2, 3

10. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning
with a-GEM. In: ICLR (2019) 2, 3, 9

11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009) 12

12. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without mem-
orizing. CVPR (2019) 4

13. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: Podnet: Pooled outputs
distillation for small-tasks incremental learning. In: ECCV (2020) 2, 3, 4, 8, 9, 11,
12, 13, 18

14. Farajtabar, M., Azizan, N., Mott, A., Li, A.: Orthogonal gradient descent for con-
tinual learning. In: AISTATS (2020) 2, 3, 9

15. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017) 5

16. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in Cogni-
tive Sciences (1999) 2

17. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017) 18

18. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015) 2, 5

16 A. Ashok et al.

19. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. CVPR (2019) 2, 3, 4, 8, 11, 12, 13, 14, 18, 19

20. Huang, Z., Wang, N.: Like what you like: Knowledge distill via neuron selectivity
transfer. arXiv preprint arXiv:abs/1707.01219 (2017) 5

21. Javed, K., White, M.: Meta-learning representations for continual learning.
NeurIPS (2019) 3

22. Joseph, K., Khan, S., Khan, F.S., Anwer, R.M., Balasubramanian, V.N.: Energy-
based latent aligner for incremental learning. In: CVPR (2022) 3

23. Joseph, K., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world
object detection. In: CVPR (2021) 4

24. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: Network compression
via factor transfer. NeurIPS (2018) 5

25. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic forgetting in neu-
ral networks. PNAS (2017) 2, 3, 9

26. KJ, J., N Balasubramanian, V.: Meta-consolidation for continual learning. NeurIPS
(2020) 3

27. Kj, J., Rajasegaran, J., Khan, S., Khan, F.S., Balasubramanian, V.N.: Incremental
object detection via meta-learning. IEEE TPAMI (2021) 4

28. Koratana, A., Kang, D., Bailis, P., Zaharia, M.A.: Lit: Learned intermediate rep-
resentation training for model compression. In: ICML (2019) 5

29. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
In: Citeseer (2009) 11

30. Lee, K., Lee, K., Shin, J., Lee, H.: Overcoming catastrophic forgetting with unla-
beled data in the wild. arXiv preprint arXiv:1903.12648 (2019) 2, 3, 4

31. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: A continual struc-
ture learning framework for overcoming catastrophic forgetting. In: ICML (2019)
2

32. Li, Z., Hoiem, D.: Learning without forgetting. IEEE TPAMI (2018) 4, 9
33. Liu, Y., Liu, A., Su, Y., Schiele, B., Sun, Q.: Mnemonics training: Multi-class

incremental learning without forgetting. CVPR (2020) 2, 4, 6
34. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning.

NeurIPS (2017) 2, 3, 9
35. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. JMLR (2008) 14
36. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Wei-

jer, J.: Class-incremental learning: survey and performance evaluation on image
classification. arXiv preprint arXiv:2010.15277 (2021) 2

37. Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: investi-
gating the continuum from catastrophic forgetting to age-limited learning effects.
Frontiers in Psychology (2013) 2

38. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018) 5

39. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. CVPR
(2019) 5

40. Peng, B., Jin, X., Liu, J., Zhou, S., Wu, Y., Liu, Y., Li, D., Zhang, Z.: Correlation
congruence for knowledge distillation. ICCV (2019) 5

41. Rajasegaran, J., Hayat, M., Khan, S.H., Khan, F.S., Shao, L.: Random path se-
lection for continual learning. In: NeurIPS (2019) 2

42. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. CVPR (2017) 2, 3, 4, 6, 11, 12

Class-Incremental Learning with CSCCT 17

43. Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., , Tesauro, G.: Learning
to learn without forgetting by maximizing transfer and minimizing interference. In:
ICLR (2019) 5

44. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. ICLR (2015) 5

45. Serrà, J., Suŕıs, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forget-
ting with hard attention to the task. ICML (2018) 4

46. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: NeurIPS (2017) 2

47. Simon, C., Koniusz, P., Harandi, M.: On learning the geodesic path for incremental
learning. CVPR (2021) 2, 3, 4, 8

48. Smith, S.L., Kindermans, P.J., Le, Q.V.: Don’t decay the learning rate, increase
the batch size. In: ICLR (2018) 18

49. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. ICCV (2019) 5
50. Wang, S., Li, X., Sun, J., Xu, Z.: Training networks in null space of feature covari-

ance for continual learning. In: CVPR (2021) 2, 3, 9
51. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.R.: Large scale incre-

mental learning. CVPR (2019) 2, 4, 6, 8, 10, 11
52. Yan, S., Xie, J., He, X.: Der: Dynamically expandable representation for class

incremental learning. CVPR (2021) 2, 4, 9
53. Yim, J., Joo, D., Bae, J.H., Kim, J.: A gift from knowledge distillation: Fast opti-

mization, network minimization and transfer learning. CVPR (2017) 5
54. Yin, H., Molchanov, P., Li, Z., Álvarez, J.M., Mallya, A., Hoiem, D., Jha, N.K.,

Kautz, J.: Dreaming to distill: Data-free knowledge transfer via deepinversion.
CVPR (2020) 2

55. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically ex-
pandable networks. In: ICLR (2018) 2, 4, 9

56. You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel,
J., Keutzer, K., Hsieh, C.J.: Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962 (2019) 18

57. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. ICLR (2017)
5

58. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.
In: ICML (2017) 2, 3, 9

59. Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong gan: Continual
learning for conditional image generation. ICCV (2019) 4

18 A. Ashok et al.

Class-Incremental Learning with Cross-Space
Clustering and Controlled Transfer:

Supplementary Material

8 Results on Different Batch Sizes

Our method leverages examples from the entire batch in order to facilitate train-
ing. All our results on CIFAR100 in the original paper are reported using a batch
size of 128, following prior work [19, 13]. Here, we analyze the efficacy of our
method on different batch sizes used during training. Prior work has observed
that increasing the batch size tends to slightly reduce the test accuracy, and
have proposed various methods to reduce the drop in accuracy [48, 17, 56]. In
our experiments, we adopt the linear scaling rule [17], which scales the learning
rate in proportion to the batch size.

Table S1. Ablation studies on the Batch Size

Settings B = 50 B = C

Methods Batch Size C = 5

LUCIR [19] 128 59.4 42.28
LUCIR + CSCCT 60.01+2.61 44.03+1.55

LUCIR [19] 256 57.06 39.58
LUCIR + CSCCT 59.71+2.91 41.48+1.90

LUCIR [19] 512 56.19 38.16
LUCIR + CSCCT 59.02+2.83 40.2+2.04

LUCIR [19] 1024 54.83 37.97
LUCIR + CSCCT 57.8+2.97 40.27+2.3

Table S1 showcases the re-
sults on two different exper-
imental settings, across vari-
ous batch sizes. It can be seen
that increasing the batch size
increases the performance of
our method. This is because
larger batch sizes allow using
more samples from the mem-
ory as well as the current task,
providing a broader view of
the feature space, which di-
rectly benefits our objectives.

9 Results on Different Exemplar Memory Sizes

The memory size specifies the exemplars-per-class that the model can store at
the end of each phase. Here, we report results varying the exemplar memory
size.

Class-Incremental Learning with CSCCT 19

Table S2. Ablation studies on the Memory Size

Settings B = 50 B = C

Methods Memory Size C = 5

LUCIR [19] 10 55.83 39.45
LUCIR + CSCCT 57.54+1.71 40.72+1.14

LUCIR [19] 20 59.4 42.28
LUCIR + CSCCT 60.01+2.61 44.03+1.55

LUCIR [19] 30 62.52 46.35
LUCIR + CSCCT 65.05+2.53 48.34+1.99

LUCIR [19] 40 63.60 50.16
LUCIR + CSCCT 66.49+2.89 52.28+2.12

Table S2 showcases the re-
sults. Enforcing stricter mem-
ory constraints causes a per-
formance drop in LUCIR [19],
however, our method still pro-
vides strong relative improve-
ments across settings. As the
memory size increases, our
method offers greater relative
improvements.

10 Phase-Wise
Plots

Figures A1 and A2 showcase phase-wise plots on three class-incremental learning
settings on CIFAR100, on top of multiple baseline methods.

0 20 40 60 80 100
Task

102

3 × 101

4 × 101

6 × 101

LUCIR
LUCIR+CSCCT
iCARL
iCARL+CSCCT
PODNet
PODNet+CSCCT

Fig.A1. Phase-wise average incremental accuracies on CIFAR100, on the 100 Task
Setting with 1 Class per Task. The y-axis is set to log scale for visual clarity.

0 10 20 30 40 50
Task

102

4 × 101

6 × 101

LUCIR
LUCIR+CSCCT
iCARL
iCARL+CSCCT
PODNet
PODNet+CSCCT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Task

102

5 × 101

6 × 101

7 × 101

8 × 101

9 × 101

LUCIR
LUCIR+CSCCT
iCARL
iCARL+CSCCT
PODNet
PODNet+CSCCT

Fig.A2. Phase-wise average incremental accuracies on CIFAR100, on the 50 Task
Setting with 2 classes per task (Left) and the 20 Task Setting with 5 classes per task
(Right). The y-axis is set to log scale for visual clarity.

